ODE/IM correspondence and its application to $\mathcal{N} = 2$ SCFT

Hongfei Shu (Tokyo Institute of Technology) December 13, 2017@ Kyoto University

Based on the work with Katsushi Ito arXiv: 1707.03596 JHEP **1708**, 071 (2017)+work in progress

Part I: Introduction of ODE/IM correspondence

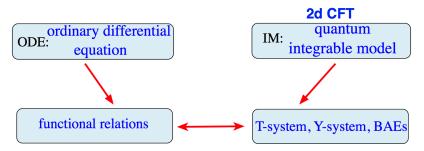
Part II: Its application to Argyres-Douglas theories

Hongfei Shu (Tokyo Institute of Technology)

ODE/IM and AD theory

December 13 2 / 47

- This is a correspondence between classical and quantum integrable model.
- This correspondence is mainly based on the functional relations (T-/Y-system, BAEs, ···) that appear on both sides.



These functional relations have the same form and same asymptotic behavior(same boundary condition) \implies Same solution

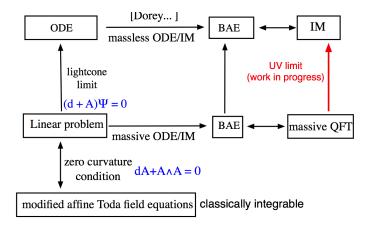
The first example was found in [Dorey-Tateo '98, BLZ'98].

ODE		IM (2d CFT)
		Six vertex model
$\left(-\frac{d^2}{dz^2}+\frac{\ell(\ell+1)}{z^2}+z^{2M}-E\right)\psi=0$	\iff	(continuum ↓ limit)
<u> </u>		$c \leq 1$ 2d CFT
Energy E	\iff	spectral parameter λ
Stokes mupliter $T(E)$	\iff	transfer matrix ${f T}(\lambda)$
T-/Y-system	\iff	\mathbf{T} -/ \mathbf{Y} -system
relation of expansion coefficient	\iff	Baxter's T-Q relation
<u>:</u>	:	:

- **③** Sometimes we also call it as ODE/CFT correspondence.
- Output: The same BAEs and T-/Y-system also emerge from the study of integrable structure of c = 1 − (β − ¹/_β)² ≤ 1 CFT.
- In particular from the minimal model M_{2,2N+3}, one could construct the A_{2N}-type T-/Y-system[BLZ '94 ~'96].

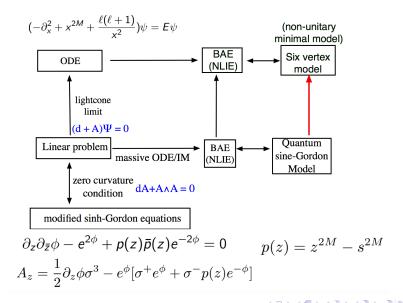
- **1** No conceptual explanation is found so far, even in the simplest case.
- There is no systematic way to find the corresponding ODE from a given 2d CFT (Integrable model).
- The ODE/IM was generalized to higher order ODE [Dorey-Dunning-Masoero-Suzuki-Tateo '07].

General ODE/IM correspondence (ODE/IQFT)



[Lukyanov-Zamolodchikov, Ito, Locke, HS]

Simplest case: Modified sinh Gordon equation



 ODE/IM correspondence is a powerful method. It has been applied to

- Scattering amplitude/null polygon Wilson loop: the area of minimal surface ending on Wilson loop in AdS [Alday-Maldacena, Ito · · ·].
- Quantization of the *O*(3) nonlinear sigma model (Sausage model) [Bazhanov-Lukyanov-Kotousov '17]
- The BPS spectrum/quantum curve in Argyres-Douglas (AD) theory [Gaiotto '14, Ito-HS '17].

- Complete the dictionary of ODE/IM correspondence.
- Apply the ODE/IM correspondence (or integrability method) to $\mathcal{N}=2$ gauge theory.
- Especially for the not well understand Argyres-Douglas theory.
- $\bullet\,$ Find (another type) correspondence between $\mathcal{N}=2$ gauge theory and 2d CFT.

- 2 Quantum curve of A_n Argyres-Douglas theory
- 3 Study the quantum curve via ODE/IM correspondence
- 4 Generalize to other AD theories
- **5** Conclusion and Outlook

Introduction of Argyres-Douglas theory

Introduction of Argyres-Douglas theory

Argyres-Douglas (AD) theory [Argyres-Douglas '95]

- $\bullet\,$ Special points in the moduli space of $\mathcal{N}=2$ gauge theories.
- Mutually non-local monopoles/dyons become massless.
- Strongly coupled $\mathcal{N}=2$ superconformal field theory in 4D.
- The Lagrangian description is not known.

 Realized by degeneration of the Seiberg-Witten curve of N = 2 gauge theories: A_n, D_n, E_n Argyres-Douglas theory

$$\xi^2 = W_G^R(x, u_1, \cdots, u_n), \quad W_{A_n}^{n+1} = x^{n+1} - u_1 x^{n-1} - \cdots - u_{n-1} x - u_n$$

• We also label the A_n -type curve as (A_1, A_n)

$$A_1: \xi^2, \qquad A_n: x^{n+1} + \cdots$$

• This is also generalized to (f, f') case, where f, f' = ADE.

Some results of 4d/2d correspondence

[Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees '13][Cordova-Shao '15] [Xie-Yan-Yau '16] [Creutzig '17] [Fredrickson-Pei-Yan-Ye '17] · · ·

- From the superconformal algebra of $\mathcal{N}=2$ SCFT, one can construct certain 2d chiral algebra.
- $\mathcal{N} = 2 \text{ SCFT} \iff 2d \text{ chiral algebra} \quad (c_{4d} = -\frac{1}{12}c_{2d})$
- Schur index of $\mathcal{N}=2$ SCFT \iff vacuum character of 2d chiral algebra

AD theory	chiral algebra
(A_1, A_{2N})	$M_{2,2N+3}$ minimal model
(A_1, A_{2N-1})	\mathcal{B}_{N+1} algebra

Table: Argyres-Douglas theories and corresponding chiral algebras

Study AD theory via ODE/CFT correspondence

$$\xi^2 = W_G^R(x, u_1, \cdots, u_n)$$

$$\xi
ightarrow -i\epsilon \partial_x$$

Nekrasov-Sahashvili limit of the Omega-background

quantum curve

$$\left(-\partial_x^2 + W_G^R(x, u_1, \cdots, u_n)\right)\psi(x) = 0$$

2d chiral algebra via 4d/2d correspondnece

Quantum curve of A_n Argyres-Douglas theory

- N=2 SYM \iff classical integrable system (SW curve) \iff (spectral curve)
- We consider the Nekrasov-Sahashivili limit (ε₂ = 0, ε₁ = ħ) in the omega background [Nekrasov-Sahashivili '09].
- Classical integrable system \implies the quantum integrable model with $\epsilon_1 = \hbar$.

- The SW differential of the AD theory $\lambda_{SW} = \xi dx$.
- This define a symplectic structure $d\lambda_{SW} \sim d\xi \wedge dx$ on (ξ, x) space.

Seiberg Witten curve
$$\implies$$
 quantum curve $(\xi \rightarrow -\epsilon \frac{d}{dx})$
 $\left(-\epsilon^2 \frac{d^2}{dx^2} + W_G^R(x, u_1, \dots, u_n)\right)\psi(x) = 0$

This is the standard procedure to obtain quantum curve form the Seiberg-Witten curve.

$$u_1 = \cdots = u_{n-1} = 0, \quad x = e^{\frac{2}{n+3}}z, \ u_n = e^{\frac{2(n+1)}{n+3}}E$$

$$\left(-\frac{d^2}{dz^2}+z^{n+1}-E\right)\psi(x)=0$$

Study quantum curve via ODE/CFT correspondence

$$\left(-\frac{d^2}{dz^2}+z^{n+1}-E\right)\psi=0$$

More general polynomial is difficult in ODE/CFT.

• Under the rotation $(z, E)
ightarrow (bz, b^{n+1}E)$, the ODE becomes

$$\frac{1}{b^2} \left(-\frac{d^2}{dz^2} + b^{n+3}(z^{n+1} - E) \right) \psi(bz, b^{n+1}E) = 0$$

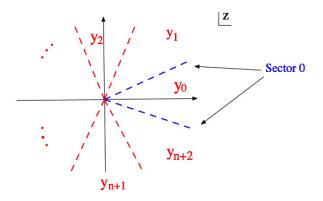
- If we choose $b = \omega = \exp(\frac{2\pi i}{n+3})$, the ODE is invariant.
- If $\psi(z, E)$ is a solution of the ODE, $\psi(\omega z, \omega^{n+1}E) = \psi(\omega z, \omega^{-2}E)$ is also the solution to the ODE.

• At large |z|, we solve the ODE by WKB approximation solution y(z, E) around real positive axis:

$$y_0(z,E) \sim \frac{z^{-\frac{n+1}{4}}}{\sqrt{2i}} \exp\left(-\frac{z^{\frac{n+3}{2}}}{\frac{n+3}{2}}\right).$$

• This is the subdominant solution at large |z| in sector S_0 , where $S_k : |\arg z - \frac{2k\pi}{n+3}| < \frac{\pi}{n+3}$.

T-function



• There are n + 3 sectors in the z-plane (Stokes phenomenon).

• The subdominant solution at sector $k : y_k$

$$y_k(z, E) = \omega^{\frac{k}{2}} y_0(\omega^{-k} z, \omega^{2k} E)$$
 (Sibuya Trick).

- No singularity at z = 0, $y_{n+3}(z) \propto y_0(e^{i2\pi}z) = y_0(z)$.
- Wronskian $W_{i,j} = y_i y_j' y_j y_i' = \text{const} \implies (y_0, y_1)$: a set of basis .

$$y_{k} = -\frac{W_{1,k}}{W_{0,1}}y_{0} + \frac{W_{0,k}}{W_{0,1}}y_{1} = -T_{k-2}(e^{\frac{2(k+1)\pi i}{n+3}}E)y_{0} + T_{k-1}(e^{\frac{2k\pi i}{n+3}}E)y_{1}$$

$$T_{s}(E) = \frac{W_{0,s+1}}{W_{0,1}}(\omega^{-(s+1)}E)$$

Plücker relation of the 2×2 determinants

$$W_{k_1,k_2}W_{k_3,k_4} = W_{k_1,k_4}W_{k_3,k_2} + W_{k_3,k_1}W_{k_4,k_2}$$

	×
_	\Rightarrow

Functional relations of T-function

$$T_s(\omega E)T_s(\omega^{-1}E) = T_{s+1}T_{s-1} + 1$$

Hongfei Shu (Tokyo Institute of Technology)

ELE NOO

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Y-function $Y_s = T_{s-1}T_{s+1}$

$$Y_{s}(e^{\frac{2\pi i}{n+3}}E)Y_{s}(e^{-\frac{2\pi i}{n+3}}E) = (1+Y_{s-1})(1+Y_{s+1})$$

No singularity around $z = 0 \implies T_{n+2} = \frac{W_{0,n+3}}{W_{0,1}} (\omega^{-(s+1)}E) = 0$, $Y_{n+1} = 0$ We get the A_n -type Y-system.

EL OQA

Corresponding 2d CFT

• We rewrite the Y-system in terms of (UV limit of) A_n TBA equation.

$$\log Y_k(\theta) = m_k L e^{\theta} - \sum_{j=1}^n \int_{-\infty}^{\infty} \frac{d\theta'}{2\pi} \phi_{kj}(\theta - \theta') \log(1 + \frac{1}{Y_j})(\theta'), \ E = e^{\frac{2(n+1)}{n+3}\theta}$$

• Then we obtain the ground state energy (effective central charge) of the corresponding 2d CFT

$$c_{eff} = \frac{n}{n+3} = c - 24\Delta_{min}.$$

For even *n*

This corresponds to the non-unitary minimal model $M_{2,n+3}$ with central charge and lowest conformal dimension Δ_{min} operator (as ground state)

$$c(n) = 1 - \frac{3(n+1)^2}{n+3}, \ \Delta_{min}(M) = \Delta_{1,1+\frac{n}{2}} = \frac{1 - (n+1)^2}{8(n+3)},$$

- The same T-/Y-system and Bethe ansatz equations also appear in the study of M_{2,2N+3} [BLZ '94 '96 '98].
- Both of them have the same asymptotic behavior \implies same solution \implies ODE/CFT.

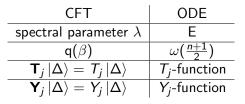


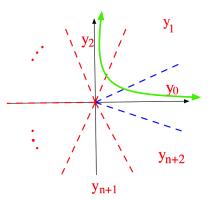
Table: Details of the correspondence

Let us compare the 2d IM and 2d chiral algebra

AD theory2d CFT2d chiral algebra (A_1, A_{2N}) $M_{2,2N+3}$ $M_{2,2N+3}$ [Xie-Yan-Yau '16]Table: Comparing the 2d CFT and 2d chiral algebra

2d CFT \iff 2d chiral algebra

Quantntization condition



$$\psi(z, E) \propto y_0, \quad z \in S_0, \quad , \quad \psi(z, E) \propto y_{k+1}, \quad z \in S_{k+1}$$
$$y_0 = \frac{W_{0,k+2}}{W_{k+1,k+2}} y_{k+1} + \frac{W_{k+1,0}}{W_{k+1,k+2}} y_{k+2}$$
$$\log Y_k(\omega^k E) = (2I+1)\pi i, \quad I : \text{integer}$$

Hongfei Shu (Tokyo Institute of Technology)

ODE/IM and AD theory

- Y-function quantum deformed period (period integral of Seiberg-Witten differential around certain contour)
- One can express the Bohr-Sommerfeld quantization condition of quantum deformed period by using TBA equation.
- In general case, to obtain the correction of Bohr-Sommerfeld quantization condition of the quantum deformed period, one has to consider the higher order WKB approximation about ϵ .

- For odd *n*, the corresponding 2d CFT is not minimal model $M_{2,n+3}$.
- There is no need to let 2d CFT equal to 2d chiral algebra. The underlying interpretation is still missing.

Generalize to other AD theories If you can not solve it, generalize it!

• We consider the simple form quantum curve of (A_n, A_m) AD theory

$$(A_n, A_m): \quad \left((-1)^n \frac{d^{n+1}}{dz^{n+1}} + z^{m+1} - E\right) \psi(z, E) = 0$$

• This is the A_n-type ODE in [Dorey-Dunning-Masoero-Suzuki-Tateo '07]

According to [Dorey-Dunning-Masoero-Suzuki-Tateo '07] and [Dorey-Dunning-Gliozzi-Tateo '07], these correspond to

AD theory2d CFT2d chiral algebra (A_n, A_m) $\frac{(A_n)_L \times (A_n)_1}{(A_n)_{L+1}}$ $\frac{(A_n)_L \times (A_n)_1}{(A_n)_{L+1}}$ [Xie-Yan-Yau '16]Table: Comparing the 2d CFT and 2d chiral algebra

where $L = \frac{n+1}{m+1} - (n+1)$. We get 2d CFT \iff 2d chiral algebra The conformal limit of the linear problem associated with the $A_n^{(1)}$ modified affine Toda field equations:

$$(\partial_z + A(z))\Psi(z) = 0$$

$$\mathcal{A}(z)= \mathcal{p}(z)\sqrt{n_0^ee} \mathcal{E}_{lpha_0} + \sum_{i=1}^n \sqrt{n_i^ee} \mathcal{E}_{lpha_i},$$

 $(n_i^{\vee}: \text{ dual Coxeter labels, } E_{\alpha_i}: \text{ generators of } A_n^{(1)})$

The first component of Ψ satisfy one (n + 1)-th order ODE. Choosing $p(z) = z^{m+1} + \cdots \implies$ Quantum curves of the (A_n, A_m) -type AD theories

- For D_n type AD theory, we use the $2n \times 2n$ matrix representation of $A_{D_n}(z)$.
- We get the ODE (quantum curve)

$$D_n: \quad \left(\frac{d^{2n-1}}{dz^{2n-1}}-2^{n-1}\sqrt{p}\frac{d}{dz}\sqrt{p}\right)\psi(z,E)=0.$$

• This is the simple case of D-type ODE in [Dorey-Dunning-Masoero-Suzuki-Tateo '07].

Generalize to E_6 type ODE (quantum curve)

- For E_6 type AD theory, we use the 27 imes 27 matrix representation.
- We get the ODE (quantum curve)

$$0 = 6(p'+3p\partial)\partial^{-9}(2p'+3p\partial)\psi_1 + \frac{1}{\sqrt{3}}p^{(5)}\psi_1 + \frac{367\sqrt{3}}{24}p^{(4)}\psi_1^{(1)} + \frac{21\sqrt{3}}{2}p^{(3)}\psi_1^{(2)} + \frac{39\sqrt{3}}{2}p^{(2)}\psi_1^{(3)} + \frac{75\sqrt{3}}{4}p^{(1)}\psi_1^{(4)} + \frac{15\sqrt{3}}{2}p\psi_1^{(5)} - \frac{1}{32\cdot 27}\psi_1^{(17)}.$$

• This is not known in [Dorey-Dunning-Masoero-Suzuki-Tateo '07].

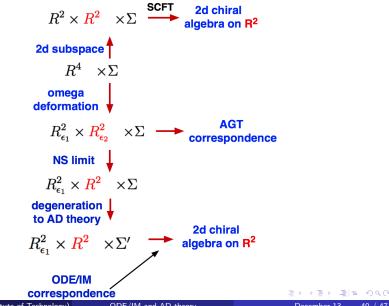
Conclusion and Outlook

- The ODE/CFT correspondence describes the relation between AD theory (quantum curve) and the related 2d chiral algebra obtained by 4d/2d correspondence.
- ODE/CFT is a powerful method to study AD theory.
- The underlying interpretation is still missing (for me).

- A_{2N+1} type (+flavor symmetry)
- D_n and E_n type
- ODE/CFT for *E*-type ODE
- Deformation by some operator \rightarrow RG flow of AD theory.

Thanks for your attention !

One interpretation



Hongfei Shu (Tokyo Institute of Technology)

ODE/IM and AD theory

Integrability structure in CFT (c < 1)

$$T(u) = -\frac{1}{24} + \sum_{n \in Z} L_n e^{-inu}, \quad T(u+2\pi) = T(u)$$
 on cylinder

Integrals of Motion (IM= conserved charge) I_{2k-1} :

$$T_{2}(u) = T(u), \quad T_{2k}(u) =: T^{2k}(u) : +\text{terms with derivative}$$
$$I_{2k-1} = \int_{0}^{2\pi} du T_{2k}(u) \quad (k = 1, 2, \cdots)$$
$$[I_{2k-1}, I_{2k'-1}] = 0 \quad [\text{Sasaki-Yamada '88}]$$

In the "classical limit" $c \to -\infty$:

$$T(u) \rightarrow -\frac{c}{6}U(u), \quad [,] \rightarrow \frac{6\pi}{ic} \{,\}_P, \quad I_{2k-1} \rightarrow \text{``KdV series''} \mathbf{I}_{2k-1}^{cl}.$$

KdV equation: e.o.m.associated with I_3 ("Hamiltonian").

"Classical case" ($c \rightarrow -\infty$)

Lax pair \iff e.o.m. associated to I_{2n-1}^{cl} . One can consider the Lax operator and their associated linear problem:

$$\pi_j[\mathcal{L}(u)] := \pi_j[\partial_u - \phi' H - \lambda(E + F)], \quad \mathcal{L}\Psi = 0$$

Monodromy matrix: $\Psi(u)\mathbf{M}(\lambda) = \Psi(u+2\pi)$, Transfer matrix: $\mathbf{T}_j = tr[\mathcal{M}_j]$

$$\mathbf{T}_{j}(\lambda), \mathbf{T}_{j'}(\lambda')\}_{P} = 0, \quad \log[\mathbf{T}_{\frac{1}{2}}] \sim \lambda[1 - \sum_{n=1}^{\infty} I_{2n-1}^{cl} \lambda^{-2n}], \ \lambda \to \infty$$

 \mathbf{T}_{j} is the generating function for I_{2k-1}^{cl} .

Integrability structure in CFT

Free field rep (Feigin-Fuchs rep = quantum Miura transformation)

$$-\beta^2 T(u) := \varphi'(u) :^2 + (1 - \beta^2)\varphi''(u) + \frac{\beta^2}{24},$$
$$\varphi(u) = iQ + iPu + \sum_{n \neq 0} \frac{a_{-n}}{n} e^{inu}.$$

where Q, P, a_n satisfy the Heisenberg algebra:

$$[Q, P] = \frac{i}{2}\beta^2, \quad [a_n, a_m] = \frac{n}{2}\beta^2\delta_{n+m,0}, \quad [Q, a_n] = 0 = [P, a_n].$$

Fock space $\mathcal{F}_{\textit{p}} \simeq \mathcal{V}_{\Delta}$

$$\mathcal{F}_{p}= ext{Span}\{a_{n_{1}}\cdots a_{n_{k}}\left|p
ight
angle\},\quad a_{n>0}\left|p
ight
angle=0,\quad P\left|p
ight
angle=p\left|p
ight
angle$$

 $c=13-6(eta+eta^{-1}),~~\Delta=(rac{p}{eta})^2-rac{c-1}{24},~~L_0\left|p
ight
angle=\Delta\left|p
ight
angle$

Quantum enveloping algebra $U_q(sl(2))$:

$$[H, E] = 2E, \ \ [H, F] = -2F, \ \ \ [E, F] = rac{q^H - q^{-H}}{q - q^{-1}}, \ \ q = e^{i\pi\beta^2}$$

Quantum counterparts of L-matrices and monodromy matrix are given as

$$\mathbf{L}_j(\lambda) = \pi_j[e^{-i\pi PH}]\mathbf{M}_j(\lambda)$$

$$\mathbf{M}_{j}(\lambda) = \pi_{j} \left[e^{2i\pi PH} P \exp[\lambda \int_{0}^{2\pi} du(:e^{-2\varphi(u)}:q^{\frac{H}{2}}E + :e^{2\varphi(u)}:q^{-\frac{H}{2}}F)] \right]$$

This *L*-matrices satisfy the Yang-Baxter equation

 $\mathsf{R}_{jj'}(\lambda\mu^{-1})(\mathsf{L}_{j}(\lambda)\otimes 1)(1\otimes \mathsf{L}_{j'}(\mu)) = (1\otimes \mathsf{L}_{j'}(\mu))(\mathsf{L}_{j}(\lambda)\otimes 1)\mathsf{R}_{jj'}(\lambda\mu^{-1})$

Transfer operator \mathbf{T}_j

$$\mathbf{T}_j(\lambda) = \operatorname{tr}_{\pi_j}(\mathbf{M}_j(\lambda))$$

Yang-Baxter equation leads to

$$[\mathbf{T}_j(\lambda), \mathbf{T}_{j'}(\lambda')] = 0, \quad [\mathbf{T}_j(\lambda), \mathbf{I}_{2k-1}] = 0$$

Eigenvalue of T-operator

$$egin{aligned} \mathbf{T}_{j} \left| p
ight
angle &= T_{j} \left| p
ight
angle \ T_{j}(q^{rac{1}{2}}\lambda) T_{j}(q^{-rac{1}{2}}\lambda) &= 1 + T_{j+rac{1}{2}}(\lambda) T_{j-rac{1}{2}}(\lambda) \end{aligned}$$

Y-function

$$Y_{j}(\theta) = T_{j+\frac{1}{2}}(\lambda)T_{j-\frac{1}{2}}(\lambda), \quad \lambda = \exp(\frac{\theta}{1+\xi})$$
$$Y_{j}(\theta + \frac{\pi i\xi}{2})Y_{j}(\theta - \frac{\pi i\xi}{2}) = \left(1 + Y_{j+\frac{1}{2}}(\theta)\right)\left(1 + Y_{j-\frac{1}{2}}(\theta)\right)$$

- **1** \mathbf{T}_j can be regarded as generating function for the IM.
- **2** As we consider minimal model $M_{2,2N+3}$, the functional relations are truncated. This leads to an A_{2N} -type T-system.

$$\mathbf{T}_{N+rac{1}{2}}=\mathbf{1}, \ \mathbf{T}_{N+1}=\mathbf{0}, \ ext{ only } (j=rac{1}{2},1,\cdots,N) ext{ are nontrivial}$$

One can also construct the Q and Y-system [BLZ '94 '96 '98].

[Dorey-Dunning-Suzuki-Tateo '07] generalize the ODE/CFT to ABCD-type ODE:

$$D(g) = \left(\frac{d}{z} - \frac{g}{z}\right), \quad P_{K} = (x^{hM/K} - E)^{K}, \quad h: \text{Coxeter numbers}$$
$$D_{n}(\mathbf{g}) = D(g_{n-1} - (n-1))D(g_{n-2} - (n-2))\cdots D(g_{1} - 1)$$
$$A_{n-1}(su(n)): \qquad [(-1)^{n}D_{n}(\mathbf{g}) - P_{K}(x, E)]\psi(x) = 0$$
$$D_{n}(so(2n)): \cdots$$