Black Brane Solutions in Heterotic String Theory

Masaki Fukuda (Tohoku Univ)

Based on [2412.02277] with S.K Kobayashi, K.Watanabe and K.Yonekura

Seminar @ Kyoto : 30/Apr/2025

Non-supersymmetric heterotic branes were proposed by

- Nonsupersymmetric Heterotic Branes [Kaidi,Ohmori,Tachikawa,Yonekura '23]
- On non-supersymmetric heterotic branes [Kaidi, Tachikawa, Yonekura '24]

They constructed world sheet CFTs describing the throat region of

- 0-brane 6-brane
- 4-brane 7-brane

We constructed black brane solutions.

Contents

- 1. Introduction
- 2. Extremal case
- 3. Non-extremal case

4. Summary

1.2. Charge and branes

What is non-supersymmetric heterotic branes ?

Cobordism conjecture predicts their existence.

Usually, we use

Completeness hypothesis(CH)

A gauge theory with gravity must contain all possible representations.

In a field theory consistent with quantum gravity,

 $\mathsf{charge} \Rightarrow \mathsf{dynamical} \ \mathsf{object}$

1.2. D-branes

Example : D-branes

- D-branes carry RR-charges [Polchinski '95],
- but their existence was expected before its discovery.

$$S_{\mathsf{IIA}} \supset \int -\frac{1}{2}F_2 \wedge *F_2 - \frac{1}{2}F_4 \wedge *F_4$$

1.3. Cobordism conjecture(CC)

Cobordism Conjecture(CC) [McNamara, Vafa '19]

All bordism classes in QG must vanish.

• Completeness hypothesis was refined.

 \rightarrow It can now be applied to more subtle charges.

1.3. Bordism group

Cobordism Conjecture(CC) [McNamara, Vafa '19]

All bordism classes in QG must vanish.

M and N are *bordant* if there is a (n + 1)-dim mfd W s.t.

$$\partial W = M \sqcup (-N) \tag{1}$$

We can define group structure

1.3. CC \rightarrow CH 1

 ${\cal M}$ also can have additional structures such as flux ${\cal F}$:

$$(M, n_M)$$
 $n_M = \int_M F \in \mathbb{Z}$

Assume that we don't have any charged object:

$$\mathrm{d}F = 0 \tag{2}$$

If
$$(M, n_M) \sim (N, n_N)$$
, then $0 = \int_W \mathrm{d}F \stackrel{\mathsf{Stokes}}{=} n_M - n_N \iff n_M = n_N$.

If
$$n_M \neq n_N$$
, then $(M, n_M) \not\sim (N, n_N)$.

There are non-trivial classes for each $n_M \in \mathbb{Z}$.

1.3. CC \rightarrow CH 2

<u>One of the solution</u> : introduce an object (source) with charge n_M

$$\mathrm{d}F = j_m, \qquad \int_W j_m = n_M \tag{3}$$

If $(M, n_M) \sim (N, n_N)$, then

$$n_{M} = \int_{W} j_{m} = \int dF$$
$$= n_{M} - n_{N} \iff n_{N} = 0$$
(4)

 (M, n_M) can belong to trivial class.

To break the non-trivial classes, we need to introduce charged objects for any possible charges.

1.4. Charges in heterotic string

We focus on homotopy groups of gauge group in heterotic theory.

$$\pi_3((E_8 \times E_8) \rtimes \mathbb{Z}_2) \cong \mathbb{Z} \times \mathbb{Z}, \qquad \pi_7(\operatorname{Spin}(32)/\mathbb{Z}_2) \cong \mathbb{Z}$$
 (5)

 $\pi_{n-1}(G)$ classifies maps $S^{n-1} \to G$.

 $\pi_{n-1}(G)$ means that non-trivial gauge field can be put on S^n

1.4. Dirac monopole

Example : Dirac Monopole $\iff \pi_1(U(1)) \cong \mathbb{Z} = \left\{ n_{S^2} = \int_{S^2} \frac{iF}{2\pi} \right\}$

$$A_{\text{north}} = A_{\text{south}} + g_{NS}^{-1} \mathrm{d}g_{NS} \tag{6}$$

 $\pi_{n-1}(G)$ is a generalization of this situation

1.4. Charges in heterotic string 2

These charges can be observed by following integrations:

$$\pi_{3} \to (\nu_{1}, \nu_{2}) = \left(\int_{S^{4}} \frac{1}{2!} \operatorname{tr} \left(\frac{iF_{1}}{2\pi} \right)^{2}, \int_{S^{4}} \frac{1}{2!} \operatorname{tr} \left(\frac{iF_{2}}{2\pi} \right)^{2} \right)$$
(7)
$$\pi_{7} \to n_{S^{8}} = \int_{S^{8}} \frac{1}{4!} \operatorname{tr} \left(\frac{iF}{2\pi} \right)^{4}$$
(8)

 According to CC, there must exists the objects which carry the topological charges.

1.5. Early works

- Non-SUSY heterotic branes were proposed by [Kaidi,Ohmori,Tachikawa,Yonekura '23] and [Kaidi,Tachikawa,Yonekura '24].
- The world sheet CFTs are constructed by them.

Homotopy group	p-brane	black brane
$\pi_7(\operatorname{Spin}(32)/\mathbb{Z}_2)$	0-brane*	??
$\pi_3((E_8 \times E_8) \rtimes \mathbb{Z}_2)$	4-brane [*]	partially studied
$\pi_1(\operatorname{Spin}(32)/\mathbb{Z}_2)$	6-brane	\bigcirc
$\pi_0((E_8 \times E_8) \rtimes \mathbb{Z}_2)$	7-brane	??

- * Early works : [Polchinski '05], [Bergshoeff, Gibbons, Townsend '06]
- * Related works : [Álvarez-García, Kneißl, Leedom, Righi '24] \rightarrow (-1)-brane in Spin(32)/ \mathbb{Z}_2 [Dierigl, Heckman, Montero, Torres '22] \rightarrow R7-brane in IIB

1.5. Black 6-brane solution

6-brane solution was given by the ref. [KOTY '23] and [KTY '24]

1.5. Early works 2

• [Polchinski '05]

• [Bergshoeff,Gibbons,Townsend '06]

Black brane solutions of the other branes has not been constructed.

- Black 0-brane solution was not considered.
- Only asymptotic region of the 4-brane was considered.

1.5. Purpose

We need various expression.

• Purpose of our research is to construct black brane solutions for 0- and 4-brane and provide further evidence for the existence of these branes.

Extremal case

1. Introduction

2. Extremal case

3. Non-extremal case

4. Summary

2.1. Action

Effective action for heterotic string

$$S \propto \int \mathrm{d}^{10}x \,\sqrt{-G}e^{-2\Phi} \left(\mathcal{R} + 4(\partial\Phi)^2 + \frac{\alpha'}{2}\mathrm{tr}'(F_{\mu\nu}F^{\mu\nu}) + \cdots\right) \tag{9}$$

- \mathcal{R} : Ricci scalar, Φ : Dilaton, F : YM field
- Fermionic part and *B* are omitted.
- tr' is normalized as

$$\operatorname{tr}'(X) = \frac{1}{2} \operatorname{tr}_{\mathsf{fund}}(X) \qquad X \in \mathfrak{so}(32) \tag{10}$$

$$\operatorname{tr}'(X) = \frac{1}{60} \operatorname{tr}_{\mathsf{adj}}(X) \qquad X \in \mathfrak{e}_8 \times \mathfrak{e}_8$$
 (11)

2.2. Ansatz

For simplicity

spherical symmetry

• flatness along the brane

static

In terms of the fields,

$$ds^{2} = dx^{\mu} dx_{\mu} + dr^{2} + R(r)^{2} d\Omega_{8-p}^{2}$$

$$A = A_{\theta^{i}}(\theta) d\theta^{i}$$

$$\Phi = \Phi(r)$$
(12)
(13)
(13)
(14)

- $\mu = 0, 1, \dots, p,$ $\mathrm{d}\Omega^2_{8-p}$: unit S^{8-p} sphere metric
- WS theory : $\mathbb{R}^{p,1} imes \mathbb{R}_{\Phi} imes (S^{8-p}$ part)
- θ^i : S^{8-p} direction

2.3. How to set B = 0: 0-brane case

• Equation of motion for *B* field:

$$d * H = \frac{1}{4!} \operatorname{tr} \left(\frac{iF}{2\pi} \right)^4 + J_{F1}$$
(15)

In order to set B = 0, F1s are needed because $tr(F^4)$ is nontrivial,

but they don't affect the SUGRA solution.

$$\rho_{F1} \sim g_s^0 \ll \rho_{\text{gauge}} \sim g_s^{-2} \tag{16}$$

19 / 46

2.3. How to set B = 0: 4-brane case

• Bianchi identity for *B* field:

$$dH = \frac{1}{2!} tr' \left(\frac{iF_1}{2\pi}\right)^2 + \frac{1}{2!} tr' \left(\frac{iF_2}{2\pi}\right)^2 + J_{NS5}$$
(17)

In order to set B = 0, the instanton # should be $(\nu, -\nu)$.

1

$$\rho_{NS5}, \rho_{\mathsf{gauge}} \sim g_s^{-2} \tag{18}$$

2.4. YM kinetic term

From spherical symmetry,

$$\operatorname{tr}'(F_{\mu\nu}F^{\mu\nu}) = -\frac{\mathsf{C}}{R^4} \tag{19}$$

- C is a constant depending on the charge $\pi_{n-1}(G)$
- R is the radius of S^n

Define the typical length scale :

$$l_0 = \sqrt{\frac{\alpha' \mathsf{C}}{n(n-1)}} \tag{20}$$

2.5. Extremal Case : Equations of Motion

Then, the EoM become

θ -direction

$$0 = d * F + A \wedge *F, \tag{21}$$

r-direction

$$0 = \sigma'' - 2\left(\Phi - \frac{n}{2}\sigma\right)'\sigma' - \frac{n-1}{l_0^2}\left(e^{-2\sigma} - e^{-4\sigma}\right), \qquad (22)$$
$$0 = \Phi'' - 2\left(\Phi - \frac{n}{2}\sigma\right)'\Phi' + \frac{n(n-1)}{4l_0^2}e^{-4\sigma} \qquad (23)$$

where

$$l_0 = \sqrt{\frac{\alpha'\mathsf{C}}{n(n-1)}}, \quad R = l_0 e^{\sigma}.$$
 (24)
typical length scale

22 / 46

2.6. Example : Gauge field configuration

We want a non-trivial solution of YM eq with charge $\pi_{n-1}(G)$ on S^n .

We can take a $\mathfrak{so}(n)$ gauge field configuration such that the connection is the same as Levi-Civita of the S^n :

$$F_{ijkl} = R_{ijkl} = h_{ik}h_{jl} - h_{il}h_{jk},$$
(25)

2.6. Gauge field configuration

brane	gauge group	sphere	how to embed
4	$(E_8 \times E_8) \rtimes \mathbb{Z}_2$	S^4	$\mathfrak{so}(4)\simeq\mathfrak{su}(2)\times\mathfrak{su}(2)\subset\mathfrak{e}_8\times\mathfrak{e}_8$
0	$\operatorname{Spin}(32)/\mathbb{Z}_2$	S^8	$\mathfrak{so}(8) \subset \mathfrak{so}(32)$

$$F_{ijkl} = R_{ijkl} = h_{ik}h_{jl} - h_{il}h_{jk},$$

Then we get

$$\operatorname{tr}'(|F|^2) = \sum_{ijkl} R_{ijkl} R_{ijkl} = -\frac{n(n-1)}{2R^4}.$$
 (26)

2.7. Radial direction

We want black brane solutions like the 6-brane solution.

• throat region

$$\mathbb{R}^{p,1} \times \mathbb{R}_{ ext{linear dilaton}} imes (S^{8-p} ext{part}),$$
 (27)

asymptotically flat region

2.8. Throat region

EoM have a throat solution.

near the brane

$$\begin{array}{c} \bullet \\ \bullet \\ \hline \end{array} \qquad 0 = \sigma'' - 2\left(\Phi - \frac{n}{2}\sigma\right)'\sigma' - \frac{n-1}{l_0^2}\left(e^{-2\sigma} - e^{-4\sigma}\right), \\ 0 = \Phi'' - 2\left(\Phi - \frac{n}{2}\sigma\right)'\Phi' + \frac{n(n-1)}{4l_0^2}e^{-4\sigma} \\ \Phi = (\text{const}) - \sqrt{\frac{n(n-1)}{8}}\frac{r}{l_0} \qquad (28)$$

$$R = l_0 \tag{29}$$

2.8. Flat region

Also, if we neglect ${
m tr}'(|F|^2) \propto R^{-4}.$

$$R = l_0 e^{\sigma}$$

r-direction

$$0 = \sigma'' - 2\left(\Phi - \frac{n}{2}\sigma\right)'\sigma' - \frac{n-1}{l_0^2}\left(e^{-2\sigma} - e^{-4\sigma}\right), \quad (30)$$
$$0 = \Phi'' - 2\left(\Phi - \frac{n}{2}\sigma\right)'\Phi' + \frac{n(n-1)}{4l_0^2}e^{-4\sigma} \quad (31)$$

we obtain flat spacetime

2.9. Numerical calculations

These discussions are based on asymptotic analysis.

• We do not know whether the throat and flat regions are connected.

• Unfortunately, we could not find the analytical solution except for n=2,9 (n=2 case \rightarrow 6-brane).

 \longrightarrow numerical calculation

• We need the initial conditions for numerical calculations.

2.9. Initial conditions

Consider a small perturbation to the throat

and linearize the EOM (and gauge fixing constraint).

$$\delta \Phi' - \frac{n}{2} \delta R' = 0 \tag{36}$$

$$\delta R'' - 2\sqrt{\frac{n(n-1)}{8}}\delta R' - 2(n-1)\delta R = 0$$
(37)

- Linearized equations are solvable. $\delta R = A e^{\lambda r}, \quad \delta \Phi = \frac{n}{2} \delta R$
- We use the solution to give initial conditions.

2.10. Results

R and Φ for 4-brane are

- There are throat region and flat region.
- Two regions are smoothly connected.
- The results are same for p = 0.

2.11. Check(Hamiltonian constraint)

We performed two additional calculations.

- Gauge fixing constraint from $r \to r'(r)$
- 6-brane analytical solution

Our numerical solutions satisfy gauge fixing constraint.

$$0 = \frac{n}{4}\sigma'^{2} - \left(\Phi - \frac{n}{2}\sigma\right)'^{2} + \frac{n(n-1)}{8l_{0}^{2}}(2e^{-2\sigma} - e^{-4\sigma})$$
(38)
$$2 \times 10^{-11} \\ 1 \times 10^{-11} \\ -10 \\ -5 \\ -1 \times 10^{-11} \\ -2 \times 10^{-11} \end{bmatrix}$$
(38)

2.11. Check(6-brane)

Analytical solution for 6-brane [KOTY'23,KTY'24].

$$ds^{2} = dx_{\mu}dx^{\mu} + \frac{dR^{2}}{(1 - \frac{l_{0}}{R})^{2}} + R^{2}d\Omega_{2}^{2}$$
(39)
$$e^{-2\Phi} = g_{s}^{-2}\left(1 - \frac{l_{0}}{y}\right)$$
(40)

Compare analytical and our numerical calculations

2.12. Reliablity of the SUGRA 1

If the curvature is small, we can trust SUGRA. \rightarrow We need a large charge C(or a large $l_0 = \sqrt{\alpha' C/n(n-1)}$).

• 4-brane

We found $\nu = 1240$ configuration.

$$l_0 = \sqrt{\frac{\alpha'\mathsf{C}}{4(4-1)}} = \sqrt{\frac{\alpha'|\nu|}{2}} \sim 25\sqrt{\alpha'} \tag{41}$$

where the instanton number of $E_8 \times E_8$ is $(\nu, -\nu)$.

0-brane

We don't know how to get large charge configurations...

2.12. Reliablity of the SUGRA 2

If the string coupling is small, we can trust SUGRA, but

$$g_s
ightarrow \infty$$
 as $r
ightarrow -\infty...$

We can not trust SUGRA deep in the throat.

Non-extremal case

- 1. Introduction
- 2. Extremal case
- 3. Non-extremal case
- 4. Summary

3.1. Non-extremal case

In the non-extremal case, there is a horizon where S^1 shrinks to zero. \rightarrow we can hide the subtle region behind horizon.

「臭いものには蓋をしろ」

In order to study finite temperature system, We go to Euclidian signature and compactify the Euclidian time direction on S^1 .

Again, we assume

• spherical symmetry

• flatness along the brane

static

$$ds^{2} = dx_{i}dx^{i} + M(r)^{2}dt_{E}^{2} + dr^{2} + R(r)^{2}d\Omega_{8-p}^{2}$$
(42)

where

$$i=1,2,\ldots,p, \quad t_E \sim t_E + 2\pi$$

Other fields are same as Extremal case.

3.2. Equations of Motion

Equations of motion :

$$0 = \Sigma'' - 2\left(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma\right)'\Sigma' \xrightarrow{\text{integrate}} \Sigma' = De^{2(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma)}$$
(43)

$$0 = \sigma'' - 2\left(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma\right)'\sigma' - \frac{n-1}{l_0^2}\left(e^{-2\sigma} - e^{-4\sigma}\right)$$
(44)

$$0 = \Phi'' - 2\left(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma\right)'\Phi' + \frac{n(n-1)}{4l_0^2}e^{-4\sigma}$$
(45)

•
$$l_0 = \sqrt{\frac{\alpha' \mathsf{C}}{n(n-1)}}, \qquad R = l_0 e^{\sigma}, \qquad M = l_0 e^{\Sigma}$$

• D is a constant.

3.2. Asymptotic behavior

This system can have a flat region.

$$\Sigma' = De^{2(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma)} \tag{46}$$

$$0 = \sigma'' - 2\left(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma\right)'\sigma' - \frac{n-1}{l_0^2}\left(e^{-2\sigma} - e^{-4\sigma}\right)$$
(47)
$$0 = \Phi'' - 2\left(\Phi - \frac{n}{2}\sigma - \frac{1}{2}\Sigma\right)'\Phi' + \frac{n(n-1)}{4l_0^2}e^{-4\sigma}$$
(48)

Again, we could not solve these equations analytically...

3.3. Initial conditions 1

We want to solve the EoM starting from the horizon.

However, this attempt fails...

We solved the EOM starting near the horizon.

3.3. Initial conditions 2

We need an approximate solution near the horizon.

- Set r = 0 at horizon using r shift.
- Expand the fields in powers of r, and determine the coefficients for each order.

Metric which is smooth at the horizon must be

$$ds^{2} = M^{2}dt_{E}^{2} + dr^{2} + \cdots$$

$$\simeq r^{2}dt_{E}^{2} + dr^{2} + \cdots$$

$$\mathbb{R}^{2} \text{ polar coordinate}$$
(49)

 $\Rightarrow D$ is determined.

3.3. Initial conditions 3

Results of the expansion:

$$M = r \left(1 + \frac{n(n-1)}{24} \left(\frac{2}{\tilde{R}_0^2} - \frac{1}{\tilde{R}_0^4} \right) (r/l_0)^2 + \cdots \right)$$
(50)
$$R = R_0 \left(1 + \frac{n-1}{4} \left(\frac{1}{\tilde{R}_0^2} - \frac{1}{\tilde{R}_0^4} \right) (r/l_0)^2 + \cdots \right)$$
(51)
$$\Phi = \Phi_0 - \frac{n(n-1)}{16\tilde{R}_0^4} (r/l_0)^2 + \cdots$$
(52)

- R_0 and Φ_0 are field values at the horizon.
- $\tilde{R}_0 = R_0/l_0$

* The radius of convergence is too small to represent the entire brane.

3.4. Results

3.5. Check

We performed three additional calculations.

- Gauge fixing constraint
- 6-brane analytical solution
- Near extremal and near horizon limit : $R = l_0$

Near extremal and near horizon solution :

$$M/l_{0} = \sqrt{\frac{8}{n(n-1)}} \tanh\left(\sqrt{\frac{n(n-1)}{8}}\frac{r}{l_{0}}\right)$$
(53)
$$e^{-2\Phi} = e^{-2\Phi_{0}} \cosh^{2}\left(\sqrt{\frac{n(n-1)}{8}}\frac{r}{l_{0}}\right)$$
(54)
$$R = l_{0}$$
(55)

3.5. Near extremal and near horizon limit

limit of $R_0 \rightarrow l_0$

• Purpose of our research is to construct black brane solutions for 0- and 4-brane and provide further evidence for the existence of these branes.

• We have constructed numerical solutions for extremal and non-extremal case.

• We checked consistency from some points of view.