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1.1. Introduction : Non-supersymmetric heterotic branes

Non-supersymmetric heterotic branes were proposed by

• Nonsupersymmetric Heterotic Branes [Kaidi,Ohmori,Tachikawa,Yonekura ’23]

• On non-supersymmetric heterotic branes [Kaidi,Tachikawa,Yonekura ’24]

They constructed world sheet CFTs describing the throat region of

• 0-brane

• 4-brane

• 6-brane

• 7-brane

We constructed black brane solutions.
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1.2. Charge and branes

What is non-supersymmetric heterotic branes ?

Cobordism conjecture predicts their existence.

Usually, we use

Completeness hypothesis(CH)

A gauge theory with gravity must contain all possible representations.

In a field theory consistent with quantum gravity,

charge ⇒ dynamical object
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1.2. D-branes

Example : D-branes

• D-branes carry RR-charges [Polchinski ’95],

• but their existence was expected before its discovery.

SIIA ⊃
∫

−1

2
F2 ∧ ∗F2 −

1

2
F4 ∧ ∗F4

Dp-brane

Fp+2

S8−p at ∞

Q =

∫
S8−p

∗Fp+2

↑generalize

Qe =

∫
S2

E⃗ · d2S⃗

=

∫
D3

ρd3V
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1.3. Cobordism conjecture(CC)

Cobordism Conjecture(CC) [McNamara,Vafa ’19]

All bordism classes in QG must vanish.

• Completeness hypothesis was refined.
→ It can now be applied to more subtle charges.

(p+ 1)-dim Object

non-trivial
topology
geometry
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1.3. Bordism group

Cobordism Conjecture(CC) [McNamara,Vafa ’19]

All bordism classes in QG must vanish.

M and N are bordant if there is a (n+ 1)-dim mfd W s.t.

∂W = M ⊔ (−N) (1)

M N

W

⇐⇒ M
bordant∼ N

We can define group structure

M

N

[M ] + [N ] = [M ⊔N ]

M

M

Ø

[M ] + [Ø] = [M ]

M

−M

Ø

[M ] + [−M ] = [Ø]
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1.3. CC → CH 1

M also can have additional structures such as flux F :

F
M (M,nM ) nM =

∫
M

F ∈ Z

Assume that we don’t have any charged object:

dF = 0 (2)

If (M,nM ) ∼ (N,nN ), then 0 =

∫
W

dF
Stokes
= nM − nN ⇐⇒ nM = nN .

If nM ̸= nN , then (M,nM ) ̸∼ (N,nN ).

There are non-trivial classes for each nM ∈ Z.
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1.3. CC → CH 2

One of the solution : introduce an object (source) with charge nM

dF = jm,

∫
W

jm = nM (3)

If (M,nM ) ∼ (N,nN ), then

nM =

∫
W

jm =

∫
dF

= nM − nN ⇐⇒ nN = 0 (4)

(M,nM ) can belong to trivial class.

To break the non-trivial classes, we need to introduce charged objects for
any possible charges.

9 / 46



1.4. Charges in heterotic string

We focus on homotopy groups of gauge group in heterotic theory.

π3((E8 × E8)⋊ Z2) ∼= Z× Z, π7(Spin(32)/Z2) ∼= Z (5)

πn−1(G) classifies maps Sn−1 → G.

πn−1(G) means that non-trivial gauge field can be put on Sn

Sn−1
gNS

Sn
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1.4. Dirac monopole

Example : Dirac Monopole ⇐⇒ π1(U(1)) ∼= Z =
{
nS2 =

∫
S2

iF
2π

}
Anorth =

inS2

2 (1− cos θ)dϕ

Asouth = − inS2

2 (1 + cos θ)dϕ

equator S1 gNS(ϕ) = einS2ϕ

Anorth = Asouth + g−1
NSdgNS (6)

πn−1(G) is a generalization of this situation

11 / 46



1.4. Charges in heterotic string 2

• These charges can be observed by following integrations:

π3 → (ν1, ν2) =

(∫
S4

1

2!
tr

(
iF1

2π

)2

,

∫
S4

1

2!
tr

(
iF2

2π

)2
)

(7)

π7 → nS8 =

∫
S8

1

4!
tr

(
iF

2π

)4

(8)

• According to CC, there must exists the objects which carry the
topological charges.

p = (8− n)-brane

Sn with non-trivial
gauge field

CC
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1.5. Early works

• Non-SUSY heterotic branes were proposed by
[Kaidi,Ohmori,Tachikawa,Yonekura ’23] and [Kaidi,Tachikawa,Yonekura ’24].

• The world sheet CFTs are constructed by them.

Homotopy group p-brane black brane

π7(Spin(32)/Z2) 0-brane∗ ??
π3((E8 × E8)⋊ Z2) 4-brane∗ partially studied

π1(Spin(32)/Z2) 6-brane
π0((E8 × E8)⋊ Z2) 7-brane ??

* Early works : [Polchinski ’05],[Bergshoeff,Gibbons,Townsend ’06]

* Related works : [Álvarez-Garćıa, Kneißl, Leedom, Righi ’24]
→ (−1)-brane in Spin(32)/Z2

[Dierigl, Heckman, Montero, Torres ’22]
→ R7-brane in IIB
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1.5. Black 6-brane solution

6-brane solution was given by the ref. [KOTY ’23] and [KTY ’24]

S2
throat region

flat regionr

ds2 =
dR2(

1− l0
R

)2 +R2dΩ2
2 + dxµdx

µ

F

2π
=

16⊕
i=1

(
0 qi

−qi 0

)
ϵ

4π
e−2Φ = g−2

s

(
1− l0

R

)
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1.5. Early works 2

• [Polchinski ’05]

F1
S8

0-brane

• [Bergshoeff,Gibbons,Townsend ’06]

NS5
S4

4-brane

Black brane solutions of the other branes has not been constructed.

• Black 0-brane solution was not considered.

• Only asymptotic region of the 4-brane was considered.
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1.5. Purpose

We need various expression.

Brane

Black brane solution

World sheet

World volume

· · ·

• Purpose of our research is to construct black brane solutions for 0- and
4-brane and provide further evidence for the existence of these branes.
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2.1. Action

Effective action for heterotic string

S ∝
∫

d10x
√
−Ge−2Φ

(
R+ 4(∂Φ)2 +

α′

2
tr′(FµνF

µν) + · · ·
)

(9)

• R : Ricci scalar, Φ : Dilaton, F : YM field

• Fermionic part and B are omitted.

• tr′ is normalized as

tr′(X) =
1

2
trfund(X) X ∈ so(32) (10)

tr′(X) =
1

60
tradj(X) X ∈ e8 × e8 (11)
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2.2. Ansatz

For simplicity

• spherical symmetry

• static

• flatness along the brane

In terms of the fields,

ds2 = dxµdxµ + dr2 +R(r)2dΩ2
8−p (12)

A = Aθi(θ)dθ
i (13)

Φ = Φ(r) (14)

• µ = 0, 1, . . . , p, dΩ2
8−p : unit S8−p sphere metric

• WS theory : Rp,1 × RΦ × (S8−ppart)

• θi : S8−p direction
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2.3. How to set B = 0 : 0-brane case

• Equation of motion for B field:

d ∗H =
1

4!
tr

(
iF

2π

)4

+ JF1 (15)

In order to set B = 0, F1s are needed because tr(F 4) is nontrivial,

F1
S8

0-brane

but they don’t affect the SUGRA solution.

ρF1 ∼ g0s ≪ ρgauge ∼ g−2
s (16)
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2.3. How to set B = 0 : 4-brane case

• Bianchi identity for B field:

dH =
1

2!
tr′
(
iF1

2π

)2

+
1

2!
tr′
(
iF2

2π

)2

+ JNS5 (17)

In order to set B = 0, the instanton # should be (ν,−ν).

NS5
S4

4-brane

S4

4-brane

If there are NS5-branes, they affect the SUGRA solution.

ρNS5, ρgauge ∼ g−2
s (18)
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2.4. YM kinetic term

From spherical symmetry,

tr′(FµνF
µν) = − C

R4
(19)

• C is a constant depending on the charge πn−1(G)

• R is the radius of Sn

Define the typical length scale :

l0 =

√
α′C

n(n− 1)
(20)
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2.5. Extremal Case : Equations of Motion

Then, the EoM become

θ-direction

0 = d ∗ F +A ∧ ∗F, (21)

r-direction

0 = σ′′ − 2
(
Φ− n

2
σ
)′

σ′ − n− 1

l20

(
e−2σ − e−4σ

)
, (22)

0 = Φ′′ − 2
(
Φ− n

2
σ
)′

Φ′ +
n(n− 1)

4l20
e−4σ (23)

where

l0 =

√
α′C

n(n− 1)
typical length scale

, R = l0e
σ. (24)
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2.6. Example : Gauge field configuration

We want a non-trivial solution of YM eq with charge πn−1(G) on Sn.

Sn • metric :

dΩ2
n = hijdθ

idθj

• structure group of TSn :

SO(n)

We can take a so(n) gauge field configuration such that the connection is
the same as Levi-Civita of the Sn:

Fijkl = Rijkl = hikhjl − hilhjk, (25)
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2.6. Gauge field configuration

brane gauge group sphere how to embed

4 (E8 × E8)⋊ Z2 S4 so(4) ≃ su(2)× su(2) ⊂ e8 × e8
0 Spin(32)/Z2 S8 so(8) ⊂ so(32)

Sn

Fijkl = Rijkl = hikhjl − hilhjk,

Then we get

tr′(|F |2) =
∑
ijkl

RijklRijkl = −n(n− 1)

2R4
. (26)
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2.7. Radial direction

We want black brane solutions like the 6-brane solution.

• throat region
Rp,1 × Rlinear dilaton × (S8−ppart), (27)

• asymptotically flat region

S8−p
R

r
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2.8. Throat region

EoM have a throat solution.

near the brane 0 = σ′′ − 2
(
Φ− n

2
σ
)′

σ′ − n− 1

l20

(
e−2σ − e−4σ

)
,

0 = Φ′′ − 2
(
Φ− n

2
σ
)′

Φ′ +
n(n− 1)

4l20
e−4σ

Φ = (const)−
√

n(n− 1)

8

r

l0
(28)

R = l0 (29)

26 / 46



2.8. Flat region

Also, if we neglect tr′(|F |2) ∝ R−4.
R = l0e

σ

r-direction

0 = σ′′ − 2
(
Φ− n

2
σ
)′

σ′ − n− 1

l20

(
e−2σ − e−4σ

)
, (30)

0 = Φ′′ − 2
(
Φ− n

2
σ
)′

Φ′ + n(n−1)
4l20

e−4σ (31)

we obtain flat spacetime

R = r + (const) (32)

Φ = (const) (33)
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2.9. Numerical calculations

These discussions are based on asymptotic analysis.

• We do not know whether the throat and flat regions are connected.

??

• Unfortunately, we could not find the analytical solution except for
n = 2, 9 (n = 2 case → 6-brane).
−→ numerical calculation

• We need the initial conditions for numerical calculations.
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2.9. Initial conditions

Consider a small perturbation to the throat

r
Φ = (const)−

√
n(n− 1)

8

r

l0
+δΦ. (34)

R = l0 (1+δR) , (35)

and linearize the EOM (and gauge fixing constraint).

δΦ′ − n

2
δR′ = 0 (36)

δR′′ − 2

√
n(n− 1)

8
δR′ − 2(n− 1)δR = 0 (37)

• Linearized equations are solvable. δR = Aeλr, δΦ = n
2 δR

• We use the solution to give initial conditions.
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2.10. Results

R and Φ for 4-brane are

-10 -5 5 10

-10

-5

5

10

r
l0

r/l
0
+ (co

nst
)

l0/l0

-10 -5 5 10

-10

-5

5

10

r
l0

Φ

−
√
n(n−1)8 r/l0

Φ∞

• There are throat region and flat region.

• Two regions are smoothly connected.

• The results are same for p = 0.
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2.11. Check(Hamiltonian constraint)

We performed two additional calculations.

• Gauge fixing constraint from r → r′(r)

• 6-brane analytical solution

Our numerical solutions satisfy gauge fixing constraint.

0 =
n

4
σ′2 −

(
Φ− n

2
σ
)′2

+
n(n− 1)

8l20
(2e−2σ − e−4σ) (38)

-10 -5 5 10

-2.× 10-11

-1.× 10-11

1.× 10-11

2.× 10-11

r
l0
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2.11. Check(6-brane)

Analytical solution for 6-brane [KOTY’23,KTY’24].

ds2 = dxµdx
µ +

dR2

(1− l0
R )

2
+R2dΩ2

2 (39)

e−2Φ = g−2
s

(
1− l0

y

)
(40)

Compare analytical and our numerical calculations

-10 -5 5 10

1

2

3

4

5

r
l0

Φ

numerical
analytical

-10 -5 5 10

2

4

6

8

r
l0

R/l0

numerical
analytical
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2.12. Reliablity of the SUGRA 1

If the curvature is small, we can trust SUGRA.
→ We need a large charge C( or a large l0 =

√
α′C/n(n− 1)).

• 4-brane
We found ν = 1240 configuration.

l0 =

√
α′C

4(4− 1)
=

√
α′|ν|
2

∼ 25
√
α′ (41)

where the instanton number of E8 × E8 is (ν,−ν).

• 0-brane
We don’t know how to get large charge configurations...
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2.12. Reliablity of the SUGRA 2

If the string coupling is small, we can trust SUGRA, but

-10 -5 5 10

-10

-5

5

10
−
√
n(n− 1)8 r

l0 + (const)

gs → ∞ as r → −∞...

We can not trust SUGRA deep in the throat.
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3.1. Non-extremal case

In the non-extremal case, there is a horizon where S1 shrinks to zero.
→ we can hide the subtle region behind horizon.

「臭いものには蓋をしろ」

In order to study finite temperature system, We go to Euclidian signature
and compactify the Euclidian time direction on S1.

tE

xi

tE
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3.1. Ansatz

Again, we assume

• spherical symmetry

• static

• flatness along the brane

ds2 = dxidx
i +M(r)2dt2E + dr2 +R(r)2dΩ2

8−p (42)

where
i = 1, 2, . . . , p, tE ∼ tE + 2π

Other fields are same as Extremal case.
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3.2. Equations of Motion

Equations of motion :

0 = Σ′′ − 2

(
Φ− n

2
σ − 1

2
Σ

)′
Σ′ integrate→ Σ′ = De2(Φ−n

2
σ− 1

2
Σ) (43)

0 = σ′′ − 2

(
Φ− n

2
σ − 1

2
Σ

)′
σ′ − n− 1

l20

(
e−2σ − e−4σ

)
(44)

0 = Φ′′ − 2

(
Φ− n

2
σ − 1

2
Σ

)′
Φ′ +

n(n− 1)

4l20
e−4σ (45)

• l0 =
√

α′C
n(n−1) , R = l0e

σ, M = l0e
Σ

• D is a constant.
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3.2. Asymptotic behavior

This system can have a flat region.

Σ′ = De2(Φ−n
2
σ− 1

2
Σ) (46)

0 = σ′′ − 2

(
Φ− n

2
σ − 1

2
Σ

)′
σ′ − n− 1

l20

(
e−2σ − e−4σ

)
(47)

0 = Φ′′ − 2

(
Φ− n

2
σ − 1

2
Σ

)′
Φ′ +

n(n− 1)

4l20
e−4σ (48)

??

Again, we could not solve these equations analytically...
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3.3. Initial conditions 1

We want to solve the EoM starting from the horizon.

r

horizon

However, this attempt fails. . .

We solved the EOM starting near the horizon.

horizon

r
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3.3. Initial conditions 2

We need an approximate solution near the horizon.

• Set r = 0 at horizon using r shift.

• Expand the fields in powers of r, and determine the coefficients for
each order.

tE

r = 0

r

horizon (topologically R2)

Metric which is smooth at the horizon must be

ds2 = M2dt2E + dr2 + · · ·
≃ r2dt2E + dr2

R2 polar coordinate

+ · · · (49)

⇒ D is determined.
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3.3. Initial conditions 3

Results of the expansion:

M = r

(
1 +

n(n− 1)

24

(
2

R̃2
0

− 1

R̃4
0

)
(r/l0)

2 + · · ·

)
(50)

R = R0

(
1 +

n− 1

4

(
1

R̃2
0

− 1

R̃4
0

)
(r/l0)

2 + · · ·

)
(51)

Φ = Φ0 −
n(n− 1)

16R̃4
0

(r/l0)
2 + · · · (52)

• R0 and Φ0 are field values at the horizon.

• R̃0 = R0/l0

* The radius of convergence is too small to represent the entire brane.
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3.4. Results

0 5 10 15 20
0

5

10

15

20

r
l0

R/l0
R0/l0 = 2
r + (const)

5 10 15 20

-0.20

-0.15

-0.10

-0.05

0.00
r
l0

Φ
Φ(∞)

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

r
l0

M
M(∞)

• R0/l0 = 2,Φ0 = 0

• These are the p = 4 solution.

• These are same for p = 0.
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3.5. Check

We performed three additional calculations.

• Gauge fixing constraint

• 6-brane analytical solution

• Near extremal and near horizon limit : R = l0

Near extremal and near horizon solution :

M/l0 =

√
8

n(n− 1)
tanh

(√
n(n− 1)

8

r

l0

)
(53)

e−2Φ = e−2Φ0 cosh2

(√
n(n− 1)

8

r

l0

)
(54)

R = l0 (55)
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3.5. Near extremal and near horizon limit

limit of R0 → l0

0 5 10 15 20 25 30
0

5

10

15

20

25

r
l0

R/l0

5 10 15 20 25 30

-25

-20

-15

-10

-5

0

r
l0

Φ

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1+ 10-2

1+ 10-4

1+ 10-6

1+ 10-8

1+ 10-10

r
l0

M

R0/l0

• Dahsed lines are the
near extremal solution.

• As R0 → l0, the solution
approaches extremal.
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4. Summary

• Purpose of our research is to construct black brane solutions for 0- and
4-brane and provide further evidence for the existence of these branes.

• We have constructed numerical solutions for extremal and
non-extremal case.

• We checked consistency from some points of view.
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