Tensor renormalization group study of (1+1)-dimensional U(1) gauge-Higgs model at $\theta=\pi$ with Lüscher's admissibility condition

Shinichiro Akiyama a), b)

- a) Center for Computational Sciences, University of Tsukuba
 - b) Graduate School of Science, The University of Tokyo

Based on SA-Kuramashi, JHEP09(2024)086, PoS(LATTICE2024)361

素粒子論研究室セミナー@京都大学 2025.11.19

Formulation of renormalization group

- Block-spin transformation by Kadanoff
 Kadanoff, Phys. Phys. Fiz. 2(1966)263-272
- Formulation of the RG method via the introduction of scale trans. by Wilson

of cooperative behavior arise. In the renormalization group framework, these qualitative features result from the iterative character of the renormalization group. Namely, there is a transformation τ which converts \mathcal{H}_0 to \mathcal{H}_1 , \mathcal{H}_1 to \mathcal{H}_2 , etc. The transformation is the same whether one is constructing \mathcal{H}_1 from \mathcal{H}_0 or \mathcal{H}_2 from \mathcal{H}_1 ; in each case one is thinning the degrees of freedom by a factor 2. The only difference is in the lengthscale (L_0 versus $2L_0$) which is easily transformed away. So one has a transformation τ which is to be applied repeatedly:

$$\tau(\mathcal{H}_0) = \mathcal{H}_1, \qquad \tau(\mathcal{H}_1) = \mathcal{H}_2, \qquad \tau(\mathcal{H}_2) = \mathcal{H}_3 \qquad \text{etc.}$$
 (1.1)

This transformation is to be iterated n times where 2^nL_0 is of order ξ . When ξ is large, the number of iterations is large.

When one has a transformation τ which is iterated many times, the simplest result we can obtain is that the sequence \mathcal{H}_I approaches a fixed point of τ , namely an interaction \mathcal{H}^* satisfying

$$\tau(\mathcal{H}^*) = \mathcal{H}^*. \tag{1.2}$$

This is what will happen in the examples discussed later in this review.

Wilson-Kogut, Phys. Rept. 12(1974)75-199

 As a practical numerical method, the further development has been made based on tensor network description

RG methods as practical tools

- Numerical RG method for single impurity Kondo problem wilson, RMP47(1975)773
 - "0D" problems
- Density Matrix RG for 1D quantum lattice models White, PRL69(1992)2863-2866
 - Reduction of the number of states via the density matrix formalism
 - The most accurate numerical method for 1D quantum systems
- Corner transfer matrix RG for 2D classical systems
 Nishino-Okunishi, JPSJ65(1996)891
 - A transfer-matrix RG method for 2D models based on Baxter's CTM

Baxter, J. Math. Phys. 9(1968)650-654

Tensor Network RG

Levin-Nave, PRL99(2007)120601 Evenbly-Vidal, PRL115(2015)180405

- Usually formulated within the Lagrangian formalism (Tensor Network RG approach)
- With the advancement of QC, TN methods based on the Hamiltonian formalism have also been increasingly applied to lattice field theory (Tensor Network State approach)

TN representations for path integrals

Most LFTs are ready to be described by network of tensors

Liu-Meurice-Qin-Unmuth-Yockey-Xiang-Xie-Yu-Zou, PRD88(2013)056005 [Review] Meurice-Sakai-Unmuth-Yockey, RMP94(2022)025005

Boltzmann weight → Tensor elts

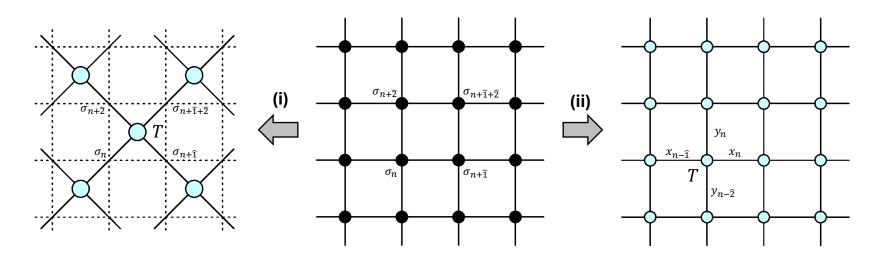
Fields → Tensor indices

Interaction → Tensor contraction

Demonstration in the 2D Ising model

(i)
$$Z = \Sigma_{\{\sigma = \pm 1\}} \prod T_{\sigma_n \sigma_{n+\hat{1}} \sigma_{n+\hat{2}} \sigma_{n+\hat{1}+\hat{2}}} \text{ w/ } T_{\sigma_n \sigma_{n+\hat{1}} \sigma_{n+\hat{2}} \sigma_{n+\hat{1}+\hat{2}}} \coloneqq \mathrm{e}^{K(\sigma_n \sigma_{n+\hat{1}} + \sigma_{n+\hat{1}} \sigma_{n+\hat{1}} + \sigma_{n+\hat{1}+\hat{2}} + \sigma_{n+\hat{1}+\hat{2}} \sigma_{n+\hat{2}} + \sigma_{n+\hat{2}} \sigma_n)}$$

(ii)
$$Z = \sum_{\{x,y=0,1\}} \prod T_{x_n y_n x_{n-1} y_{n-2}} \text{ w/ } T_{xyx'y'} \coloneqq 2 \cosh^2 K \left(\sqrt{\tanh K} \right)^{x+y+x'+y'} \delta_{x+y+x'+y' \mod 2,0}$$

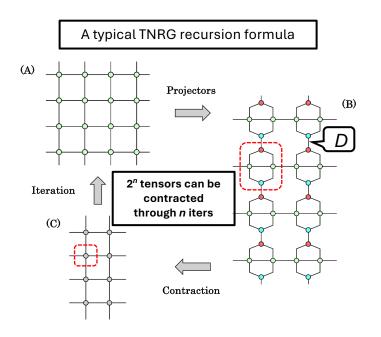


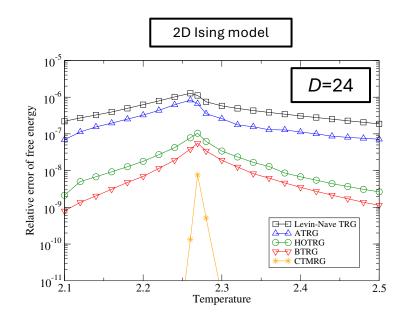
Tensor Network RG

- TNRG recursion formula based on truncated SVD up to a given **bond**Levin-Nave, PRL99(2007)120601

 Xie-Chen-Qin-Zhu-Yang-Xiang, PRB86(2012)045139

 Evenbly-Vidal, PRL115(2015)180405
 - TNRG approximately computes path integrals via Yang-Gu-Wen, PRL118(2017)110504 Morita-Kawashima, CPC236(2019)65-71 their TN rep.
- \bullet When $D \rightarrow \infty$, the TNRG exactly contracts the given TN rep.
 - The accuracy can be systematically improved by increasing D





Hunting Z_n symmetry breaking via partition function

Gu-Wen, PRB80(2009)155131

Ground-state degeneracy from the renormalized tensors

$$\bullet X := Z(N_x, N_y)^2 / Z(2N_x, N_y)$$

- Ex. 2D Ising model
 - Symmetric phase: $Z \sim 1 \times e^{\lambda N_x N_y} \Rightarrow X = 1$
 - SSB phase: $Z \sim 2 \times e^{\lambda' N_x N_y} \Rightarrow X = 2$

- Resulting structure of renormalized tensors are different according to the realized phases ⇒ "Fixed-point tensor"
- This method enables us to locate critical points in arbitrary dimensions

Wang+, CPL31(2014)070503, SA+, PRD100(2019)054510

Finite-size scaling (FSS) for X is recently reported

Morita-Kawashima, PRB111(2025)054433

Extension to continuous symmetry breaking

Grassmann TNRG approach

TNRG can directly deal with the Grassmann path integral w/o pseudofermion

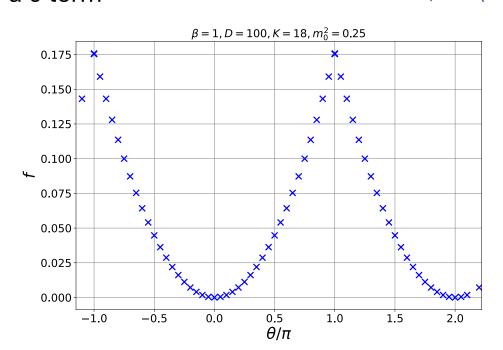
Gu-Verstraete-Wen, arXiv.1004.2563, Shimizu-Kuramashi, PRD90(2014)014508, SA-Kadoh, JHEP10(2021)188

OPEN ACCESS

Introduction to the Grassmann TNRG

SA-Meurice-Sakai, Journal of Physics: Condensed Matter 36 (2024) 343002

 A study on Nf=2 massive Schwinger model w/ aθterm Kanno-SA-Murakami-Takeda, JHEP11(2025)036



IOP Publishing J. Phys.: Condens. Matter 36 (2024) 343002 (31pp) https://doi.org/10.1088/1361-648X/ad4760

Topical Review

Tensor renormalization group for fermions

Shinichiro Akiyama^{1,2}0, Yannick Meurice^{3,*}0 and Ryo Sakai⁴0

¹ Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan ² Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

³ Department of Physics and Astronomy, The University of Iowa, Iowa City, IA 52242, United States of 4 Jij Inc., Bunkyo-ku, Tokyo 113-0031, Japan

E-mail: yannick-meurice@uiowa.edu and akiyama@ccs.tsukuba.ac.jp

Received 6 February 2024, revised 2 April 2024 Accepted for publication 3 May 2024 Published 28 May 2024

Abstract

We review the basic ideas of the tensor renormalization group method and show how they can be applied for lattice field theory models involving relativistic fermions and Grassmann variables in arbitrary dimensions. We discuss recent progress for entanglement filtering, loop optimization, bond-weighting techniques and matrix product decompositions for Grassmann tensor networks. The new methods are tested with two-dimensional Wilson-Majorana fermions and multi-flavor Gross-Neveu models. We show that the methods can also be applied to the fermionic Hubbard model in 1+1 and 2+1 dimensions.

Keywords: tensor networks, lattice gauge theory, relativistic lattice fermions, Fermi Hubbard model, Grassmann path integrals, sign problems

Contents		3.2. The Schwinger model	
		4. Improved TRG methods for fermions	- 1
1. Introduction	2	4.1. CDL structure on tensor network	- 1
Formalism for the Grassmann TRG	3	4.2. Removal of CDL from network	1
2.1. Grassmann tensor network representation	3	4.3. Bond-weighting technique	- 2
2.2. Exact contraction	6	4.4. Multilayered tensor network formulations for	
2.3. Model-independent notation	8	N_f -flavor fermions	- 2
2.4. Extension to lattice gauge theories	9	5. Relativistic models with fermion interactions	- 2
2.5. Approximate contraction by the Levin-Nave		5.1. Gross–Neveu model	- 2
TRG	11	5.2. QCD in the infinite-coupling limit	- 2
2.6. Approximate contraction by the HOTRG	14	5.3. NJL model	- 2
2.7. Practical remarks	16	5.4. $\mathcal{N} = 1$ Wess–Zumino model	- 2
3. Examples of numerical calculations	17	5.5. Non-abelian lattice gauge theories coupled to	
3.1. Wilson–Majorana fermions	17	fermions	- 2
		6. The Hubbard model	- 2
	6.1. (1+1)-dimensional model	- 1	
* Author to whom any correspondence should be addressed.		6.2. (2+1)-dimensional model	- 2
	7. Conclusions	- 2	
Original Content from this work may be used und	Data availability statement	- 2	
further distribution of this work must maintain attribution to the author(Acknowledgment	- 2	
the title of the work, journal citation and DOI.	References	- 1	

Toward the QCD at finite density

- MC has played a central role as a practical numerical method for simulating lattice field theories
 - Information extraction via sampling
 - However, it suffers from the sign problem
 - A solution towards the sign problem

Cf. Tempered Lefschetz thimble method, Fukuma-Umeda, PTEP017(2017)73B01 Worldvolume HMC, Fukuma-Matsumoto, PTEP2021(2021)2023B08

- TNRG provides a distinct perspective from MC
 - Information compression via tensor networks
 - No sign problem
 - However, the accuracy of the compression depends on the entanglement in the system
- Is it possible to explore the QCD at finite density using TNRG?
 - "From Ising to QCD"

II. LATTICE FIELD THEORY

A. The Kogut sequence: From Ising to QCD

In the early 1970s, QCD appeared to be a strong candidate for a theory of strong interactions involving quarks and gluons. However, the perturbative methods that provided satisfactory ways to handle the electroweak interactions of leptons failed to explain confinement, mass gaps, and chiral symmetry breaking. A nonperturbative definition of QCD was needed. In 1974, Wilson proposed (Wilson, 1974) a lattice formulation of QCD where the SU(3) local symmetry is exact. As this four-dimensional model is fairly difficult to handle numerically, a certain number of research groups started considering simpler lattice models in lower dimensions and then increased symmetry and dimensionality. This led to a sequence of models, sometimes called the "Kogut ladder," that appears in the reviews of Kogut (1979, 1983) and was later addressed with small modifications by Polyakov (1987) and Itzykson and Drouffe (1991).

The sequence is approximately the following:

- (1) D = 2 Ising model
- (2) D = 3 Ising model and its gauge dual
- (3) D = 2 O(2) spin and Abelian Higgs models
- (4) D = 2 fermions and the Schwinger model
- (5) D = 3 and 4U(1) gauge theory
- (6) D = 3 and 4 non-Abelian gauge theories
- (7) D = 4 lattice fermions
- (8) D = 4 QCD

Lüscher's admissibility condition

Lüscher, NPB549(1999)295-334

• The U(1) gauge action with the admissibility condition:

$$\beta S_g = \begin{cases} \beta \sum_{n,\mu>\nu} \frac{1 - \text{Re}P_{\mu\nu}(n)}{1 - \|1 - P_{\mu\nu}(n)\|/\epsilon} & \text{if } \|1 - P_{\mu\nu}(n)\| < \epsilon, \\ \infty & \text{otherwise,} \end{cases}$$

$$P_{\mu\nu}(n) := U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{\mu}^{\dagger}(n+\hat{\nu})U_{\nu}^{\dagger}(n)$$

- The gauge fields are separated into disconnected subspaces, corresponding to topological charge
- In the MC simulation, the topological change is substantially suppressed

Fukaya-Onogi, PRD68(2003)074503

 With a θ term, the naive MC simulation also suffers from the complex action problem and the topology freezing

Why don't we take the advantage of TNRG?

- TNRG allows us to directly compute the path integral w/o resorting the probabilistic interpretation on the Boltzmann weight
 - All contributions from every topological sector should be automatically involved in the TNRG computations
- We demonstrate that the complex action problem and topology freezing issue are simultaneously resolved by the TNRG
 - Universal information is available from the transfer matrix (CDF data)

(1+1)D U(1) gauge-Higgs model w/ a θ term

 \bullet The U(1) gauge fields + complex scalar fields + a θ term

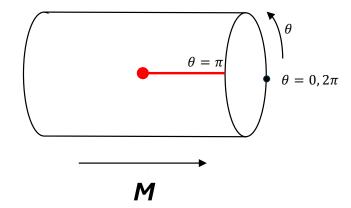
$$S = \beta S_g + S_h + S_\theta$$

$$S_h = -\sum_n \sum_{\nu} \left[\phi^*(n) U_{\nu}(n) \phi(n+\hat{\nu}) + \phi^*(n+\hat{\nu}) U_{\nu}^*(n) \phi(n) \right] + M \sum_n |\phi(n)|^2 + \lambda \sum_n |\phi(n)|^4$$

$$S_{\theta} = -\frac{\mathrm{i}\theta}{2\pi} \sum_{n} \ln P_{12}(n)$$

- The first-order transition at $\theta = \pi$ when $M > M_c$
 - 2D Ising universality at $M = M_c$

Gattringer+, NPB935 (2018) 344-364 Komargodski+, SciPost Phys. 6 (2019) 003



Path integral & its regularization

- The path integral on a lattice
 - ullet Link variable is parametrized by $U_{
 u}(n)=\mathrm{e}^{\mathrm{i}\vartheta_{
 u}(n)}$
 - Complex scalar by $\phi(n) = r(n)e^{i\varphi(n)}$

$$Z = \prod_{n,\nu} \int_{-\pi}^{\pi} \frac{\mathrm{d}\vartheta_{\nu}(n)}{2\pi} \prod_{n} \int_{\mathbb{C}} \frac{\mathrm{d}\phi(n)}{2\pi} \exp(-S)$$

- ullet Unitary gauge eliminates the angular field $\varphi(n)$ from the path integral
- The path integral can be discretized by the Gauss quadrature

Kuramashi-Yoshimura, JHEP04(2020)089, Kadoh+, JHEP02(2020)161

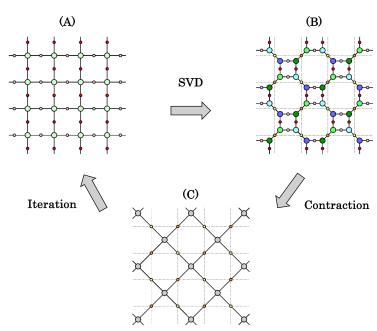
- $\bullet \int_{-\pi}^{\pi} \frac{\mathrm{d}\theta_{\nu}(n)}{2\pi} \cdots \simeq \sum_{i=1}^{K_g} \frac{w_i}{2} \cdots$ by the Gauss-Legendre quadrature
- $\bullet \int_0^\infty r(n) \mathrm{d}r(n) \cdots \simeq \sum_{i=1}^{K_h} \omega_i \cdots$ by the Gauss-Laguerre quadrature

TN formulation

- The path integral is approximately represented as a 2D tensor network

 - ullet The local tensor involves three parts: $(T_n)_{xyx'y'} = T_{x_gy_gx'_gy'_g}^{(g)} T_{x_gy_gx'_gy'_g}^{(h)} T_{x_hy_hx'_gx'_hy'_gy'_h}^{(h)}$
- TN rep. is approximately contracted by the bond-weighted TRG algorithm

Adachi-Okubo-Todo, PRB105 (2022) L060402

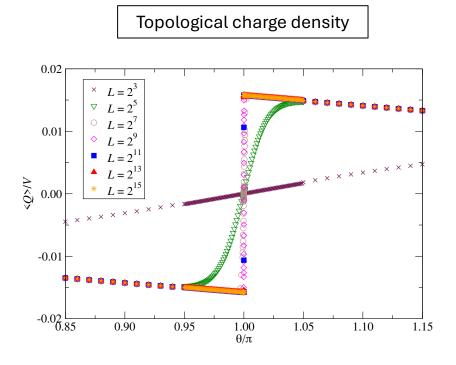


Pure gauge theory 1/2

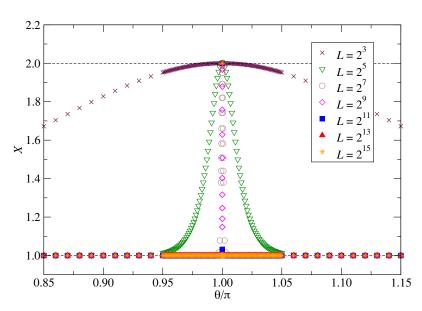
w/
$$\beta = 3$$
, $\epsilon = 1$, $D = K_g = 30$

- A Clear signal of the first-order transition in the topological charge
- \bullet The two-fold ground state degeneracy at $\theta = \pi$ is also observed

Gu-Wen, PRB80(2009)155131



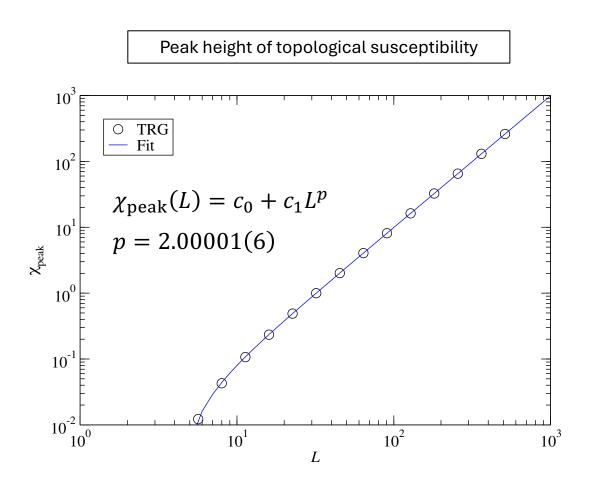
Ground-state degeneracy



Pure gauge theory 2/2

w/
$$\beta=3$$
 , $\epsilon=1$, $D=K_g=30$

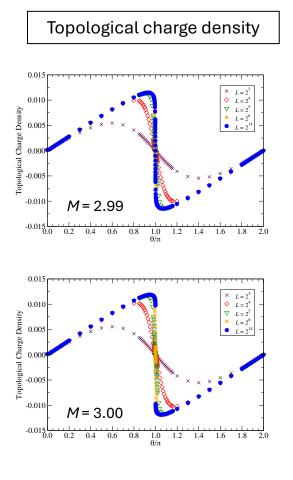
- The peak height of the topological susceptibility is proportional to the volume
- TRG is successfully dealing with the Lüscher gauge action

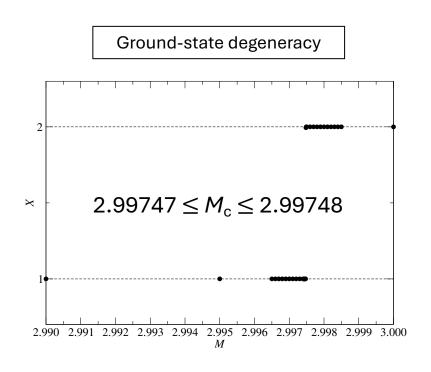


The gauge-Higgs model

w/
$$\beta = 3$$
, $\lambda = 0.5$, $\epsilon = 1$, $K_g = K_h = 20$, $D = 160$

- ullet Discontinuity in the topological charge is vanishing by decreasing the mass M
- ullet Computing the ground-state degeneracy, we can bound the critical mass $M_{
 m c}$





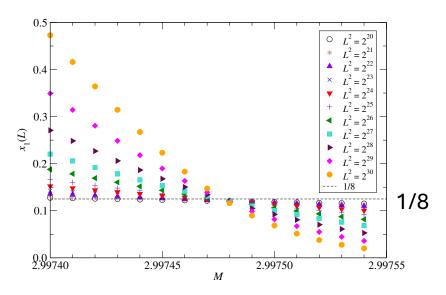
Identification of the universality class

w/
$$\beta = 3, \lambda = 0.5, \epsilon = 1, K_g = K_h = 20, D = 160$$

Transfer matrix T is easily obtained from the TN representation

Gu-Wen, PRB80(2009)155131

- Ratio of the largest eigenvalue of T to smaller one: $x_n(L) = \frac{1}{2\pi} \ln \frac{\lambda_0(L)}{\lambda_n(L)}$
- These are nothing but the scaling dimensions when the system is sufficiently large and at criticality
- The volume independence in $x_1(L)$ is observed w/ $x_1(L) = 1/8$, which agrees with the 2D Ising universality class

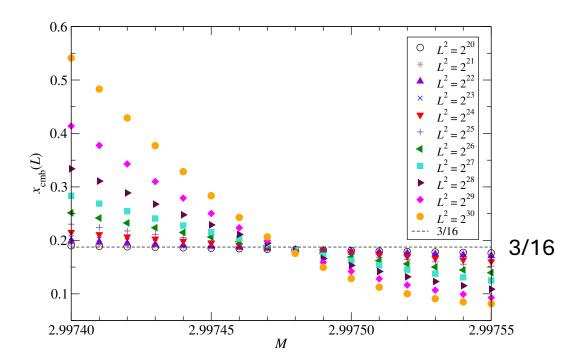


Tensor-network-based level spectroscopy

ullet Assuming the 2D Ising universality class, we employ the level spectroscopy to determine the critical mass $M_{\rm c}$ from scaling dimensions intersections

Ueda-Oshikawa, PRB108(2023)024413

• We particularly use the intersections of $x_{\rm cmb} = x_1 + x_2/16$ to remove the effect of the leading irrelevant perturbation



Critical point and central charge

w/
$$\beta=3$$
 , $\lambda=0.5$, $\epsilon=1$, $K_g=K_h=20$, $D=160$

- The resulting critical mass is $M_c = 2.997480(2)$
 - Consistent not only with the bound from the ground-state degeneracy, but also comparable with the previous MC result based on dual representation employing the Villain-type gauge action: $M_c = 2.989(2)$ Gattringer+, NPB935(2018)344-364
- Investigating the finite-size correction for the free energy, the central charge is obtained as c = 0.50(7), in agreement with the 2D Ising universality class
- \bullet The algorithmic-parameter dependence of M_c seems well suppressed

$\overline{K_g}$	K_h	χ	D	$M_{ m c}$
24	20	8	192	2.9982886(1)
22	20	8	176	2.9998263(13)
20	20	8	160	2.9974765(14)
24	10	6	144	2.9929635(1)
22	10	6	132	2.9945222(9)
20	10	7	140	2.9921698(6)

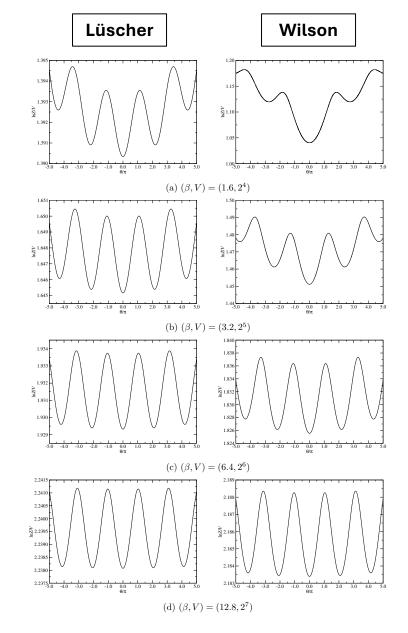
 χ is another algorithmic parameter to compress the initial bond dimension from $K_g K_h$ to $K_g \chi$

Bonus: Lüscher vs Wilson

 \bullet The field-theoretical def. of a θ term:

$$S_{\Theta} = -\frac{\mathrm{i}\theta}{2\pi} \sum_{n} \mathrm{Im} \, P_{12}(n)$$

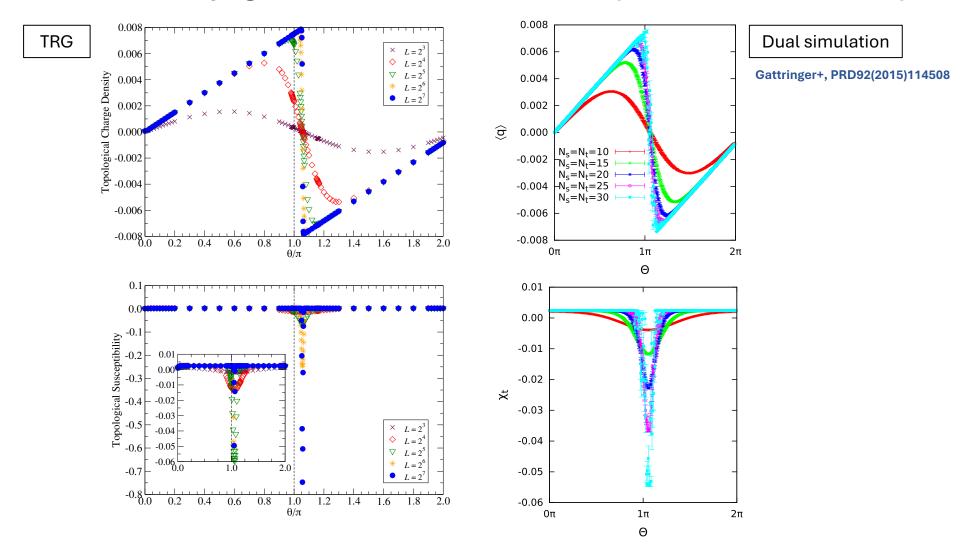
- ullet The 2π periodicity is restored only in the continuum limit
- The Lüscher action should show the faster convergence toward the continuum limit than the Wilson action



TRG vs MC

$$W/\beta = 10, \lambda = 0.5, M = 4, K_g = K_h = 20, D = 160$$

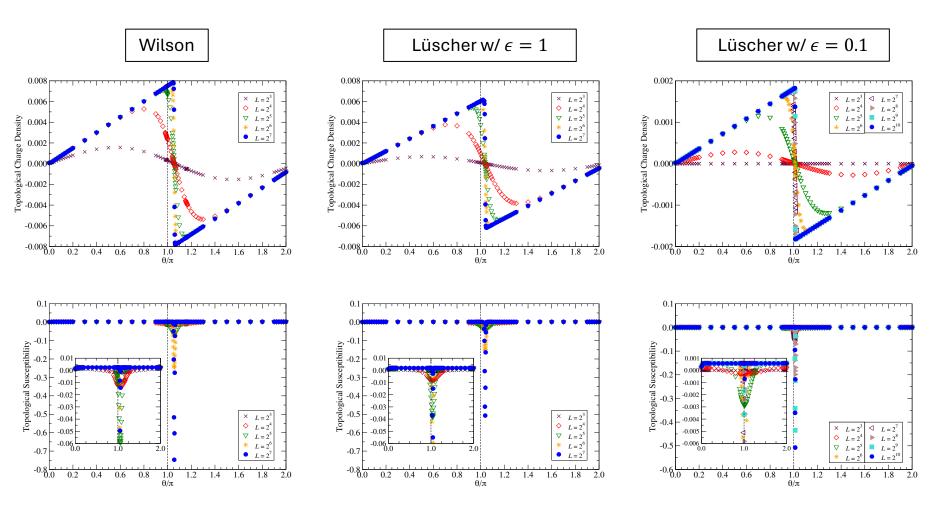
Quantitatively agreement btw the TRG and MC (dual lattice simulation)



Bonus: Lüscher vs Wilson

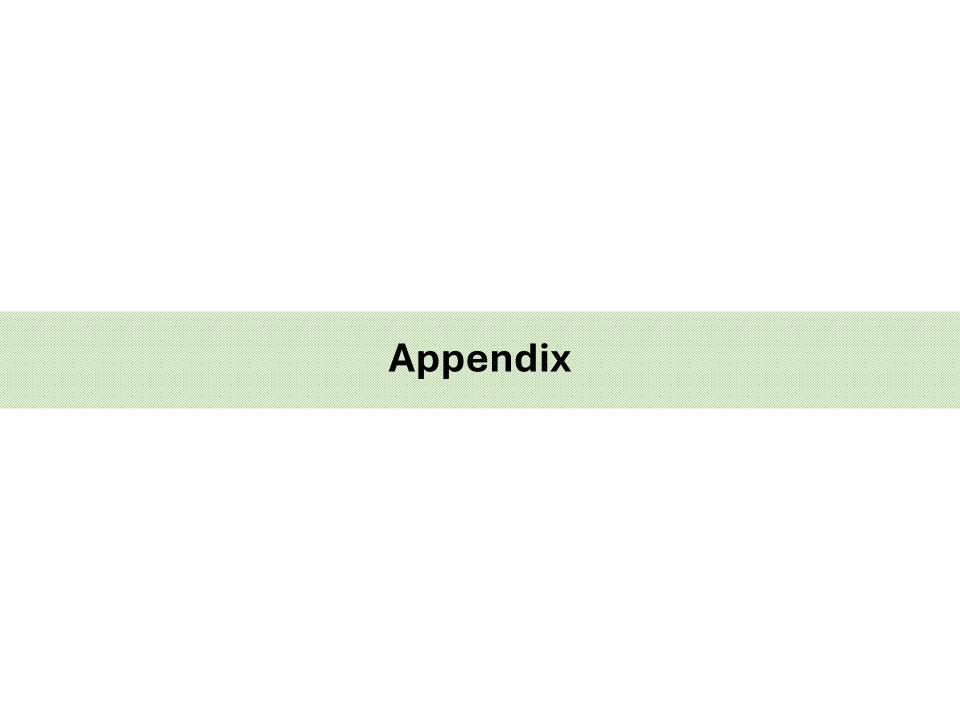
$$W/\beta = 10, \lambda = 0.5, M = 4, K_g = K_h = 20, D = 160$$

- Transition point at fixed β is pushed toward $\theta = \pi$, by decreasing ϵ
 - Although the finite-size effect is enhanced, it doesn't pose any issue for TRG



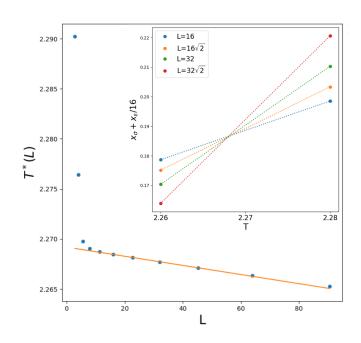
Summary and outlook

- Tensor network offers a novel formulation of real-space RG, whose accuracy can be systematically improved
 - No sign problem, path integral is available, CFT data from transfer matrices
- The critical behavior in the (1+1)D gauge-Higgs model with a θ term has been investigated by the TRG, employing the Lüscher gauge action
 - The critical mass is precisely determined
 - The **2D Ising universality class** is confirmed at $\theta = \pi$ as expected
 - Faster convergence toward the continuum limit than the Wilson action
- All numerical results show that the TNRG is a promising approach to study the lattice gauge theories with Lüscher's admissibility condition



Tensor-network based level spectroscopy

- ullet Assuming the 2D Ising universality class, we employ a level spectroscopy to determine the critical point T_{c}
 - (i) Choose two mass parameter $T^{(\pm)}$ such that $T^{(-)} \leq T_c \leq T^{(+)}$
 - (ii) At these two points, compute $x_{\rm cmb}(L) = x_1(L) + x_2(L)/16$. This combination removes the effect from the leading irrelevant perturbation associated with the scaling dimension 4
 - (iii) Perform liner interpolations of $x_{\rm cmb}(L) 3/16$ btw $T^{(-)}$ and $T^{(+)}$ at each system size and find a crossing point $T^*(L)$ of two lines with the system sizes L and $\sqrt{2}L$
 - (iv) Fit $T^*(L)$ by $T^*(L) = T_{\rm c} + \alpha L$, and we finally obtain the critical point $T_{\rm c}$



TN representation 1/2

ullet The discretized path integral is described by a four-leg local tensor T:

$$(T_n)_{xyx'y'} = T_{x_gy_gx'_gy'_g}^{(g)} T_{x_gy_gx'_gy'_g}^{(\theta)} T_{x_hy_hx'_gx'_hy'_gy'_h}^{(h)}$$

$$T_{x_g y_g x_g' y_g'}^{(g)} = \begin{cases} \frac{\sqrt{w_{x_g} w_{y_g} w_{x_g'} w_{y_g'}}}{2^2} \exp \left[-\beta \frac{1 - \cos \pi \left(y_g' + x_g - y_g - x_g' \right)}{1 - \left[1 - \cos \pi \left(y_g' + x_g - y_g - x_g' \right) \right] / \epsilon} \right] & \text{if admissible } \\ 0 & \text{otherwise} \end{cases}$$

$$T_{x_g y_g x_g' y_g'}^{(\theta)} = \exp\left(\frac{\mathrm{i}\theta}{2\pi} \ln\left[\mathrm{e}^{\mathrm{i}\pi\left(y_g' + x_g - y_g - x_g'\right)}\right]\right)$$

TN representation 2/2

Compression for the hopping term:

$$\begin{split} \bullet \quad & H_{\tilde{\ell}(n)\tilde{\theta}_{\nu}(n)\tilde{\ell}(n+\hat{\nu})} \\ & = \frac{\sqrt[4]{w_{\tilde{\ell}(n)}w_{\tilde{\ell}(n+\hat{\nu})}} \mathrm{e}^{(\tilde{\ell}(n)+\tilde{\ell}(n+\hat{\nu}))/4}}{\sqrt{2}} \\ & \times \exp\left[2\sqrt{\tilde{\ell}(n)\tilde{\ell}(n+\hat{\nu})}\cos\pi\tilde{\theta}_{\nu}(n) - \frac{M}{4}\left(\tilde{\ell}(n)+\tilde{\ell}(n+\hat{\nu})\right) - \frac{\lambda}{4}\left(\tilde{\ell}(n)^2 + \tilde{\ell}(n+\hat{\nu})^2\right)\right] \end{split}$$

$$\qquad H_{\tilde{\ell}(n)\tilde{\vartheta}_{\nu}(n)\tilde{\ell}(n+\hat{\nu})} \simeq \sum_{\alpha=1}^{\chi} A_{\tilde{\ell}(n)\tilde{\vartheta}_{\nu}(n)\alpha} B_{\tilde{\ell}(n+\hat{\nu})\alpha}$$