
Tensor renormalization group study of 
(1+1)-dimensional U(1) gauge-Higgs model at θ=π

with Lüscher’s admissibility condition

Shinichiro Akiyama a), b)

a) Center for Computational Sciences, University of Tsukuba
b) Graduate School of Science, The University of Tokyo

Based on 
SA-Kuramashi, JHEP09(2024)086, PoS(LATTICE2024)361

素粒子論研究室セミナー@京都大学
2025.11.19



Formulation of renormalization group
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⚫ Block-spin transformation by Kadano5
⚫ Formulation of the RG method via the introduction of scale trans. by Wilson

Kadano&, Phys. Phys. Fiz. 2(1966)263-272

K. G. Wilson andJ. Kogut, The renormalization group and the c expansion 81

cube of width 4 spins: this cube will contain 64 spins. This is not very practical. One must
simplify the calculation further so that ~ can be computed from ~C11 using only one degree of
freedom. The practical applications of the renormalization group described in later lectures
involve either special circumstances (the case d 4 — e with small e) or crude approximations
(the “approximate recursion formula”) such that only one degree of freedom is needed for the
calculation of ~C1.(See, however, the supplemental list of references.)
The second aim of the renormalization group approach is to explain how the qualitative features

of cooperative behavior arise. In the renormalization group framework, these qualitative features
result from the iterative character of the renormalization group. Namely, there is a transformation
r which converts ~C0to X1, ~1C1to ~C2,etc. The transformation is the same whether one is con-
structing ~IC1from ~C0or ~IC2from ~JC1in each case one is thinning the degrees of freedom by a
factor 2. The only difference is in the lengthscale (L0 versus 2L0) which is easily transformed
away. So one has a transformation r which is to be applied repeatedly:

r(~C0)= ~lC1, r(~JC1) ~C2, r(~JC2)= ~1C3 etc. (1.1)
This transformation is to be iterated n times where 2°L0is of order ~. When ~ is large, the number
of iterations is large.
When one has a transformation r which is iteratedmany times, the simplest result we can

obtain is that the sequence ~tC1approaches a fixed point of r, namely an interaction ~lC*satisfying

r(~C*)= ~ (1.2)
This is what will happen in the examples discussed later in this review.
A fixed point of a transformation is a property of the transformation r itself. That is, to find

possible fixed point Hamiltonians ~1C~one must solve the fixed point equation (1.2). These
equations make no reference to the choice of initial Hamiltonian ~1C0.
The possible types of cooperative behavior, in the renormalization group picture, are deter-

mined by the possible fixed points ~C*of r. Suppose for example that there are three fixed points
1C~,~ and ~ Then one would have three possible forms of cooperative behavior. If a particu-
lar system has an initial interaction ~IC0,one has to construct the sequence X1, ~C~’etc. in order to
find out which of ~CZ,~ or ~JC~gives the limit of the sequence. If ~CZis the limit of the
sequence, then the cooperative behavior resulting from ~lC0will be the cooperative behavior
determined by ~ In this example the set of all possible initial interactions ~JC0would divide into
three subsets (called “domains”), one for each fixed point. Universality would now hold separately
for each domain. See section 12 for further discussion.
This is how one derives a form of universality in the renormalization group picture. It is not so

bold as previous formulations [91.Experience with soluble examples of the renormalization group
transformation for critical phenomena shows that it generally has a number of fixed points, so one
has to define domains of initial Hamiltonians associated with each fixed point, and only within a
given domain is the critical behavior independent of the initial interaction.
There is no apriori requirement that the sequence ~JC1approach a fixed point for 1 -+ ~ In

principle the sequence for large 1 could show limit cycle, ergodic or turbulent behavior; in such.
cases it would be difficult to do much calculation. See [10] for an illustration of ergodic and
turbulent behavior. But even if the sequence ~C1does not approach a fixed point, it is unlikely
that ~1C~for large n is a smooth function of the parameters in X0. The trouble is that small changes
in the parameters in ~1C0tend to be amplified or deamplified by the transformation r, and when r
is iterated many times these amplification or deamplification factors become very large (one
would guess of order~/fffrom random walk arguments). Thus if u0 is a coupling constant in JC0
one would expect large ranges of u0 which are deamplified (~JC~depends very little on u0)

Wilson−Kogut, Phys. Rept. 12(1974)75-199

⚫ As a practical numerical method, the further development has been made 
based on tensor network description



RG methods as practical tools
2/22

⚫ Numerical RG method for single impurity Kondo problem
⚫ “0D” problems

⚫ Density Matrix RG for 1D quantum lattice models
⚫Reduction of the number of states via the density matrix formalism
⚫ The most accurate numerical method for 1D quantum systems

⚫Corner transfer matrix RG for 2D classical systems
⚫A transfer-matrix RG method for 2D models based on Baxter’s CTM

⚫ Tensor Network RG
⚫Usually formulated within the Lagrangian formalism (Tensor Network RG 

approach)
⚫With the advancement of QC, TN methods based on the Hamiltonian 

formalism have also been increasingly applied to lattice field theory   
(Tensor Network State approach)

Wilson, RMP47(1975)773

White, PRL69(1992)2863-2866

Nishino-Okunishi, JPSJ65(1996)891

Baxter, J. Math. Phys. 9(1968)650-654
Levin−Nave, PRL99(2007)120601

Evenbly−Vidal, PRL115(2015)180405



TN representations for path integrals
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⚫Most LFTs are ready to be described by network of tensors
Liu−Meurice−Qin−Unmuth-Yockey−Xiang−Xie−Yu−Zou, PRD88(2013)056005

[Review] Meurice−Sakai−Unmuth-Yockey, RMP94(2022)025005

⚫Demonstration in the 2D Ising model
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Tensor Network RG
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⚫ TNRG recursion formula based on truncated SVD up to a given bond 
dimension D Levin−Nave, PRL99(2007)120601

Xie−Chen−Qin−Zhu−Yang−Xiang, PRB86(2012)045139
Evenbly−Vidal, PRL115(2015)180405

Yang−Gu−Wen, PRL118(2017)110504
Morita−Kawashima, CPC236(2019)65-71

⚫ TNRG approximately computes path integrals via 
their TN rep.

⚫When D → ∞, the TNRG exactly contracts the given TN rep.
⚫ The accuracy can be systematically improved by increasing D
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Figure 7. Schematic illustration of the HOTRG algorithm. (A) Initial tensor network on a square lattice. (B) Inset projectors into the
network. Red and blue symbols show P and Q in equation (78), respectively. (C) New tensor network by contracting adjacent two
fundamental tensors with two projectors.

These matrices can be decomposed as

ρ(t1t2)(̃t1̃t2) =
∑

i

U(t1t2)iλiU
†
i(̃t1̃t2)

, (82)

ρ ′
(t ′1 t ′2 )(̃t ′1 t̃ ′2 )

=
∑

i

V(t ′1 t ′2 )iλ
′
i V

†
i(̃t ′1 t̃ ′2 )

, (83)

where U and V are unitary matrices and λ and λ ′ denote the
singular-value matrices with descending order. Defining the
following quantities,

ϵ(
′) =

∑

i>DHOTRG

λ
( ′)
i , (84)

we choose Pt1t2t = U∗
(t1t2)t

and Qt ′t ′1 t
′
2
= U(t ′1 t

′
2 )t

′ if ϵ< ϵ ′ and
choose Pt1t2t = V(t1t2)t and Qt ′t ′1 t

′
2
= V∗

(t ′1 t
′
2 )t

′ if ϵ> ϵ ′. This
procedure is equivalent to the higher-order SVD (HOSVD),
which is a tensorial extension of the SVD as explained in [32].
See references [141–143] for other ways to derive the optimal
P and Q without assuming the translational invariance on the
tensor network.

The HOTRG algorithm is straightforwardly extended to
evaluate the Grassmann tensor network in equation (72).
Equation (77) is correspondingly denoted by

MXT1T2X̄T̄2T̄1 =

ˆ
Θ̄,Θ

Tn+1̂;XT1Θ̄T̄1
Tn;ΘT2X̄T̄2 , (85)

where the coefficient tensor of M has been already derived
in equation (40) or equation (60). The HOTRG for the
Grassmann tensor network should provide us with the coarse-
graining transformation such as

Tn ′;XTX̄T̄ =

ˆ
T̄1,T1

ˆ
T̄2,T2

ˆ
T̄ ′
1 ,T

′
1

ˆ
T̄ ′
2 ,T

′
2

PT̄2T̄1TMXT1T2X̄T̄ ′
2 T̄

′
1
QT̄T ′

1 T
′
2
,

(86)

where P and Q are the Grassmann projectors defined by

PT̄2T̄1T =
∑

t1,t2,t

Pt1t2tT̄
t2
2 T̄

t1
1 T

t, (87)

QT̄T ′
1 T

′
2
=
∑

t ′1 ,t
′
2 ,t

′

Qt ′t ′1 t
′
2
T̄ t

′
T

′t ′1
1 T

′t ′2
2 . (88)

In analogy with equation (79), we can identify that the
algorithm inserts

WT̄2T̄1T ′
1 T

′
2
=

ˆ DHOTRG

T̄,T
PT̄2T̄1TQT̄T ′

1 T
′
2
, (89)

into the Grassmann tensor network. P and Q, or P and Q
in other words, are determined via the same procedure in
the normal HOTRG. Firstly, we define the conjugation of the
Grassmann tensor by

(OΦΨ)
† =O∗

Ψ̄Φ̄ =
∑

i,j

O∗
ijΨ̄

jΦ̄i, (90)

15

A typical TNRG recursion formula

D

2n tensors can be 
contracted 

through n iters



Hunting Zn symmetry breaking via partition function
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⚫ 𝑋 ≔ 𝑍 𝑁2, 𝑁3
4/𝑍(2𝑁2, 𝑁3)

⚫ Symmetric phase: 𝑍~1×e56!6" ⇒ 𝑋 = 1

⚫ SSB phase: 𝑍~2×e5#6!6" ⇒ 𝑋 = 2
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Exact Critical Point

⚫ Ground-state degeneracy from the renormalized tensors

⚫ Ex. 2D Ising model 

Gu–Wen, PRB80(2009)155131

⚫ This method enables us to locate critical points in arbitrary dimensions

⚫ Finite-size scaling (FSS) for X is recently reported

⚫ Extension to continuous symmetry breaking 

Wang+, CPL31(2014)070503, SA+, PRD100(2019)054510

Morita–Kawashima, PRB111(2025)054433

SA–Jha–Unmuth-Yockey, PRD110(2024)034519
Tanizaki–Maeda, JHEP08(2025)128

SA–Jha–Maeda–Tanizaki–Unmuth-Yockey, in preparation

⚫ Resulting structure of renormalized tensors 
are diHerent according to the realized phases ⇨ “Fixed-point tensor”



Grassmann TNRG approach
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⚫ TNRG can directly deal with the Grassmann path integral w/o pseudo-
fermion Gu−Verstraete−Wen, arXiv.1004.2563, Shimizu−Kuramashi, PRD90(2014)014508, SA−Kadoh, JHEP10(2021)188

⚫ Introduction to the Grassmann TNRG Journal of Physics: Condensed Matter

J. Phys.: Condens. Matter 36 (2024) 343002 (31pp) https://doi.org/10.1088/1361-648X/ad4760

Topical Review

Tensor renormalization group for
fermions
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Abstract
We review the basic ideas of the tensor renormalization group method and show how they can
be applied for lattice field theory models involving relativistic fermions and Grassmann
variables in arbitrary dimensions. We discuss recent progress for entanglement filtering, loop
optimization, bond-weighting techniques and matrix product decompositions for Grassmann
tensor networks. The new methods are tested with two-dimensional Wilson–Majorana fermions
and multi-flavor Gross–Neveu models. We show that the methods can also be applied to the
fermionic Hubbard model in 1+1 and 2+1 dimensions.

Keywords: tensor networks, lattice gauge theory, relativistic lattice fermions,
Fermi Hubbard model, Grassmann path integrals, sign problems
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⚫ A study on Nf=2 massive Schwinger model w/ 
a θ term Kanno−SA−Murakami−Takeda, JHEP11(2025)036

Figure 3: Free energy density as a function of the ✓, in the range of �1.1⇡  ✓  2.2⇡.

✓ 2 [0, ⇡]. With
p

�m2
0 = 100, the numerical result is consistent with the large mass

limit, which is described by the pure Maxwell theory. 3 This is a validation of our

numerical approach. Decreasing the mass, we observe a clear deviation from the pure

Maxwell theory due to the finite-mass e↵ect. This is a direct benefit of the application

of the Grassmann tensor network; there is no di�culty in dealing with massive fermions

in contrast to the world-line approach [20, 21] and the previous TRG approach [42].

We can also see that the free energy density tends to be smooth with respect to ✓ at

✓ = ⇡ by further decreasing the mass. This situation is similar to the single-flavor

Schwinger model with a ✓ term, where the critical endpoint appears. However, we

expect that there is no critical endpoint in the two-flavor model in the continuum limit,

according to Ref. [36]. In addition, from the right panel of Fig. 4, the result at m0 = 0

3The analytic result for the lattice pure Maxwell theory is obtained by the numerical integration

of

��
logZ(✓)

L2
=� � log

Z ⇡

�⇡

dAp

2⇡
e�

P
p cos(Ap)� i✓

2⇡

P
p Ap , (4.3)

which is given in Ref. [53]. This function corresponds to the orange line which described as “analytic

(lattice)” in Fig 4. See Appendix A.1 for a further explanation of the large mass limit.

11



Toward the QCD at finite density
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⚫MC has played a central role as a practical numerical method for simulating 
lattice field theories
⚫ Information extraction via sampling

⚫However, it suHers from the sign problem

⚫ TNRG provides a distinct perspective from MC

⚫ Information compression via tensor networks

⚫No sign problem

⚫However, the accuracy of the compression 
depends on the entanglement in the system

⚫ Is it possible to explore the QCD at finite density 
using TNRG?

⚫ “From Ising to QCD” [Review] Meurice−Sakai−Unmuth-Yockey, RMP94(2022)025005

calculations that would ultimately replace the use of event
generators such as PYTHIA (Sjostrand et al., 2015).
The simplest starting point for the real-time evolution is the

evolution operator expð−iĤt=ℏÞ acting on the Hilbert space
of the quantum Hamiltonian Ĥ. We provide a first look at
the transfer matrix that smoothly connects the “classical”
Lagrangian approach to the Hilbert space used in the
Hamiltonian formalism. We discuss various types of dualities
(geometrical and topological) that are often used together and
mistaken for one another.
For the models in the Kogut sequence, the bosonic field

variables and the symmetry groups are compact. General
mathematical theorems, namely, the Pontryagin duality
(Pontryagin, 1939) and the Peter-Weyl theorem (Peter and
Weyl, 1927), guarantee that functions over compact groups
can be expanded in terms of discrete sums of representations.
This is called the “character expansion” and was exploited to
calculate strong coupling expansions (Balian, Drouffe, and
Itzykson, 1975) or introduce new variables on geometrically
dual lattice elements (Savit, 1980).
The discreteness of the character expansion provides a

natural starting point for building approximate reformulations
of lattice models suitable for quantum computing or quantum
simulation experiments. The Ising model is an elementary
example where the Hilbert space of the transfer matrix can be
implemented with a set of qubits, the basic components of
actual quantum computers that exist in a linear superposition
of two states j0i and j1i, rather than being just on or off like
the bits of a classical computer. For models with continuous
fields, character expansions allow us to perform the “hard
integrals” analytically without needing to approximate the
numerical discretizations that break the continuous sym-
metries. Demonstrating the power of the character expansion
is one of the main goals of this review. Examples of quantum
computations and simulations are provided at the end of
Sec. III. In Sec. IV, we clarify the use of the terms “classical”
and “quantum” in various contexts and make connections with
other approaches (Schollwöck, 2011b; Haegeman and
Verstraete, 2017; Ran et al., 2020; Cirac et al., 2021).
Section V introduces the tensor reformulation for the Ising

model. SVD, truncation, and the TRGmethod are discussed in
Sec. VI. Spin models with an Oð2Þ symmetry or with discrete
subgroups are discussed in Sec. VII. In Sec. VIII, we derive
expressions for local tensors in the simple case of a non-
Abelian spin model with Oð3Þ symmetry. We also find tensor
expressions for effective theories of gauge theories known as
principal chiral models.
Models with local gauge symmetry are introduced in

Sec. IX. We first consider Abelian gauge theories and work
up in complexity to tensor expressions for non-Abelian gauge
theories as well.
In Sec. X, tensor network expressions for the real and the

complex ϕ4 theory are derived. For models with noncompact
fields such as the scalar ϕ4 theory, the Gaussian quadrature
rule can be used to extract discrete degrees of freedom, just as
the gauge degrees of freedom are discretized via character
expansions. The accuracy of the tensor network approach is
shown for the real-field case, and an ability to deal with a
severe sign problem is shown in the complex-field case.

In Sec. XI, we present tensor formulations for models with
fermionic degrees of freedom. In general, fermions fit in well
with the tensor (and discrete) approach thanks to the nilpo-
tency of the Grassmann variables. In the section, various
models that contain fermions such as pure fermions, gauged
fermions, and fermions combined with scalars are discussed.
In Sec. XII, we rediscuss the transfer matrix using the tensor

formalism and broaden the perspective. Recent TLFT deve-
lopments regarding symmetries, topological solutions, and
quantum gravity are discussed in Sec. XIII.

II. LATTICE FIELD THEORY

A. The Kogut sequence: From Ising to QCD

In the early 1970s, QCD appeared to be a strong candidate
for a theory of strong interactions involving quarks and
gluons. However, the perturbative methods that provided
satisfactory ways to handle the electroweak interactions of
leptons failed to explain confinement, mass gaps, and chiral
symmetry breaking. A nonperturbative definition of QCD was
needed. In 1974, Wilson proposed (Wilson, 1974) a lattice
formulation of QCD where the SUð3Þ local symmetry is exact.
As this four-dimensional model is fairly difficult to handle
numerically, a certain number of research groups started
considering simpler lattice models in lower dimensions and
then increased symmetry and dimensionality. This led to a
sequence of models, sometimes called the “Kogut ladder,” that
appears in the reviews of Kogut (1979, 1983) and was later
addressed with small modifications by Polyakov (1987) and
Itzykson and Drouffe (1991).
The sequence is approximately the following:
(1) D ¼ 2 Ising model
(2) D ¼ 3 Ising model and its gauge dual
(3) D ¼ 2 Oð2Þ spin and Abelian Higgs models
(4) D ¼ 2 fermions and the Schwinger model
(5) D ¼ 3 and 4Uð1Þ gauge theory
(6) D ¼ 3 and 4 non-Abelian gauge theories
(7) D ¼ 4 lattice fermions
(8) D ¼ 4 QCD

This sequence should not be understood in a rigidway as if each
step is necessary for the next step. For instance, steps (3)–(5) can
be interchanged, and the problems involving fermions have
specific features that are not easily compared to those involving
only bosonic fields. The message that we want to convey is that
there is an approximate roadmap that has proven to be effective
for the classical approach of lattice field theory in dealing with
static problems using importance-sampling (Monte Carlo)
methods. We advocate following a similar path to develop
the quantum versions of these models and deal with real-time
evolution and other problems not accessible with classical
methods. The difference between quantum and classical is
explained more precisely in Sec. IV.A. A similar path is
followed to develop numerical coarse graining.

B. Classical lattice models and path integral

In this section we introduce lattice versions of classical field
theory models. At this point, we point out that, while we
provide definitions of the fields, notations, and acronyms or

Meurice, Sakai, and Unmuth-Yockey: Tensor lattice field theory for renormalization …

Rev. Mod. Phys., Vol. 94, No. 2, April–June 2022 025005-4

©Schrodinger_nya_es

Cf. Tempered Lefschetz thimble method, Fukuma−Umeda, PTEP017(2017)73B01
Worldvolume HMC, Fukuma−Matsumoto, PTEP2021(2021)2023B08

…

⚫A solution towards the sign problem 



Lüscher’s admissibility condition
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⚫ The U(1) gauge action with the admissibility condition:

Lüscher, NPB549(1999)295-334

⚫ The gauge fields are separated into disconnected subspaces, corresponding 
to topological charge

⚫ In the MC simulation, the topological change is substantially suppressed
Fukaya−Onogi, PRD68(2003)074503

⚫ With a θ term, the naive MC simulation also suHers from the complex action 
problem and the topology freezing

J
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P
0
9
(
2
0
2
4
)
0
8
6

Contents

1 Introduction 1

2 Tensor network formulation 3
2.1 The model on a lattice 3
2.2 Tensor network formulation 3
2.3 Coarse-graining algorithm 6

3 Numerical results 6
3.1 Pure U(1) gauge theory 6
3.2 The U(1) gauge-Higgs model 8

4 Summary and outlook 12

A Comparison with the Wilson gauge action 13

1 Introduction

At the end of the last century, Lüscher introduced an admissibility condition for the gauge
fields to be separated into disconnected subspaces corresponding to topological charges in
the continuum theory [1]:

∥1 − Pµν(n)∥ < ϵ ∀n, µ, ν, (1.1)

where ϵ is a positive constant and Pµν(n) is a product of link variables Uµ(n) as in the
standard way,

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n). (1.2)

The link variable Uµ(n) lives on the link connecting the sites n and n+ µ̂. As an example, he
proposed the following gauge action to make the link variables satisfy the above condition:

βSg =

⎧
⎪⎪⎨

⎪⎪⎩

β
∑

n,µ>ν

1 − RePµν(n)
1 − ∥1 − Pµν(n)∥/ϵ

if ∥1 − Pµν(n)∥ < ϵ,

∞ otherwise,
(1.3)

with the inverse gauge coupling β. This action should have an advantage in investigating
the topological effects of the gauge theories. However, early numerical studies with this
action revealed that the topological change is substantially suppressed in the Monte Carlo
histories [2] and it is difficult to evaluate the contributions from different topological sectors.
As long as the Monte Carlo method is employed, the possible way is to perform calculations
in the fixed topological sectors [2–5] or to utilize open boundary conditions, dismissing the
translational invariance of the system [6].

– 1 –



Why don’t we take the advantage of TNRG?
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⚫ TNRG allows us to directly compute the path integral w/o resorting the 
probabilistic interpretation on the Boltzmann weight

⚫ All contributions from every topological sector should be automatically 
involved in the TNRG computations

⚫ We demonstrate that the complex action problem and topology freezing 
issue are simultaneously resolved by the TNRG 

⚫ Universal information is available from the transfer matrix (CDF data)



(1+1)D U(1) gauge-Higgs model w/ a θ term
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⚫ The U(1) gauge fields + complex scalar fields + a θ termJ
H
E
P
0
9
(
2
0
2
4
)
0
8
6

which corresponds to the infinitely heavy limit of the Higgs mass, where the first-order phase
transition takes place at θ = π. After that, we discuss the phase transition with the finite
lattice Higgs mass and determine the critical endpoint and its universality class. Section 4
is devoted to summary and outlook.

2 Tensor network formulation

2.1 The model on a lattice

The U(1) gauge-Higgs model with a θ term is defined by

S = βSg + Sh + Sθ. (2.1)

We always consider the model on a square lattice with periodic boundary conditions. We
employ the Lüscher gauge action,

Sg =

⎧
⎪⎨

⎪⎩

∑

n

1 − ReP12(n)
1 − [1 − ReP12(n)]/ϵ

if “admissible”

∞ otherwise,
(2.2)

where P12(n) is defined by eq. (1.2) with Uν(n) = eiϑν(n) and ϑν(n) ∈ [−π,π]. The admis-
sibility condition is given by

1 − ReP12(n) < ϵ. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The
admissibility condition makes gauge fields smooth and unphysical configurations are sup-
pressed. The space of admissible gauge fields is separated into disconnected subspaces which
are labeled by the integers corresponding to topological charges in the continuum [1]. The
Higgs part is defined by

Sh = −
∑

n

∑

ν

[φ∗(n)Uν(n)φ(n+ ν̂) + φ∗(n+ ν̂)U∗
ν (n)φ(n)] +M

∑

n

|φ(n)|2 + λ
∑

n

|φ(n)|4 .

(2.4)

The complex-valued Higgs fields are denoted by φ(n) and M = m2 + 4 is the lattice Higgs
mass where m corresponds to the Higgs mass parameter in the continuum action. The quartic
coupling constant is denoted by λ. Finally, the θ term is defined by

Sθ = − iθ
2π

∑

n

lnP12(n). (2.5)

2.2 Tensor network formulation

We consider the tensor network representation of the path integral defined as

Z =
∏

n,ν

∫ π

−π

dϑν(n)
2π

∏

n

∫

C

dφ(n)
2π

exp(−S). (2.6)
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⚫ The first-order transition at θ = π when M > Mc
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Figure 1. Schematic phase diagram of (1+1)d U(1) gauge-Higgs model with a θ term. The horizontal
axis denotes the Higgs mass-squared. The red line denotes the first-order phase transition, which
terminates at the critical endpoint expressed by the red blob.

However, this problem is potentially solved by the tensor renormalization group (TRG)
method.1 The major advantages of the TRG method over the Monte Carlo simulation
are (i) no sign problem [15–27], (ii) logarithmic computational cost on the system size,
(iii) direct manipulation of the Grassmann variables [8, 10, 11, 28–35], and (iv) evaluation
of the partition function or the path integral itself. The advantage (iv) ensures that the
TRG calculation automatically includes full contributions from different topological sectors.
Moreover, the TRG method assumes the translational invariance of the system and can
easily impose periodic boundary conditions.

In this paper, we investigate the phase structure of the (1+1)-dimensional ((1+1)d)
U(1) gauge-Higgs model with a θ term, where the topological effects play an essential role,
employing Lüscher’s gauge action of eq. (1.3). The Monte Carlo simulation of this model
is extremely difficult due to a double whammy of the complex action problem and the
topological freezing. Figure 1 illustrates the expected phase diagram [36]. The model exhibits
the first-order phase transition at θ = π, where the Z2 charge conjugation symmetry is
spontaneously broken in the large positive Higgs mass-squared regime, including the pure
gauge limit.2 Once the Higgs mass-squared is sufficiently reduced, the symmetry is restored.
We determine the critical endpoint as a function of the Higgs mass-squared and show its
critical behavior is in the 2d Ising universality class based on the numerical analysis of the
transfer matrix and topological charge density. We also compare our results with the previous
work employing the dual lattice simulation based on the Villain gauge action, which is a
non-compact gauge action on the lattice [39].

This paper is organized as follows. In section 2, we define the U(1) gauge-Higgs model
with a θ term on a (1+1)d lattice. We also demonstrate how to represent the path integral
as a tensor network. In section 3, we first present the results for the pure U(1) gauge action

1In this paper, the “TRG method” or the “TRG approach” refers to not only the original numerical
algorithm proposed by Levin and Nave [7] but also its extensions [8–14].

2There are several earlier studies on the 2d pure gauge theory with a θ term by the density of state
approach [37], complex Langevin method [38], and TRG [21, 27].
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M

⚫ 2D Ising universality at M = Mc

Gattringer+, NPB935 (2018) 344-364
Komargodski+, SciPost Phys. 6 (2019) 003
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⚫ Unitary gauge eliminates the angular field 𝜑 𝑛 from the path integral
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which corresponds to the infinitely heavy limit of the Higgs mass, where the first-order phase
transition takes place at θ = π. After that, we discuss the phase transition with the finite
lattice Higgs mass and determine the critical endpoint and its universality class. Section 4
is devoted to summary and outlook.

2 Tensor network formulation

2.1 The model on a lattice

The U(1) gauge-Higgs model with a θ term is defined by

S = βSg + Sh + Sθ. (2.1)

We always consider the model on a square lattice with periodic boundary conditions. We
employ the Lüscher gauge action,

Sg =

⎧
⎪⎨

⎪⎩

∑

n

1 − ReP12(n)
1 − [1 − ReP12(n)]/ϵ

if “admissible”

∞ otherwise,
(2.2)

where P12(n) is defined by eq. (1.2) with Uν(n) = eiϑν(n) and ϑν(n) ∈ [−π,π]. The admis-
sibility condition is given by

1 − ReP12(n) < ϵ. (2.3)

When this condition is satisfied, the corresponding gauge fields are called admissible. The
admissibility condition makes gauge fields smooth and unphysical configurations are sup-
pressed. The space of admissible gauge fields is separated into disconnected subspaces which
are labeled by the integers corresponding to topological charges in the continuum [1]. The
Higgs part is defined by

Sh = −
∑

n

∑

ν

[φ∗(n)Uν(n)φ(n+ ν̂) + φ∗(n+ ν̂)U∗
ν (n)φ(n)] +M

∑

n

|φ(n)|2 + λ
∑

n

|φ(n)|4 .

(2.4)

The complex-valued Higgs fields are denoted by φ(n) and M = m2 + 4 is the lattice Higgs
mass where m corresponds to the Higgs mass parameter in the continuum action. The quartic
coupling constant is denoted by λ. Finally, the θ term is defined by

Sθ = − iθ
2π

∑

n

lnP12(n). (2.5)

2.2 Tensor network formulation

We consider the tensor network representation of the path integral defined as

Z =
∏

n,ν

∫ π

−π

dϑν(n)
2π

∏

n

∫

C

dφ(n)
2π

exp(−S). (2.6)
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⚫ Link variable is parametrized by 𝑈7 𝑛 = e89$ :

⚫ Complex scalar by 𝜙 𝑛 = 𝑟 𝑛 e8; :

⚫ The path integral can be discretized by the Gauss quadrature 

⚫ ∫<=
= >?$ :

4=
⋯ ≃ ∑@AB

𝑲𝒈 D&
4
⋯ by the Gauss-Legendre quadrature

⚫ ∫E
F 𝑟 𝑛 d𝑟 𝑛 ⋯ ≃ ∑@AB

𝑲𝒉 𝜔@⋯ by the Gauss-Laguerre quadrature

Kuramashi−Yoshimura, JHEP04(2020)089, Kadoh+, JHEP02(2020)161

⚫ The path integral on a lattice
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⚫The local tensor involves three parts: 

⚫

⚫ The path integral is approximately represented as a 2D tensor network
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In eq. (2.12), ℓ̃(n) denotes the sampling point according to the Gauss-Laguerre quadrature
and wℓ̃(n) is the corresponding weight. The number of sampling points in Dh is denoted by
Kh. Similarly, ϑ̃ν(n) denotes the sampling point according to the Gauss-Legendre quadrature
and wϑ̃ν(n) is the corresponding weight. The number of sampling points in Dg is denoted by
Kg. In the limits of Kg → ∞ and Kh → ∞, the original path integral is restored. Eq. (2.12)
is ready to be described as a tensor network. We introduce four-leg pure gauge tensors
on each plaquette as follows,

T (g)
xgygx′

gy
′
g
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
wxgwygwx′

g
wy′

g

22 exp

⎡

⎢⎣−β
1−cosπ

(
y′
g+xg−yg−x′

g

)

1−
[
1−cosπ

(
y′
g+xg−yg−x′

g

)] /
ϵ

⎤

⎥⎦ if admissible

0 otherwise,
(2.16)

T (θ)
xgygx′

gy
′
g
= exp

( iθ
2π

ln
[
eiπ(y′

g+xg−yg−x′
g)

])
. (2.17)

For the Higgs part, we introduce the following hopping matrix,

Hℓ̃(n)θ̃ν(n)ℓ̃(n+ν̂)

=
4√wℓ̃(n)wℓ̃(n+ν̂)e(ℓ̃(n)+ℓ̃(n+ν̂))/4

√
2

× exp
[
2
√

ℓ̃(n)ℓ̃(n+ ν̂) cosπθ̃ν(n) − M

4
(
ℓ̃(n) + ℓ̃(n+ ν̂)

)
− λ

4
(
ℓ̃(n)2 + ℓ̃(n+ ν̂)2

)]
.

(2.18)

Now, we perform the singular value decomposition (SVD) of the ν-directional hopping
matrix, which gives us

Hℓ̃(n)ϑ̃ν(n)ℓ̃(n+ν̂) ≃
χ∑

α=1
Aℓ̃(n)ϑ̃ν(n)αBℓ̃(n+ν̂)α, (2.19)

where A and B are defined by unitary matrices multiplied by the square root of singular
values σα. In this study, we choose χ in eq. (2.19) such that the singular values satisfying
σα/σ1 > 10−7 are kept. Note that σ1 is the largest singular value and σα is in the descending
order. We are now allowed to integrate out ℓ̃(n) at each site n. As a result, we can define
a six-leg tensor at each lattice site as,

T (h)
xhyhx′

gx
′
hy

′
gy

′
h
=

∑

ℓ̃(n)
Aℓ̃(n)y′

gxh
Aℓ̃(n)x′

gyh
Bℓ̃(n)x′

h
Bℓ̃(n)y′

h
. (2.20)

Therefore, the tensor network representation for eq. (2.12) is obtained as

Z(Kg,Kh) = tTr
[

∏

n

Tn

]

, (2.21)

with the fundamental tensor Tn at each site n,

(Tn)xyx′y′ = T (g)
xgygx′

gy
′
g
T (θ)
xgygx′

gy
′
g
T (h)
xhyhx′

gx
′
hy

′
gy

′
h
, (2.22)

whose bond dimension is Kgχ. Note that the subscripts in the left-hand side of eq. (2.22)
are defined as i = (igih) with i = x, y, x′, y′.
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⚫ TN rep. is approximately contracted by the bond-weighted TRG algorithm
Adachi−Okubo−Todo, PRB105 (2022) L060402J. Phys.: Condens. Matter 36 (2024) 343002 Topical Review

Figure 16. Schematic illustration of the BTRG algorithm. Background dotted lines denote a real-space square lattice. (A) Initial tensor
network with bond weights on the lattice. (B) SVD introduces three-leg tensors and new bond weights. (C) New tensor network with bond
weights by contracting four types of three-leg tensors and four bond weights.

model withWilson fermions at finite density is shown in [128],
whose web documentation is also provided9. Using the code,
one can reproduce the result shown in figure 17.

4.4. Multilayered tensor network formulations for Nf-flavor
fermions

There is no difficulty in expressing the path integral of the lat-
tice fermion system as the Grassmann tensor network with
Nf flavors. In practice, however, the size of the resulting
Grassmann tensor scales exponentially for Nf and a O(eNf )
computational memory is required in the numerical compu-
tations. This issue has been started to be addressed recently by
Akiyama [103] and also by Yosprakob et al [127].

Akiyama [103] has employed the matrix product decom-
position (MPD) to introduce a virtual direction so that each fla-
vor degree of freedom is assigned to the different layers ortho-
gonal to the virtual direction. MPD is a common idea in the
tensor network methods such as the MPS and matrix product
operator [156, 157]. Akiyama [103] has particularly utilized
a canonical form of the MPD proposed in [158]. Thanks to
the MPD, the memory cost for each local Grassmann tensor

9 https://github.com/akiyama-es/Grassmann-BTRG.

Figure 17. Relative error of the free energy for the two-dimensional
free massless Wilson fermion. The hyperparameter is set at
k=−1/2.

is reduced from O(eNf ) to O(Nf), and the technique has been
benchmarked with the two-dimensional Gross–Neveu model
at finite density with the Nf = 2,3 Wilson fermions. Although
a naive formulation provides the two-dimensional Grassmann

22
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⚫ A Clear signal of the first-order transition in the topological charge
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⚫ The two-fold ground state degeneracy at θ = π is also observed

w/ 𝛽 = 3, 𝜖 = 1, 𝐷 = 𝐾( = 30

Ground-state degeneracy

Gu−Wen, PRB80(2009)155131

Topological charge density
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w/ 𝛽 = 3, 𝜖 = 1, 𝐷 = 𝐾( = 30
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⚫ The peak height of the topological susceptibility is proportional to the volume

Peak height of topological susceptibility

⚫ TRG is successfully dealing with the Lüscher gauge action 
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⚫ Discontinuity in the topological charge is vanishing by decreasing the mass M
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w/ 𝛽 = 3, 𝜆 = 0.5, 𝜖 = 1, 𝐾( = 𝐾) = 20, 𝐷 = 160

⚫ Computing the ground-state degeneracy, we can bound the critical mass Mc
PoS(LATTICE2024)361

TRG study of the 23 lattice U(1) gauge-Higgs model Shinichiro Akiyama

based on the dual representation, where the Villain form defines the Boltzmann weight for the gauge
fields. We also investigate the finite-size correction of the free energy density ln //+ to obtain the
central charge 2. Using the data at " = 2.99748 with ! 2 [210, 215], the non-vanishing central
charge is obtained as 2 = 0.50(7), which is another evidence of the emergence of the 23 Ising
universality class.
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Figure 1: Topological charge density as a function of \/c at V = 3, n = 1, and _ = 0.5 with " = 2.99 (left),
" = 3.00 (right) at various lattice volumes.
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Figure 3: The volume dependence of the com-
bined scaling dimension Gcmb (!). The dashed
line denotes Gcmb = 3/16.

Next, we consider the same model but with the topological \ term defined by Eq. (2.4). We
begin with the computation using the standard Wilson gauge action instead of the Lüscher gauge
action because the numerical results can be directly compared with a previous dual simulation
provided in Ref. [22]. Fig. 4 shows the topological charge density and its susceptibility, defined by

j& = � 1
+

m2 ln /

m\2 , (3.3)

5

PoS(LATTICE2024)361

TRG study of the 23 lattice U(1) gauge-Higgs model Shinichiro Akiyama

based on the dual representation, where the Villain form defines the Boltzmann weight for the gauge
fields. We also investigate the finite-size correction of the free energy density ln //+ to obtain the
central charge 2. Using the data at " = 2.99748 with ! 2 [210, 215], the non-vanishing central
charge is obtained as 2 = 0.50(7), which is another evidence of the emergence of the 23 Ising
universality class.
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Next, we consider the same model but with the topological \ term defined by Eq. (2.4). We
begin with the computation using the standard Wilson gauge action instead of the Lüscher gauge
action because the numerical results can be directly compared with a previous dual simulation
provided in Ref. [22]. Fig. 4 shows the topological charge density and its susceptibility, defined by

j& = � 1
+

m2 ln /

m\2 , (3.3)
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Topological charge density



Identification of the universality class
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⚫ Transfer matrix T is easily obtained from the TN representation

𝑥! 𝐿 =
1
2𝜋

ln
𝜆" 𝐿
𝜆! 𝐿⚫ Ratio of the largest eigenvalue of T to smaller one:
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⚫ These are nothing but the scaling dimensions when the system is suHiciently 
large and at criticality

1/8

⚫ The volume independence in 𝑥! 𝐿
is observed w/ 𝑥! 𝐿 = 1/8, which 
agrees with the 2D Ising universality 
class 

Gu−Wen, PRB80(2009)155131

w/ 𝛽 = 3, 𝜆 = 0.5, 𝜖 = 1, 𝐾( = 𝐾) = 20, 𝐷 = 160



Tensor-network-based level spectroscopy
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⚫ Assuming the 2D Ising universality class, we employ the level spectroscopy to 
determine the critical mass Mc from scaling dimensions intersections
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Ueda−Oshikawa, PRB108(2023)024413

⚫ We particularly use the intersections of 𝑥"#$ = 𝑥! + 𝑥%/16 to remove the 
eHect of the leading irrelevant perturbation 

3/16



Critical point and central charge
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⚫ The resulting critical mass is Mc = 2.997480(2)

w/ 𝛽 = 3, 𝜆 = 0.5, 𝜖 = 1, 𝐾( = 𝐾) = 20, 𝐷 = 160

⚫ Consistent not only with the bound from the ground-state degeneracy, but 
also comparable with the previous MC result based on dual representation 
employing the Villain-type gauge action: Mc = 2.989(2) Gattringer+, NPB935(2018)344-364

⚫ Investigating the finite-size correction for the free energy, the central charge is 
obtained as c = 0.50(7), in agreement with the 2D Ising universality class
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Figure 7: The system-size dependence of the scaling dimension x1(L). The dashed line

denotes the theoretical value of the 2d Ising universality class, x1 = 1/8.

the Monte Carlo simulation is performed based on the dual representation. Note that

Mc = 2.989(2) in Ref. [39] is obtained at � = 3.0 and � = 0.5.

Table 1: Comparison of the critical endpoint Mc against the algorithmic parameters.

Kg Kh � D Mc

24 20 8 192 2.9982886(1)

22 20 8 176 2.9998263(13)

20 20 8 160 2.9974765(14)

24 10 6 144 2.9929635(1)

22 10 6 132 2.9945222(9)

20 10 7 140 2.9921698(6)

4 Summary and outlook

We have analyzed the phase structure of the (1+1)d U(1) gauge-Higgs model with a ✓

term, whose gauge action is constructed with Lüscher’s admissibility condition. Although

the model su↵ers from a complex action problem and topological freezing within the Monte

Carlo simulation, the TRG approach allows us to deal with the model successfully. We

– 12 –

⚫ The algorithmic-parameter dependence of Mc seems well suppressed

𝜒 is another algorithmic parameter to compress the initial bond dimension from 𝐾'𝐾( to 𝐾'𝜒



Bonus: Lüscher vs Wilson

𝑆( = − )*
+,
∑- Im𝑃&+ 𝑛

⚫ The 2π periodicity is restored only in the 
continuum limit

⚫ The Lüscher action should show the faster 
convergence toward the continuum limit 
than the Wilson action

Lüscher

19/22
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Figure 9. Free energy density lnZ/V at various (β, V ) by the Lüscher gauge action (left) and Wilson
gauge action (right) with fixing β/V = 0.1.
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Wilson

⚫ The field-theoretical def. of a θ term:



TRG vs MC
20/22

w/ 𝜷 = 𝟏𝟎, 𝜆 = 0.5,𝑀 = 4,𝐾( = 𝐾) = 20, 𝐷 = 160
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indeed what we observe: At large values of the mass
parameter κ, i.e., in the symmetric phase, we see oscillatory
behavior with θ in both observables, while in the crossover
region the observables are independent of θ within error
bars. The transition between the two types of behavior takes
place as expected near κ ∼ 2.8.
In Fig. 10 we now look at the volume dependence of χt at

θ ¼ 0 and θ ¼ π and compare the behavior for different
values of the mass parameter κ. The topological charge
density hqi has a negative slope at θ ¼ 0 and therefore χt is
negative on the lhs plot. We observe a strong dependence
on the mass parameter κ. The susceptibility essentially
vanishes in the broken phase and then starts to deviate from
0 for κ ≥ 2.5 . For all values of κ a saturation is reached on
lattice volumes betweenNs ¼ Nt ¼ 10 andNs ¼ Nt ¼ 12.
For θ ¼ π (rhs plot) the behavior is different: Here χt also
vanishes in the broken phase and then is positive for
κ ≥ 2.5. Most remarkably, χt does not seem to reach
saturation as a function of the volume, a fact that hints
at a possible phase transition.

D. The transition at θ ¼ π

In the previous section we found evidence that in the
symmetric phase there might be a transition at θ ¼ π. To
identify the transition we analyzed the θ-dependence of hqi
and χt for a point in the symmetric phase, in particular at
λ ¼ 0.5, κ ¼ 4.0with β ¼ 10.0. The results as a function of
θ for different volumes are shown in Fig. 11. It is obvious
that χt (rhs plot) has a maximum near θ ¼ π, and the height
of the peak at the maximum increases with the volume. A
detailed analysis shows, that the height of the maximum of
χt scales almost perfectly with the volume, which indicates
a first-order transition. This is reflected in the behavior of
hqi, which in the large volume limit develops a disconti-
nuity near θ ¼ π. The analysis was repeated at other points
in the symmetric phase with the same result and we
conclude, that in the symmetric phase the system has a
first-order phase transition as a function of θ.
The transition at θ ¼ π can be related to charge

conjugation, i.e., the discrete symmetry transformation

FIG. 10 (color online). Topological susceptibility versus the volume V ¼ Ns × Nt for different κ at λ ¼ 0.5 and β ¼ 10 at θ ¼ 0 (lhs)
and θ ¼ π (rhs).

FIG. 11 (color online). Topological charge and χt versus θ at κ ¼ 4.0, λ ¼ 0.5 and β ¼ 10.0 for different lattice volumes.
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Dual simulation
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⚫ Quantitatively agreement btw the TRG and MC (dual lattice simulation )
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w/ 𝜷 = 𝟏𝟎, 𝜆 = 0.5,𝑀 = 4,𝐾( = 𝐾) = 20, 𝐷 = 160
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⚫ Transition point at fixed β is pushed toward θ = π, by decreasing ε

⚫ Although the finite-size eHect is enhanced, it doesn’t pose any issue for TRG



Summary and outlook
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⚫ Tensor network oHers a novel formulation of real-space RG, whose accuracy 
can be systematically improved

⚫ No sign problem, path integral is available, CFT data from transfer matrices

⚫ The critical behavior in the (1+1)D gauge-Higgs model with a θ term has been 
investigated by the TRG, employing the Lüscher gauge action  

⚫ The 2D Ising universality class is confirmed at θ = π as expected

⚫ All numerical results show that the TNRG is a promising approach to study
the lattice gauge theories with Lüscher’s admissibility condition

⚫ Faster convergence toward the continuum limit than the Wilson action

⚫ The critical mass is precisely determined



Appendix



Tensor-network based level spectroscopy

⚫ Assuming the 2D Ising universality class, we employ a level spectroscopy to 
determine the critical point 𝑇& Ueda−Oshikawa, PRB108(2023)024413

(i) Choose two mass parameter 𝑇(±) such that 𝑇(() ≤ 𝑇) ≤ 𝑇(*)

(ii) At these two points, compute 𝑥)+, 𝐿 = 𝑥- 𝐿 + 𝑥. 𝐿 /16. This combination removes the eHect 
from  the leading irrelevant perturbation associated with the scaling dimension 4

(iii) Perform liner interpolations of 𝑥)+, 𝐿 − 3/16 btw 𝑇(()
and 𝑇(*) at each system size and find a crossing 
point 𝑇∗ 𝐿 of two lines with the system sizes 𝐿 and 2𝐿

(iv) Fit 𝑇∗ 𝐿 by 𝑇∗ 𝐿 = 𝑇) + 𝑎𝐿, and we finally obtain the      
critical point 𝑇)

Figure 2.2: Example of estimating the transition temperature using Loop-TNR. We
set )� = 2.66 and )

+ = 2.68 as an initial estimate. The level-crossing temperature
)
⇤
(!) is linearly fitted to extrapolate the transition temperature. The insert shows

how we compute )⇤
(!) for various system sizes.

Note that the first-order correction in the irrelevant coupling 6 is canceled out. Now
we can identify the critical point by finding the temperature for which XGcmb /

6n (!) = 0. Having eliminated the effects of the leading irrelevant perturbation
)

2
cyl, )̄

2
cyl, the dominant error is now caused by the next-leading irrelevant operator

with scaling dimension 6 and thus should be scaled as !�4.

In practice, the determination of the critical point can be efficiently implemented
as follows. First, we pick up one temperature from each phase: )

+
> )2 and

)
�
< )2, and calculate the combined shift XGcmb at these temperatures. The phase

of the system can be confirmed by observing the growth of XGcmb as the system size
increases because it increases/decreases if the system is in the high-temperature/low-
temperature phase (if the initial choice of the temperature turns out to be wrong,
change the temperature and restart the process). Next, linear interpolations of the
combined shift between the two temperatures )

± are made, and the crossing of
the lines for system sizes ! and

p
2! is found, as shown in the insert of Fig. 2.2.

We denote the temperature where the two lines cross as )
⇤
(!). Because of the

second-order contribution $ (6n
2
) in Eq. (2.20), the crossing temperature )

⇤
(!)

obtained by the linear interpolation deviates from the true critical point )2 as

48



TN representation 1/2
Therefore, the tensor network representation for Eq. (2.12) is obtained as

Z(Kg,Kh) = tTr

"
Y

n

Tn

#
, (2.21)

with the fundamental tensor Tn at each site n,

(Tn)xyx0y0 = T (g)
xgygx0

gy
0
g
T (✓)
xgygx0

gy
0
g
T (h)
xhyhx0

gx
0
hy

0
gy

0
h
, (2.22)

whose bond dimension is Kg�. Note that the subscripts in the left-hand side of Eq. (2.22)

are defined as i = (igih) with i = x, y, x0, y0.

2.3 Coarse-graining algorithm

We apply the bond-weighted TRG (BTRG) algorithm [41] to approximately compute the

path integral in Eq. (2.21). BTRG allows us to approximately carry out the contractions

among 2q local tensors within the q times of coarse-graining. Since each local tensor in

Eq. (2.22) is defined on each lattice site, q relates to the volume V via V = 2q and the

linear system size L via L = 2q/2.

This algorithm improves the accuracy of the original Levin-Nave TRG at the same

bond dimension. Remarkably, the computational cost of BTRG is completely the same

as the Levin-Nave TRG. The essence of the BTRG is to introduce a weight on each edge

of the tensor network. These weights mimic the e↵ect of the environment, which is not

taken into account in the original Levin-Nave TRG. Therefore, the BTRG can be regarded

as a variant of the second renormalization group algorithms [42, 43]. For the algorithmic

details, see Ref. [41]. 3

3 Numerical results

In the following, we always set � = 3.0 and the positive constant ✏ in Eq. (2.3) as ✏ = 1.0.

For the gauge-Higgs model, the quartic coupling is fixed as � = 0.5. Note that the cuto↵

e↵ects from the finite lattice spacing of the Lüscher gauge action and standard Wilson

gauge action are di↵erent even at the same inverse gauge coupling �. With the same value

of �, the Lüscher gauge action is expected to be closer to the continuum limit than the

Wilson action. See Appendix A for the comparison between the Lüscher and Wilson gauge

actions.

3.1 Pure U(1) gauge theory

We start by studying the (1+1)d pure gauge theory with a ✓ term to validate our tensor

network formulation. In this case, the local tensor in Eq. (2.22) is defined without T (h)

and the bond dimension in Eq. (2.21) is equal to Kg.

3Since the model is defined on a square lattice, we always set the hyperparameter in the BTRG algorithm

as k = �0.5 [41, 44].

– 6 –

Therefore, the tensor network representation for Eq. (2.12) is obtained as

Z(Kg,Kh) = tTr

"
Y

n

Tn

#
, (2.21)

with the fundamental tensor Tn at each site n,

(Tn)xyx0y0 = T (g)
xgygx0

gy
0
g
T (✓)
xgygx0

gy
0
g
T (h)
xhyhx0

gx
0
hy

0
gy

0
h
, (2.22)

whose bond dimension is Kg�. Note that the subscripts in the left-hand side of Eq. (2.22)

are defined as i = (igih) with i = x, y, x0, y0.

2.3 Coarse-graining algorithm

We apply the bond-weighted TRG (BTRG) algorithm [41] to approximately compute the

path integral in Eq. (2.21). BTRG allows us to approximately carry out the contractions

among 2q local tensors within the q times of coarse-graining. Since each local tensor in

Eq. (2.22) is defined on each lattice site, q relates to the volume V via V = 2q and the

linear system size L via L = 2q/2.

This algorithm improves the accuracy of the original Levin-Nave TRG at the same

bond dimension. Remarkably, the computational cost of BTRG is completely the same

as the Levin-Nave TRG. The essence of the BTRG is to introduce a weight on each edge

of the tensor network. These weights mimic the e↵ect of the environment, which is not

taken into account in the original Levin-Nave TRG. Therefore, the BTRG can be regarded

as a variant of the second renormalization group algorithms [42, 43]. For the algorithmic

details, see Ref. [41]. 3

3 Numerical results

In the following, we always set � = 3.0 and the positive constant ✏ in Eq. (2.3) as ✏ = 1.0.

For the gauge-Higgs model, the quartic coupling is fixed as � = 0.5. Note that the cuto↵

e↵ects from the finite lattice spacing of the Lüscher gauge action and standard Wilson
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⚫ The discretized path integral is described by a four-leg local tensor 𝑇:

S̃0
h = �

X

n

X

⌫

2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡#̃⌫(n) +
X

n

h
M ˜̀(n) + �˜̀(n)2

i
, (2.14)

S̃✓ = � i✓

2⇡

X

n

ln
h
ei⇡(#̃1(n)+#̃2(n+1̂)�#̃1(n+2̂)�#̃2(n))

i
. (2.15)

In Eq. (2.12), ˜̀(n) denotes the sampling point according to the Gauss-Laguerre quadrature

and w˜̀(n) is the corresponding weight. The number of sampling points in Dh is denoted

by Kh. Similarly, #̃⌫(n) denotes the sampling point according to the Gauss-Legendre

quadrature and w#̃⌫(n)
is the corresponding weight. The number of sampling points in Dg

is denoted by Kg. In the limits of Kg ! 1 and Kh ! 1, the original path integral is

restored. Eq. (2.12) is ready to be described as a tensor network. We introduce four-leg

pure gauge tensors on each plaquette as follows,

T (g)
xgygx0

gy
0
g

=

8
><

>:

pwxgwygwx0
g
wy0g

22
exp

"
��

1� cos⇡
�
y0g + xg � yg � x0g

�

1�
⇥
1� cos⇡

�
y0g + xg � yg � x0g

�⇤
/✏

#
if admissible

0 otherwise

,

(2.16)

T (✓)
xgygx0

gy
0
g
= exp

✓
i✓

2⇡
ln
h
ei⇡(y

0
g+xg�yg�x0

g)
i◆

. (2.17)

For the Higgs part, we introduce the following hopping matrix,

H˜̀(n)✓̃⌫(n)˜̀(n+⌫̂)

=
4
p
w˜̀(n)w˜̀(n+⌫̂)e

(˜̀(n)+˜̀(n+⌫̂))/4

p
2

⇥ exp


2
q

˜̀(n)˜̀(n+ ⌫̂) cos⇡✓̃⌫(n)�
M

4

⇣
˜̀(n) + ˜̀(n+ ⌫̂)

⌘
� �

4

⇣
˜̀(n)2 + ˜̀(n+ ⌫̂)2

⌘�
.

(2.18)

Now, we perform the singular value decomposition (SVD) of the ⌫-directional hopping

matrix, which gives us

H˜̀(n)#̃⌫(n)˜̀(n+⌫̂) '
�X

↵=1

A˜̀(n)#̃⌫(n)↵
B˜̀(n+⌫̂)↵, (2.19)

where A and B are defined by unitary matrices multiplied by the square root of singular

values �↵. In this study, we choose � in Eq. (2.19) such that the singular values satisfying

�↵/�1 > 10�7 are kept. Note that �1 is the largest singular value and �↵ is in the descending

order. We are now allowed to integrate out ˜̀(n) at each site n. As a result, we can define

a six-leg tensor at each lattice site as,

T (h)
xhyhx0

gx
0
hy

0
gy

0
h
=

X

˜̀(n)

A˜̀(n)y0gxh
A˜̀(n)x0

gyh
B˜̀(n)x0

h
B˜̀(n)y0h

. (2.20)
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