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Formulation of renormalization group

® Block-spin transformation by Kadanoff  kadanoff, Phys. Phys. Fiz. 2(1966)263-272

® Formulation of the RG method via the introduction of scale trans. by Wilson

of cooperative behavior arise. In the renormalization group framework, these qualitative features
result from the iterative character of the renormalization group. Namely, there is a transformation
7 which converts ¥, to ¥,, ¥, to J(,, etc. The transformation is the same whether one is con-
structing JC, from ¥, or ¥, from J(,; in each case one is thinning the degrees of freedom by a
factor 2. The only difference is in the lengthscale (L, versus 2L,) which is easily transformed
away. So one has a transformation 7 which is to be applied repeatedly:

T(J'Co):'JCl, T(JCI)=JC2, T(JC2):JC3 etc. (I.I)

This transformation is to be iterated n times where 2"L,, is of order £. When £ is large, the number
of iterations is large.

When one has a transformation 7 which is iterated many tlmes the simplest result we can
obtain is that the sequence J(; approaches a fixed point of 7, namely an interaction #* satisfying

T7(H*) = H*. (1.2)
This is what will happen in the examples discussed later in this review.
Wilson—-Kogut, Phys. Rept. 12(1974)75-199

® As a practical numerical method, the further development has been made
based on tensor network description
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RG methods as practical tools

® Numerical RG method for single impurity Kondo problem  witson, RMpaz(1975)773
® “OD” problems

@ Density Matrix RG for 1D quantum lattice models  wnite, PRL69(1992)2863-2866
® Reduction of the number of states via the density matrix formalism
® The most accurate numerical method for 1D quantum systems

® Corner transfer matrix RG for 2D classical systems Nishino-Okunishi, JPSJ65(1996)891

® A transfer-matrix RG method for 2D models based on Baxter’s CTM

Baxter, J. Math. Phys. 9(1968)650-654
Levin—-Nave, PRL99(2007)120601

@ Tensor Network RG Evenbly-Vidal, PRL115{2015)180405

® Usually formulated within the Lagrangian formalism (Tensor Network RG
approach)

® With the advancement of QC, TN methods based on the Hamiltonian
formalism have also been increasingly applied to lattice field theory
(Tensor Network State approach)
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TN representations for path integrals

® Most LFTs are ready to be described by network of tensors
Liu—-Meurice-Qin-Unmuth-Yockey-Xiang-Xie-Yu-Zou, PRD88(2013)056005
[Review] Meurice-Sakai-Unmuth-Yockey, RMP94(2022)025005

Boltzmann weight > Tensor elts Fields > Tensor indices Interaction > Tensor contraction

® Demonstration in the 2D Ising model
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Tensor Network RG

® TNRG recursion formula based on truncated SVD up to a given bond

Levin—Nave, PRL99(2007)120601

d Imension D Xie-Chen-Qin-Zhu-Yang-Xiang, PRB86(2012)045139
Evenbly-Vidal, PRL115(2015)180405

Yang-Gu-Wen, PRL118(2017)110504

® TNRG approximately computes path integrals via IR Ao
their TN rep.

@ \When D > oo, the TNRG exactly contracts the given TN rep.

® The accuracy can be systematically improved by increasing D

A typical TNRG recursion formula 2D Ising model
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Hunting Z, symmetry breaking via partition function

Gu-Wen, PRB80(2009)155131

® Ground-state degeneracy from the renormalized tensors

2D Ising model, x = 24
T

®X :=Z(N,, Ny)z /Z (2N, N,) R

® Ex. 2D Ising model
® Symmetric phase: Z~1xetxlVy = x =1
® SSB phase: Z~2xe* Ny = X =2 ,

@® Resulting structure of renormalized tensors
are different according to the realized phases = “Fixed-point tensor”

® This method enables us to locate critical points in arbitrary dimensions

Wang+, CPL31(2014)070503, SA+, PRD100(2019)054510

® Finite-size scaling (FSS) for X is recently reported Morita-Kawashima, PRB111(2025)054433

® Extension to continuous symmetry brea klng SA-Jha-Unmuth-Yockey, PRD110(2024)034519
Tanizaki-Maeda, JHEP08(2025)128
SA-Jha-Maeda-Tanizaki-Unmuth-Yockey, in preparation
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Grassmann TNRG approach

® TNRG can directly deal with the Grassmann path integral w/o pseudo-

ferm ion Gu-Verstraete-Wen, arXiv.1004.2563, Shimizu—Kuramashi, PRD90(2014)014508, SA—Kadoh, JHEP10(2021)188
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Toward the QCD at finite density &

©Schrodinger_nya_es

@ MC has played a central role as a practical numerical method for simulating
lattice field theories

e Information extraction via sampling

® However, it suffers from the signh problem IL LATTICE FIELD THEORY
A. The Kogut sequence: From Ising to QCD
. A SO |.L|t| O n tOWG rd S th e S I gn p I’O b le m In the early 1970s, QCD appeared to be a strong candidate

for a theory of strong interactions involving quarks and
Cf. Tempered Lefschetz thimble method, Fukuma-U meda, PTEP017(201 7)73B01 gluonsl However’ the pe[‘turbative methods that provided
Worldvolume HMC, Fukuma-Matsumoto, PTEP2021(2021)2023B08  satisfactory ways to handle the electroweak interactions of
... leptons failed to explain confinement, mass gaps, and chiral
1 1 1 1 symmetry breaking. A nonperturbative definition of QCD was
. TN RG p rOVId eS a d IStI nCt pe rS peCtlve fro m M C needed. In 1974, Wilson proposed (Wilson, 1974) a lattice
formulation of QCD where the SU(3) local symmetry is exact.
. . . As this four-dimensional model is fairly difficult to handle
‘ I nfO rm atl O n C O m p re SS | O nvi a te n SO rn etWO rkS numerically, a certain number of research groups started
considering simpler lattice models in lower dimensions and
o then increased symmetry and dimensionality. This led to a
@ N 0OS Ig ] p ro b le m sequence of models, sometimes called the “Kogut ladder,” that
appears in the reviews of Kogut (1979, 1983) and was later
addressed with small modifications by Polyakov (1987) and
1 Itzykson and Drouffe (1991).
‘ H oweve r’ th € accura Cy Of th ecom p ression The sequence is approximately the following:
. (1) D =2 Ising model
depends on the entanglement in the system () D=3 Ising model and its gauge dual
(3) D =2 0(2) spin and Abelian Higgs models
(4) D =2 fermions and the Schwinger model

@ Is it possible to explore the QCD at finite density | © =3umd0) suge teory

(6) D =3 and 4 non-Abelian gauge theories

u Si ng TN RG? E;; g zi lélgi]c)e fermions

® “From Isin g to QCD” [Review] Meurice-Sakai-Unmuth-Yockey, RMP94(2022)025005
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Luscher’s admissibility condition

Lischer, NPB549(1999)295-334

® The U(1) gauge action with the admissibility condition:

1 —ReP,,(n)
a5, 1% 2 T Bumle

o0 otherwise,

if |1—PFu(n)|<e,

Puy(n) :=Uy(n)U, (n + @)U (n + 2)UJ (n)

® The gauge fields are separated into disconnected subspaces, corresponding
to topological charge

@ In the MC simulation, the topological change is substantially suppressed

Fukaya-Onogi, PRD68(2003)074503

@ With a 8 term, the naive MC simulation also suffers from the complex action
problem and the topology freezing
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Why don’t we take the advantage of TNRG?

® TNRG allows us to directly compute the path integral w/o resorting the
probabilistic interpretation on the Boltzmann weight

® All contributions from every topological sector should be automatically
involved in the TNRG computations

® We demonstrate that the complex action problem and topology freezing
issue are simultaneously resolved by the TNRG

® Universal information is available from the transfer matrix (CDF data)
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(1+1)D U(1) gauge-Higgs model w/ a 0 term

® The U(1) gauge fields + complex scalar fields + a 0 term
S = BSy + S + S
Sn= =22 [6" () Up(n)¢(n+ D) + ¢"(n + 2)U(n)(n)] + M Y |$(n)[* + 1Y |¢(n)|*

i0
S@ = —% zn:ln Plg(n)

® The first-order transition at0 =mwhen M>M_ '\9

® 2D Ising universality at M= M 6= 0,21

Gattringer+, NPB935 (2018) 344-364
Komargodski+, SciPost Phys. 6 (2019) 003

v
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Path integral & its regularization

® The path integral on a lattice

e Link variable is parametrized by U, (n) = %™

e Complex scalar by ¢p(n) = r(n)ei‘P(")

ZH/

e Unitary gauge eliminates the angular field ¢ (n) from the path integral

C

® The path integral can be discretized by the Gauss quadrature

Kuramashi-Yoshimura, JHEP04(2020)089, Kadoh+, JHEP02(2020)161

.f” d9v(n). ] Z Kg Wi

o i=1 --- by the Gauss-Legendre quadrature

ofooor(n)dr(n)- Z " w; -+ by the Gauss-Laguerre quadrature
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TN formulation

® The path integral is approximately represented as a 2D tensor network
® 7(K, Kp)=tTr [H Tn]

i : _ (@) (0) (h)
e The local tensor involves three parts: (Tn)wery = Topypary Ty Tonynat oy,

® TN rep. is approximately contracted by the bond-weighted TRG algorithm

Adachi-Okubo-Todo, PRB105 (2022) L060402
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Pure gauge theory 1/2

W/,B=3,e=1,D=Kg=30

® A Clear signal of the first-order transition in the topological charge

® The two-fold ground state degeneracy at 6 =1t is also observed
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Pure gauge theory 2/2

w/f=3,e=1D = Ky = 30
® The peak height of the topological susceptibility is proportional to the volume

® TRG is successfully dealing with the Liischer gauge action

Peak height of topological susceptibility

10§

O TRG
— Fit

10 F
Xpeak(L) =co+ ¢, LP
Y p=2.00001(6)

Xpeak
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2 I L1 L1 I Lo I T T N N A
10 0 1 2 3
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The gauge-Higgs model

w/p=3,1=05¢€=1K; =K, =20D =160

® Discontinuity in the topological charge is vanishing by decreasing the mass M

® Computing the ground-state degeneracy, we can bound the critical mass M,

logical Charge Density
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|dentification of the universality class
w/p=3,1=05¢€=1K; =K, =20D =160

® Transfer matrix T is easily obtained from the TN representation
Gu-Wen, PRB80(2009)155131
1 (L)

@ Ratio of the largest eigenvalue of Tto smaller one: x,(L) =Elnl—@)

® These are nothing but the scaling dimensions when the system is sufficiently
large and at criticality

0.5 T T T T T T T T T T

® The volume independence in x4 (L) , e

L2=220
L2=22I
is observed w/ x1(L) = 1/8, which 04l s oo
agrees with the 2D Ising universality T, M
0.3+ < 72_5%|
class S S
< > b2
02p >, o o
L ¢ 10« : 2 s
O.It,,,é.,,,éwi 777777 S SN S 129;???’ 1/8
9.'89740 1 1 1 1 2.9&745 1 1 1 1 2‘9‘)}750 1 1 1 1 2.99755

M
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Tensor-network-based level spectroscopy

® Assuming the 2D Ising universality class, we employ the level spectroscopy to
determine the critical mass M, from scaling dimensions intersections
Ueda—-Oshikawa, PRB108(2023)024413
® We particularly use the intersections of x.,p, = x1 + x5 /16 to remove the
effect of the leading irrelevant perturbation

0.6 T
o 2.2
LZ — 22]
05 A 22|
I x 2,7
v LZ — 224
04 =2 |
. * <« [P
5/@ V'S L2 _ 227
> * b ;2_,28
° 0.3 L°=2"|
= > , ¢ o 27
1 - N e =2
\ 4 > ---- 3/16
0.2 _
e&---é---i----i---i---3----;---g----ﬁ---f---g----@-----9----?----?----35 3/16
| S 3
S S N
1 1 1 1 I 1 1 1 1 I 1 1 1 1
2.99740 2.99745 2.99750 2.99755
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Critical point and central charge
w/p=3,1=05¢€=1K; =K, =20D =160

® The resulting critical mass is M, =2.997480(2)

® Consistent not only with the bound from the ground-state degeneracy, but
also comparable with the previous MC result based on dual representation
employing the Villain-type gauge action: M_ = 2.989(2) Gattringer+, NPB935(2018)344-364

® Investigating the finite-size correction for the free energy, the central charge is
obtained as ¢ =0.50(7), in agreement with the 2D Ising universality class

® The algorithmic-parameter dependence of M, seems well suppressed

K, K, x D M,
24 20 8 192 2.9982886(1)
22 20 8 176 2.9998263(13)
20 20 8 160 2.9974765(14)
24 10 6 144 2.9929635(1)
22 10 6 132 2.9945222(9)

20 10 7 140 2.9921698(6)

X is another algorithmic parameter to compress the initial bond dimension from K K, to K x
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Bonus: Luscher vs Wilson

Luscher Wilson

® The field-theoretical def. of a 6 term:

i

So = =5z Zn Im P () ]

® The 21t periodicity is restored only in the
continuum limit

® The Luscher action should show the faster
convergence toward the continuum limit
than the Wilson action

() (8,V) = (12.8,27)



TRG vs MC

w/B =10,A=05M =4,K;, = K, =20,D = 160

20/22

® Quantitatively agreement btw the TRG and MC (dual lattice simulation)
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Bonus: Luscher vs Wilson
w/B=10,A=05M = 4,Kg = K, =20,D =160

@ Transition point at fixed B is pushed toward 6 = 11, by decreasing €

® Although the finite-size effect is enhanced, it doesn’t pose any issue for TRG
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Summary and outlook

® Tensor network offers a novel formulation of real-space RG, whose accuracy
can be systematically improved

® No sign problem, path integral is available, CFT data from transfer matrices

® The critical behavior in the (1+1)D gauge-Higgs model with a 6 term has been
investigated by the TRG, employing the Liischer gauge action

® The critical mass is precisely determined
® The 2D Ising universality class is confirmed at 6 = 1t as expected
® Faster convergence toward the continuum limit than the Wilson action

® All numerical results show that the TNRG is a promising approach to study
the lattice gauge theories with Luscher’s admissibility condition






Tensor-network based level spectroscopy

® Assuming the 2D Ising universality class, we employ a level spectroscopy to
determine the critical point TC Ueda-Oshikawa, PRB108(2023)024413

(i) Choose two mass parameter T™®) such that T) < T. < T

(ii) At these two points, compute x .y, (L) = x;(L) + x,(L)/16. This combination removes the effect
from the leading irrelevant perturbation associated with the scaling dimension 4

(iii) Perform liner interpolations of x . (L) — 3/16 btw T
and T(*) at each system size and find a crossing oo« ol o

point T*(L) of two lines with the system sizes L and v2L ] e e

o L=32V2

(iv) Fit T*(L) by T*(L) = T, + aL, and we finally obtain the
critical point T,

Xo+ Xe/16

2.280 4

T (L)

2.275 4

2.26 2.27 2.28

2.270 4

2.265 1




TN representation 1/2

® The discretized path integral is described by a four-leg local tensor T':

17

® 7(K, Kj) =tTr

. (Tn):cy:c’y’ — T(g) T(e) T(h) ,

YU YU ! !
mngmgyg mgygmgyg whyh-rgxhylgyh

(9)
. ngyg%yé
Wy Wy W Wy 1—cosm(y, +xg—vy, — 2
v Wzg 1192 Ty Yg exp | -8 (ygl 9~ Y9 g/) if admissible
= 2 1—[1—cosm (y, +ag—yg— )] /e :
0 otherwise

YU
Tg¥gTgYg

. T(e) = exp <£ 1n [eiﬂ(y;+mg_yg_m;>i|>
27



TN representation 2/2

® Compression for the hopping term:

® )i, (n)i(n+s)

\/we T o(l(n)+E(n+D))/4
V2
< exp [2% i+ 9)coswdn) . (In) + i) = 5 ({0 + 497 |

X
® Hg L (n)(n+0) Z {(n)d, (n)a € (n+0)a

k)
® T sty Z Ayt e Ain)atyn, Bitmye;, Binyy,
(n)



