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What will happen to a magnetic monopole

when it is put inside a topological insulator?

—– We expect that the monopole is observed as a

dyon with the electric chage qe = −1/2, because of

the Witten effect.
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A magnetic monopole: a particle w/ a magnetic charge. It appears

in dualities, GUTs, the inflation, etc. (e.g., the Dirac monopole,

and the ’t Hooft–Polyakov monopole)

A topological insulator: the bulk is the insulator (gapped), but the

edge is the gapless. The effective theory of the T-symmetric

topological insulator is described by the θ = π vacuum.
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—– We expect that the monopole is observed as a

dyon with the electric chage qe = −1/2, because of

the Witten effect.

3



What will happen to a magnetic monopole

when it is put inside a topological insulator?

—– We expect that the monopole is observed as a

dyon with the electric chage qe = −1/2, because of

the Witten effect [Witten (’79)].
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The Witten effect

We can write down the θ term as

Lθ =
θ

8π2

!
d
3
xE ·B.

We put a magnetic monopole with qm on the θ ∕= 0 vacuum,

E = −∇A
0
, B = ∇×A− qm

r

r3
.
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Then the θ term is described by

Lθ = −θqm
2π

!
d
3
xA

0δ(3)(r),

This implies that there is a particle with electric charge

qe = −θqm/(2π) which is coupled to the A
0 potential.

In the T-symmetry protected topological insulator (θ = π), the

monopole with qm = 1 obtains the electric charge qe = −1/2.
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The effective theory description above is quite simple, but can’t

answer to the following questions:

(1) what is the origin of the electric charge? (must be electrons)

(2) if the origin is the electrons, why is it bound to monopole?

(3) why is the electric charge fractional?

In this our work [Aoki, Fukaya, Kan, Koshino Matsuki (’23)], we

try to give answers to the questions from in terms of a microscopic

description.
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2. Naive Dirac equation (review)



Solving a naive Dirac equation

We first review the work by [Yamagishi (’83)].

We put a U(1) gauge flux located at the origin describing the

monopole:

Ax =
−qmy

r(r + z)
, Ay =

qmx

r(r + z)
, Az = 0,

of which field strength is

Fij = qm$ijk
xk

r3
− 4πqmδ(x)δ(y)θ(−z)$ij3,

where the second term represents the Dirac string. Due to the

Dirac quantization, we assume qm = n/2 with n ∈ Z.
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The orbital angular momentum is modified by the monopole

configuration:

Li = −i$ijkxj (∂k − iAk)− n
xi

2r
,

which satisfies

[Li, Lj ] = i$ijkLk.

Their explicit forms in the polar coordinate are given by

L± = L1 ± iL2 = e
±iφ

"
±

∂

∂θ
+ i

cos θ

sin θ

∂

∂φ
+

n

2

cos θ − 1

sin θ

#
,

L3 = −i
∂

∂φ
− n

2
.
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The Dirac Hamiltonian with a mass m is

H = γ0 (γi (∂i − iAi) +m) ,

=

$
m σi (∂i − iAi)

−σi (∂i − iAi) −m

%
,

where γ0 = σ3 ⊗ 1 and γi = σ1 ⊗ σi.

The “chiral” operator is

γ̄ := −iγ1γ2γ3 = σ1 ⊗ 1,

( ∕= γ5 = −γ0γ1γ2γ3). The chiral operator γ̄ anticommutes with

the Hamiltonian H: {H, γ̄} = 0.
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The total angular momentum is

Ji = Li ⊗ 1+
1

2
1⊗ σi,

with [Ji, Jj ] = i$ijkJk and [Ji, H] = 0. Except for the lowest

eigenvalue j = |n/2|− 1/2, (where the degeneracy is 2j + 1 = |n|,

) there are 2(2j + 1) degenerate states.

In addition to J
2 and J3, there is an operator that commutes with

H; [H,σ3 ×D
S2
] = 0, where we define the “spherical” operator

D
S2

:= σi

&
Li +

n

2

xi

r

'
+ 1.
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Because of

&
D

S2
'2

= ν2, ν :=

("
j +

1

2

#2

− n2

4
,

we introduce the eigenstates of DS2
which satisfy for

j > |n/2|− 1/2,

D
S2
χj,j3,±(θ,φ) = ±νχj,j3,±(θ,φ),

and for j = |n/2|− 1/2

D
S2
χj,j3,0(θ,φ) = 0,

with σrχj,j3,0 = sχj,j3,0, where s = sign(n) and σr = σixi/r.
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The solution of the Dirac equation Hψ = Eψ with

j > |n/2|− 1/2 is

ψj,j3,± =
Cj,j3,±√

r

$
(m+ E)Kν∓1/2(

√
m2 − E2r) χj,j3,±(θ,φ)√

m2 − E2Kν±1/2(
√
m2 − E2r) σrχj,j3,±(θ,φ)

%
.

However, this is NOT the normalizable solution localized at the

monopole (r = 0).
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The only normalizable solution is the state with j = |n|/2− 1/2:

ψj,j3,0 =
Cj,j3,0

r
exp(−|m|r)

$
1

sign(m)sign(n)

%
⊗ χj,j3,0(θ,φ),

with E = 0.

The solution is localized at the monopole (r = 0). Is this state of

the electron with E = 0 the cause of the dyon?
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✓ ✏
ψj,j3,0 =

Cj,j3,0

r
exp(−|m|r)

$
1

sign(m)sign(n)

%
⊗ χj,j3,0(θ,φ)

✒ ✑
1. The state is a chiral eigenstate of σ1 ⊗ σr with the eigenvalue

sign(m). What is the origin?

2. No difference between the positive and negative mass in the

solution. The Witten effect predicts the dyon appear only in

the topological insulator (m < 0). The solution can’t explain

it w/o imposing “the chiral boundary condition” by hand.

3. Why does the electric charge become qe = −1/2?
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3. Regularized Dirac equation



The Wilson term

In order to answer these questions, we take account of the leading

correction from the Pauli–Villars regularization. The partition

function is expanded as

Z = det

"
D +m

D +MPV

#
,

= det

)
1

MPV

"
D +m+

1

MPV
D

†
µD

µ

+O(1/M2
PV,m/MPV, Fµν/MPV)

#*
.

“The Wilson term” D
†
µD

µ
/MPV appears as the leading correction.
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Then the “regularized” Dirac Hamiltonian is given by

Hreg = γ0

$
γiDi +m+

D
†
iD

i

MPV

%
.

Note that the sign of m is well-defined once the sign of MPV(> 0)

is fixed. The Dirac equation is manifestly different between

positive and negative m.
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By the anomalous U(1)A transformation,

Z = det

"
D +m

D +MPV

#
= det

"
D + |m|

D +MPV

#
exp

"
iθ

8π2

!
F ∧ F

#
.

• For m > 0, θ = 0, which implies the normal phase.

• For m < 0, θ = π, which implies the topological phase.
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We note that the cut-off of the fermion field is

1/MPV ∼ a ∼ 10−10[m],

while the size of the monopole is less than

r1 ∼ 10−20[m],

assuming the (’t Hooft–Polyakov) monopole energy is higher than

10 TeV.

Thus the effect of the Wilson term is important.
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In perturbative theory, the regulator usually appears in loop

computations only.

However, in nonperturbative lattice regularization, the Wilson term

HWilson = γ0

+
3,

i=1

$
γi
∇f

i +∇b
i

2
− a

2
∇f

i ∇
b
i

%
+m

-
,

is needed even at the tree-level.
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Since the Laplacian D
†
iD

i is always positive, the mass shift due to

the Wilson term is always positive when we take MPV positive.

For m < 0 (or inside topological insulators), it is possible to locally

flip the sign of the “effective” mass

m < 0 → meff = m+
D

†
iD

i

MPV
∼ m+

1

MPVr
2
1

> 0,

when the magnetic flux is concentrated in the region r < r1.

It’s implies that the inside region r < r1 becomes a normal

insulator, and the (spherical) domain-wall is dynamically created

and the chiral edge-mode appears on it! (It doesn’t happened in

the normal insulator with m > 0.)
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Solving the regularized Dirac equation

The regularized Hamiltonian is

Hreg =

$
m−DiDi/MPV σi (∂i − iAi)

−σi (∂i − iAi) −m+DiDi/MPV

%
,

The solution of the zero-mode for r1 → 0 is given by

ψmono
j,j3 =

Be
−MPVr/2

√
r

Iν(κr)

$
1

−s

%
⊗ χj,j3,0(θ,φ),

where ν =
.

2|n|+ 1/2, and κ = MPV

.
1 + 4m/MPV/2.
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|ψNaive | 2

|ψWilson | 2
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|ψ| 2

The plot with n = 1, m = 0.1, MPV = 10.

- The solution ψWilson coincides with ψNaive for large r.

- A peak at r = |n|/(2MPV) ∼ 1/MPV is the domain-wall.

- ψWilson is zero at r = 0.

25



Contents

1. Introduction

2. Naive Dirac equation (review)

3. Regularized Dirac equation

4. Index theorem and half-integral charge

5. Numerical analysis

6. Nonintegral magnetic charge

7. Summary

26



4. The Atiyah–Singer index theorem

and the half-integral charge



The Dirac operator on the domain-wall

Our solution

ψmono
j,j3 =

Be
−MPVr/2

√
r

Iν(κr)

$
1

−s

%
⊗ χj,j3,0(θ,φ),

is a zero eigenvalue solution of the spherical operator,

D
S2

= σi

&
Li +

n

2

xi

r

'
+ 1,

since D
S2
χj,j3,0 = 0 for j = |n|/2− 1/2.

In fact, DS2
is the Dirac operator on the spherical domain-wall

created around the monopole!
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With a local Lorentz (or Spinc to be precise) transformation

R(θ,φ) = exp(iθσy/2) exp(iφ(σz + 1)/2), we obtain

D
S2

= R(θ,φ)
/
σi

&
Li +

n

2

xi

r

'
+ 1

0
R(θ,φ)−1

,

= −σz

)
σx

∂

∂θ
+ σy

"
1

sin θ

∂

∂φ
+ iÂφ + iÂ

s
φ

#*
,

where Âφ = n
2

sin θ
1+cos θ is the vector potential (in units of r1)

generated by the monopole.
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The second connection,

Â
s
φ =

1

2 sin θ
− cos θ

2 sin θ
σz,

is the induced Spin
c connection on the sphere which is strongly

curved with the small radius r1, i.e., gravity!

Also, DS2
anticommutes with σr, which implies that the

zero-modes are the chiral zero-modes of not only 3D but also D
S2
.
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The AS index theorem on the domain-wall

The 2D chirality is

σrχj,j3,0(θ,φ) = sχj,j3,0(θ,φ), s := sign(n),

and # of the degeneracy is 2j + 1 = |n|. Then the Dirac index is

IndDS2
= n.

On the other hand, the topological index is

1

4π

!

S2

d
2
x$µνFµν = n.

Stability of the zero modes on the domain-wall is topologically

protected by the AS index theorem.
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So far, we considered a R2 space, but in order to discuss

topological feature of the fermion zero mode, we also need an IR

regularization, such as the one-point compactification.

Then the topological insulator region with (meff < 0) have

topology of a disk with a small S2 boundary at r = r1.

However, due to the cobordism

invariance of the AS index,
!

∂M
F =

!

M
dF = 0,

the disk is not possible.
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A resolution is: to create another domain-wall at, say, r = r0,

outside of the topological insulator.

Another zero mode is localized at the outside domain-wall, and the

index is kept trivial.

0 =

!

M
dF =

!

Σmono

F +

!

Σout

F,

where ∂M = Σmono ∪ Σout.

This implies that the outside

of the topological insulator must

be a normal insulator (laboratory).
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The edge states on the outside domain-wall

The regularized Hamiltonian around the outside domain-wall is

H = γ0

$
γiDi + |m|$(r − r0) +

D
†
iD

i

MPV

%
.

The edge-localized state is obtained as

ψDW
j,j3 =

!
""""""#

""""""$

exp
!

MPVr
2

"

√
r

(B′Kν(κ−r) + C′Iν(κ−r))

%

&1

s

'

(⊗ χj,j3,0(θ,φ) (r < r0),

D′ exp
!

MPVr
2

"

√
r

Kν(κ+r)

%

&1

s

'

(⊗ χj,j3,0(θ,φ) (r > r0),

where κ± = MPV
2

.
1± 4|m|/MPV.
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The solution

ψDW
j,j3 =

!
""""""#

""""""$

exp
!

MPVr
2

"

√
r

(B′Kν(κ−r) + C′Iν(κ−r))

%

&1

s

'

(⊗ χj,j3,0(θ,φ) (r < r0),

D′ exp
!

MPVr
2

"

√
r

Kν(κ+r)

%

&1

s

'

(⊗ χj,j3,0(θ,φ) (r > r0),

is:

- E = 0,

- σx ⊗ σr = +1 (which is opposite to ψmono
j,j3

),

- the # of degeneracy is 2j + 1 = |n|, and

- the 3D chiral state; γ̄ = σx ⊗ 1 = s.
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At finite r0, the paired zero-modes near the monopole at r = r1

and the domain-wall at r = r0 are mixed:

ψ = αψmono
j,j3 + βψDW

j,j3 .

Because of {γ̄, H} = 0,

1
ψmono
j,j3

2†
Hψmono

j,j3 =
1
ψDW
j,j3

2†
HψDW

j,j3 = 0,

and

1
ψmono
j,j3

2†
HψDW

j,j3 =
1
ψDW
j,j3

2†
Hψmono

j,j3 =: ∆ ∼ exp(−|m|r0).

Then we can show E = ±∆ and α = ±β.
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ψ ∼ 1√
2

1
ψmono
j,j3 ± ψDW

j,j3

2

The 50% amplitude is located around the monopole at r = r1.

We conclude that (the expectation value of) the electric charge

around the monopole is qe = −1/2!
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5. Numerical analysis



Lattice setup

On a three-dimensional hyper-cubic lattice with size L = 31 with

open boundary conditions, we put a monopole at

xm = (L/2, L/2, L/2) with a magnetic charge n/2. We also put

an antimonopole at xa = (L/2, L/2, 1/2) with the opposite charge

−n/2.

The continuum vector potential at x = (x, y, z) is then given by

Ax(x) = qm

)
−(y − ym)

|x− xm|(|x− xm|+ (z − zm))
− −(y − ya)

|x− xa|(|x− xa|+ (z − za))

*
,

Ay(x) = qm

)
x− xm

|x− xm|(|x− xm|+ (z − zm))
− x− xa

|x− xa|(|x− xa|+ (z − za))

*
,

Az(x) = 0,

with qm = n/2. Note that the Dirac string extends from xa to xm.
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For the fermion field, we assign a position-dependent mass term to

be m(x) = −m0 with m0 = 14/L for
.

|x− xm| < r0 = 3L/8,

and m(x) = +m0 otherwise.

Namely, the monopole is located at the center of a spherical

topological insulator with radius r0 surrounded by a normal

insulator with the gap m0, while the anti-monopole sits in the

normal insulator region.

We assume that outside of the lattice with open boundary

condition corresponds to a “laboratory” with m(x) = +∞.

40



41



The Wilson Dirac Hamiltonian is given by

HW = γ0

$
3,

i=1

+
γi
∇f

i +∇b
i

2
− 1

2
∇f

i ∇
b
i

-
+m(x)

%
,

where ∇f
i ψ(x) = Ui(x)ψ(x+ ei)− ψ(x) denotes the forward

covariant difference and ∇b
iψ(x) = ψ(x)− U

†
i (x− ei)ψ(x− ei) is

the backward difference. Also, Ui(x) = exp
&
i
3 1
0 Ai(x+ eil)dl

'
is

the link variables.

Note that HW anti-commutes with γ̄ = γx ⊗ 1 even on a lattice.
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Numerical results

The eigenvalue spectrum of HW w/ n = 1 on the L = 31 lattice:
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We see that:

- the circle symbols are the numerical results,

- the cross symbols are the continuum results,

- two nearest zero-modes.
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We plot the amplitude,

Ak(x) = φ†
k(x)φk(x)r

2
,

for the negative first and second nearest-zero modes.

45



The amplitude of the negative second nearest-zero mode for n = 1

in z = (L+ 1)/2 slice:
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The amplitude of the negative nearest-zero mode for n = 1 in

z = (L+ 1)/2 slice:

47



We see that:

- for the nearest zeromode, the amplitude has two peaks around

r = |x− xm| = 0 and r = r0,

- the local chirality near each peak is ∼ −1 and +1,

respectively, although the total chiraity is near zero,

- the 50% of the state is located around the monopole, while

the other 50% is located at r = r0: the half electric charge,

- this is only for the nearest zeromode, e.g., for the second

nearest zero mode, we have only the edge-localized modes:
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To directly confirm creation of the domain-wall near the monopole,

we plot distribution of the “effective mass” (normalized by m0),

meff(x) = φk(x)
†

4

5−
,

i=1,2,3

1

2
∇f

i ∇
b
i +m(x)

6

7
8

φk(x)φk(x)
†φi(x),

on the z = (L+ 1)/2 slice.

49



The effective mass of the nearest zeromode with n = 1 on z = 16

slice:
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We see that:

- the small island of the normal insulator (or a positive mass

region) appears around the monopole: the domain-wall is

dynamically created,
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Let’s quantify the electric charge that the monopole gains.

We plot the cumulative distribution of the nearest zero modes:

Ck(r) =

!

|x|<r
d
3
xφk(x)

†φk(x).
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For n = 1:
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We see that:

- a stable plateau in the middle range 4 < r < 9 = 3r0/4 at

Ck(r) ∼ 1/2,

- under the half-filling condition, the monopole gains |n|/2

electric charge capturing the half of the occupied |n|

zero-mode states of the electron.
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6. Nonintegral magnetic charge



An interesting (thought) experiment

We have a thin solenoid

whose radius is comparable

to the crystal spacing of

a topological insulator. Inserting

one end of the solenoid inside

the topological insulator while the

other end is put outside, we can

mimic the monopole-antimonopole

system with.

This experiment

can be simulated continuously

varying the value of n from 0 to 1.
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For n = 0, the amplitude is uniformly distributed around the

sphere of radius r = r0.
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Increasing n, a part of the wave function is gradually swallowed

into the topological insulator from bottom of the sphere.
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For n = 0.5, the circumference of the solenoid becomes the normal

insulator, and attracts the electron.
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For n > 0.5, the amplitude is separated into two, one half is

attracted by the monopole, while the other half stays at the

original domain-wall.
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For n = 1.0, the circumference of the solenoid returns to the

topological insulator.
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Schematic image of topology change of the domain-wall. One

spherical domain-wall at n = 0 is extended via the Dirac string into

the location of the monopole at n ∼ 0.5, and is separated into two

domain-walls at n = 1.
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Summary

We discussed a microscopic description of the Witten effect with

the Wilson term.

How do we distinguish between the normal insulator (m > 0) and

topological insulator (m < 0)?

- It is the topological insulator if the mass is relatively negative

compared to the PV mass.

Why are electrons bound to monopole?

- Because of the positive mass correction from the magnetic

field of the monopole, the domain-wall is dynamically created

(only for the negative mass).
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Why do the chiral zero modes appear?

- Because the zero modes localized at the domain-wall are

protected by the AS index.

Why is the electric charge fractional?

- Because the 50% of the wavefunction is located around the

monopole (the other 50% is located at the surface of the

topological insulator).
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