Krylov complexity of free and interacting scalar QFTs with bounded power spectrum

Mitsuhiro Nishida

(Pohang University of Science and Technology)

[arXiv:2212.14702]

with Hugo A. Camargo, Viktor Jahnke, Keun-Young Kim

Kyoto University, May 24

今日のセミナーで言いたいこと

Lanczos係数とKrylov complexityは 量子多体系のoperator growthの指標

・ 2点関数から計算できる

・ Krylov complexityの指数的増加率 λ_K は OTOCのLyapunov指数 λ_L を制限

$$\lambda_L \le \lambda_K \le \frac{2\pi}{\beta} \qquad (予想)$$

・場の理論のMass gap とUV cutoffが λ_K に影響する

Introduction

Diagnostics for quantum chaos

Out-of-time-order correlators (OTOC)

$$\frac{\langle W(t,\mathbf{d})V(0,0)W(t,\mathbf{d})V(0,0)\rangle}{\langle W(t,\mathbf{d})W(t,\mathbf{d})\rangle\langle V(0,0)V(0,0)\rangle} \sim 1 - \varepsilon e^{\lambda_L(t-\mathbf{d}/v_B)} + \cdots$$

 $\lambda_L:$ Lyapunov exponent $v_B:$ butterfly velocity

· Spectral form factor (SFF) $Z(\beta + it)Z(\beta - it)$

Ramp (linear growth) behavior due to random matrix description

They are well-studied even in hep-th community due to a connection to black holes.

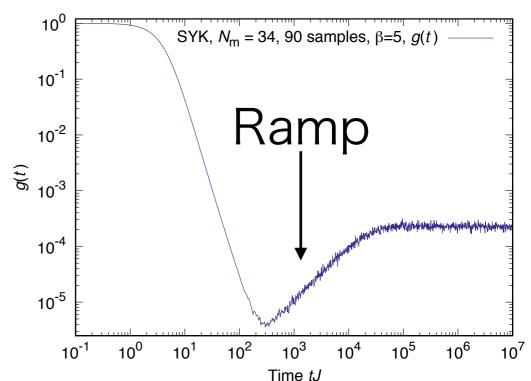
Thermal 2pt function may capture quantum chaos for operators.

Time evolution of SFF

$$Z(\beta + it)Z(\beta - it) = \sum_{i} e^{-\beta(E_i + E_j)} e^{i t(E_i - E_j)}$$

"Black Holes and Random Matrices"

- [J. S. Cotler, G. Gur-Ari, M. Hanada,
- J. Polchinski, P. Saad, S. H. Shenker,
- D. Stanford, A. Streicher, M. Tezuka, 2016]



SFF is related to

thermal 2pt function without matrix elements.

$$\langle \mathcal{O}(t - i\beta/2)\mathcal{O}(0)\rangle_{\beta} = \frac{1}{Z(\beta)} \sum_{i,j} e^{-\frac{\beta}{2}(E_i + E_j)} e^{i t(E_i - E_j)} |\langle E_j | \mathcal{O} | E_i \rangle|^2$$

Krylov complexity is a measure defined from 2pt functions.

Krylov complexity
$$K_{\mathcal{O}}(t) := \sum_n n |\varphi_n(t)|^2$$

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

Lanczos algorithm is a mathematical method for Krylov basis \mathcal{O}_n for $\mathcal{O}(t)$.

$$\mathcal{O}(t) = \sum_{n=0}^{\infty} i^n \varphi_n(t) \mathcal{O}_n$$

Lanczos algorithm can determine Krylov basis \mathcal{O}_n Lanczos coefficients b_n , and wave functions $\varphi_n(t)$.

Conjectured properties of Krylov complexity for chaotic systems

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

· Universal operator growth hypothesis: Lanczos coefficient b_n grows linearly at large n .

$$b_n \sim \alpha n + \gamma$$

· Krylov complexity $K_{\mathcal{O}}(t)$ grows exponentially and bounds Lyapunov exponent λ_L .

$$K_{\mathcal{O}}(t) \sim e^{2\alpha t}$$
 $\lambda_L \le 2\alpha$

These properties have been proved or checked in some systems.

[A. Avdoshkin, A. Dymarsky, 2019], [Y. Gu, A. Kitaev, P. Zhang, 2021], [E. Rabinovici, A. Sánchez-Garrido, R. Shir, J. Sonner, 2020], ...

Krylov complexity in CFTs

[A. Dymarsky, M. Smolkin, 2021]

 $K_{\mathcal{O}}(t)$ at finite temperature in 2d CFTs, free massless theories, and holographic models were studied.

They found the universal exponential growth behavior $K_{\mathcal{O}}(t) \sim e^{\frac{2\pi}{\beta}t}$ in any theories.

The exponential growth of $K_{\mathcal{O}}(t)$ may not be chaotic behavior in CFTs.

My motivation

 Understand the meaning of CFT results in [A. Dymarsky, M. Smolkin, 2021]

 Understand how much difference of Krylov complexity in lattice and continuum theories

 Compute Krylov complexity of familiar and simple theories in QFT's textbooks

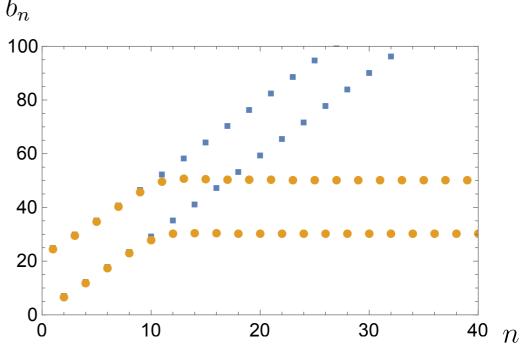
我々がやったこと

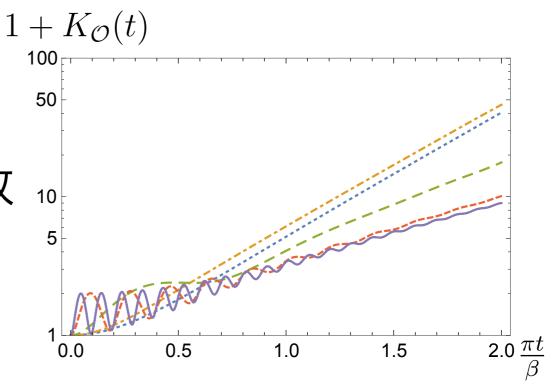
・自由massive scalar場の理論のLanczos係数と

Krylov complexityを調べた

・Mass gap とUV cutoff の効果を調べた

・ $4d\phi^3$ と $4d\phi^4$ 理論のLanczos係数を摂動的に調べた





Outline

1. Lanczos coefficients and Krylov complexity

2. Conjectures for quantum chaos

3. Lanczos coefficients and Krylov complexity in scalar QFTs

4. Summary

Lanczos coefficients and Krylov complexity

Lanczos係数とKrylov complexityは 量子多体系のoperator growthの指標

・ 2点関数から計算できる

・Krylov complexity $K_{\mathcal{O}}(t) := \sum_{n} n |\varphi_n(t)|^2$ の増加は φ_0 から φ_n への伝搬を意味する

$$\mathcal{O}(t) = \sum_{n=0}^{\infty} i^n \varphi_n(t) \mathcal{O}_n$$

Expansion of O(t) and inner product

$$\mathcal{O}(t) = e^{iHt} \mathcal{O}e^{-iHt} = \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \mathcal{L}^n \mathcal{O} \qquad \qquad \mathcal{L}\mathcal{O} := [H, \mathcal{O}]$$

We want to construct an orthonormal basis for $\{\mathcal{L}^n\mathcal{O}\}$ choosing an inner product.

Choices of inner products

$$(A|B) := {\rm Tr}[A^{\dagger}B]/{\rm Tr}[1]$$
 Infinte temperature

$$(A|B)^S_\beta:=rac{1}{2Z}{
m Tr}[e^{-eta H}(A^\dagger B+BA^\dagger)]$$
 Standard inner product

$$(A|B)^W_\beta := \frac{1}{Z} {\rm Tr}[e^{-\beta H/2} A^\dagger e^{-\beta H/2} B] \qquad \text{Wightman inner product}$$

Construction of orthonormal basis

$$|\mathcal{O}_0| = |\mathcal{O}|, \quad (\mathcal{O}_0|\mathcal{L}|\mathcal{O}_0) := (\mathcal{O}_0|\mathcal{L}\mathcal{O}_0)$$

$$a_0 = (\mathcal{O}_0 | \mathcal{L} | \mathcal{O}_0), \quad |A_1) := \mathcal{L} | \mathcal{O}_0) - a_0 | \mathcal{O}_0),$$

$$b_1 = \sqrt{(A_1|A_1)}, \quad |\mathcal{O}_1| = b_1^{-1}|A_1|.$$

$$a_1 = (\mathcal{O}_1 | \mathcal{L} | \mathcal{O}_1), \quad |A_2| := \mathcal{L} |\mathcal{O}_1| - a_1 |\mathcal{O}_1| - b_1 |\mathcal{O}_0|,$$

 $b_2 = \sqrt{(A_2 | A_2)}, \quad |\mathcal{O}_2| = b_2^{-1} |A_2|.$

We can construct $|\mathcal{O}_n|$ such that $(\mathcal{O}_m|\mathcal{O}_n) = \delta_{mn}$

Lanczos algorithm

An algorithm for tridiagonalization of a Hermitian matrix

If $(\mathcal{L}^m \mathcal{O} | \mathcal{L} | \mathcal{L}^n \mathcal{O}) := (\mathcal{L}^m \mathcal{O} | \mathcal{L}^{n+1} \mathcal{O})$ is Hermitian, one can construct an orthonormal basis $|\mathcal{O}_n|$

$$|\mathcal{O}_{-1}| := 0, |\mathcal{O}_0| := |\mathcal{O}|, \mathcal{L}|\mathcal{O}_n| = a_n|\mathcal{O}_n| + b_n|\mathcal{O}_{n-1}| + b_{n+1}|\mathcal{O}_{n+1}|$$

$$\begin{array}{c} \mathsf{Krylov} \; \mathsf{subspace} \\ \; \mathsf{Span}\{\mathcal{L}^n\mathcal{O}\} \\ \; \mathsf{Krylov} \; \mathsf{basis} \\ \; |\mathcal{O}_n) \\ \; h \; \colon \mathsf{Lanczos} \; \mathsf{coefficients} \end{array} \qquad \begin{array}{c} \left(a_0 \quad b_1 \quad 0 \quad 0 \quad \cdots \right) \\ b_1 \quad a_1 \quad b_2 \quad 0 \quad \cdots \\ 0 \quad b_2 \quad a_2 \quad b_3 \quad \cdots \\ 0 \quad 0 \quad b_3 \quad a_3 \quad \cdots \\ \vdots \quad \vdots \quad \vdots \quad \vdots \quad \ddots \end{array} \right)$$

 a_n, b_n : Lanczos coefficients

Lanczos coefficients can be determined from a 2pt function.

2pt function
$$C(t):=(\mathcal{O}|\mathcal{O}(-t))=\sum_{n=0}M_n\frac{(-it)^n}{n!}$$

Moments $M_n:=\frac{1}{(-i)^n}\frac{d^nC(t)}{dt^n}\Big|_{t=0}=(\mathcal{O}_0|\mathcal{L}^n|\mathcal{O}_0)$

Moments determine Lanczos coefficients.

$$M_{1} = (\mathcal{O}_{0}|\mathcal{L}|\mathcal{O}_{0}) = a_{0},$$

$$M_{2} = (\mathcal{O}_{0}|\mathcal{L}^{2}|\mathcal{O}_{0}) = a_{0}^{2} + b_{1}^{2},$$

$$M_{3} = (\mathcal{O}_{0}|\mathcal{L}^{3}|\mathcal{O}_{0}) = a_{0}^{3} + 2a_{0}b_{1}^{2} + a_{1}b_{1}^{2},$$

$$M_{4} = (\mathcal{O}_{0}|\mathcal{L}^{4}|\mathcal{O}_{0}) = (a_{0} + a_{1})^{2}b_{1}^{2} + (a_{0}^{2} + b_{1}^{2})^{2} + b_{1}^{2}b_{2}^{2}.$$

Time evolution of $\varphi_n(t)$

$$|\mathcal{O}(t)| = \sum_{n=0}^{\infty} i^n \varphi_n(t) |\mathcal{O}_n|, \quad \varphi_n(t) := i^{-n} (\mathcal{O}_n |\mathcal{O}(t))$$

$$|\mathcal{O}_{-1}| := 0, |\mathcal{O}_{0}| := |\mathcal{O}|, \mathcal{L}|\mathcal{O}_{n}| = a_{n}|\mathcal{O}_{n}| + b_{n}|\mathcal{O}_{n-1}| + b_{n+1}|\mathcal{O}_{n+1}|$$

$$\varphi_{-1}(t) := 0, \varphi_0(t) = C(-t), \frac{d\varphi_n(t)}{dt} = ia_n \varphi_n(t) + b_n \varphi_{n-1}(t) - b_{n+1} \varphi_{n+1}(t)$$

From C(t), we can determine a_n, b_n and solve $\varphi_n(t)$ recursively.

Krylov complexity $K_{\mathcal{O}}(t) := \sum_n n |\varphi_n(t)|^2$

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

$$K_{\mathcal{O}}(0) = 0 \text{ due to } \varphi_0(0) = 1, \sum_n |\varphi_n(t)|^2 = 1$$

$$|\mathcal{O}(t)| = \sum_{n=0} i^n \varphi_n(t) |\mathcal{O}_n|, \quad \varphi_n(t) := i^{-n} (\mathcal{O}_n |\mathcal{O}(t))$$

• For large $K_{\mathcal{O}}(t)$, $\varphi_n(t)$ with large n should have nonzero values.

Increase of $K_{\mathcal{O}}(t)$ under time evolution means spreading from $\varphi_0(t)$ to $\varphi_n(t)$.

Lanczos coefficients and Krylov complexity

Lanczos係数とKrylov complexityは 量子多体系のoperator growthの指標

・ 2点関数から計算できる

・Krylov complexity $K_{\mathcal{O}}(t) := \sum_{n} n |\varphi_n(t)|^2$ の増加は φ_0 から φ_n への伝搬を意味する

$$\mathcal{O}(t) = \sum_{n=0}^{\infty} i^n \varphi_n(t) \mathcal{O}_n$$

Conjectures for quantum chaos

・量子カオス
$$\Longrightarrow$$
 $b_n \sim \alpha n + \gamma$ (予想)

・ Krylov complexityの指数的増加率 λ_K は OTOCのLyapunov指数 λ_L を制限

$$\lambda_L \le \lambda_K \le \frac{2\pi}{\beta} \qquad (予想)$$

· $b_n \sim \alpha n + \gamma \implies 量子カオス$

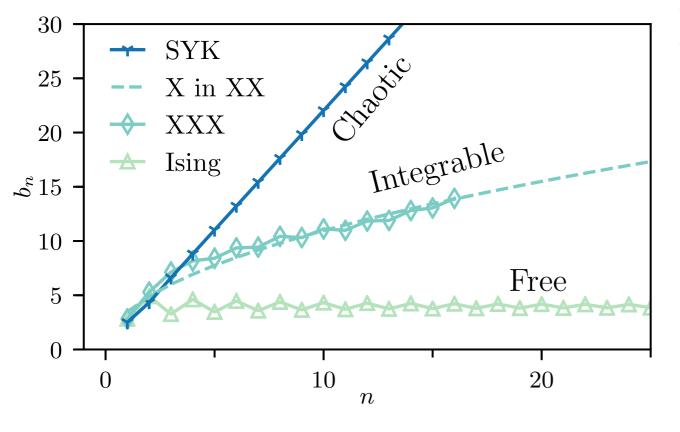
Universal operator growth hypothesis

 b_n of chaotic quantum many-body systems with local interactions grows linearly.

$$b_n \sim \alpha n + \gamma$$
 at large n

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

$$|\mathcal{O}_{-1}| := 0, |\mathcal{O}_{0}| := |\mathcal{O}|, \mathcal{L}|\mathcal{O}_{n}| = a_{n}|\mathcal{O}_{n}| + b_{n}|\mathcal{O}_{n-1}| + b_{n+1}|\mathcal{O}_{n+1}|$$



Large-N, large-quimit of SYK

$$b_n^W = \underbrace{v\pi T\sqrt{2/q} + O(1/q)}_{v\pi T\sqrt{n(n-1)} + O(1/q)}_{v\pi T\sqrt{n(n-1)} + O(1/q)} \underbrace{n = 1}_{m>1}$$

$$\frac{T}{\mathcal{J}} = \underbrace{\frac{\cos\frac{\pi v}{2}}{\pi v}}_{C(t) \text{ analytic}} \underbrace{\frac{i\pi}{2\alpha}}_{2n} \underbrace{2v\pi T}_{2n} = 2\alpha$$

λ_K bounds λ_L

Smooth linear behavior $b_n \sim \alpha n + \gamma$ implies the exponential growth behavior $K_{\mathcal{O}}(t) \sim e^{2\alpha t} = e^{\lambda_K t}$

[J.L.F. Barbon, E. Rabinovici, R. Shir, R. Sinha, 2019]

An exact example

$$C(t) = \frac{1}{(\cosh(\alpha t))^{\eta}}, \quad b_n = \alpha \sqrt{n(n-1+\eta)}, \quad K_{\mathcal{O}}(t) = \eta \sinh^2(\alpha t)$$

Generalized chaos bound

$$\lambda_L \leq \lambda_K = 2\alpha \qquad \qquad \lambda_L \leq \lambda_K \leq 2\pi T$$
 proved $(T=\infty)$ conjecture (finite T)

[D. E. Parker, X. Cao, A. Avdoshkin, [A. Avdoshkin, A. Dymarsky, 2019],T. Scaffidi, E. Altman, 2018] [Y. Gu, A. Kitaev, P. Zhang, 2021]

$$b_n \sim \alpha n + \gamma \implies \text{Chaos}$$

Linear growth from saddle-dominated scrambling

[B. Bhattacharjee, X. Cao, P. Nandy, T. Pathak, 2022]

Linear growth in free CFTs

[A. Dymarsky, M. Smolkin, 2021]

In momentum space, a free scalar QFT includes continuous infinite harmonic oscillators with $\omega^2=m^2+k^2$

This subtlety in QFTs is solved by UV cutoff.

Conjectures for quantum chaos

・量子カオス
$$\Longrightarrow$$
 $b_n \sim \alpha n + \gamma$ (予想)

・ Krylov complexityの指数的増加率 λ_K は OTOCのLyapunov指数 λ_L を制限

$$\lambda_L \le \lambda_K \le \frac{2\pi}{\beta} \qquad (予想)$$

· $b_n \sim \alpha n + \gamma \implies 量子カオス$

Lanczos coefficients and Krylov complexity in scalar QFTs

- 自由 massive scalar場の理論のLanczos係数と Krylov complexityを調べた
- ・Mass gapの効果: b_{odd} と b_{even} のずれ $K_{\mathcal{O}}(t) \sim e^{\lambda_K t}$ の指数の減少 $\lambda_K < 2\pi/\beta$
- ・UV cutoffの効果: b_n のsaturation $K_{\mathcal{O}}(t)$ の線形増加
- ・ $4d\phi^3$ と $4d\phi^4$ 理論のLanczos係数を摂動的に調べた

How to compute b_n and $K_{\mathcal{O}}(t) := \sum_n n |\varphi_n(t)|^2$

2pt function

$$C(t) = \langle \phi(t - i\beta/2, \mathbf{0})\phi(0, \mathbf{0}) \rangle_{\beta}$$

Wightman power spectrum

$$f^{W}(\omega) := \int dt C(t)e^{i\omega t}$$

$$= \frac{1}{\sinh[\beta\omega/2]} \int \frac{d^{d-1}\mathbf{k}}{(2\pi)^{d-1}} \rho(\omega, \mathbf{k})$$

Moments

$$M_{2n} := \frac{1}{(-i)^{2n}} \frac{d^{2n}C(t)}{dt^{2n}} \Big|_{t=0}$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega \, \omega^{2n} f^{W}(\omega)$$

From a given spectral function $\rho(\omega, \mathbf{k})$, we can compute $C(t), M_{2n}, b_n, K_{\mathcal{O}}(t)$

d -dim free scalar with odd d , $\beta m\gg 1$

$$\rho(\omega, \mathbf{k}) = \frac{N}{\epsilon_k} [\delta(\omega - \epsilon_k) - \delta(\omega + \epsilon_k)] \qquad \epsilon_k = \sqrt{|\mathbf{k}|^2 + m^2}$$

$$f^{W}(\omega) \sim N(m, \beta, d) e^{-\beta|\omega|/2} (\omega^{2} - m^{2})^{(d-3)/2} \Theta(|\omega| - m)$$

Mass gap

$$C^{(d)}(t) = c_1^{(d)}(t) \left(c_2^{(d)}(t) \sin(mt) + c_3^{(d)}(t) \cos(mt) \right)$$

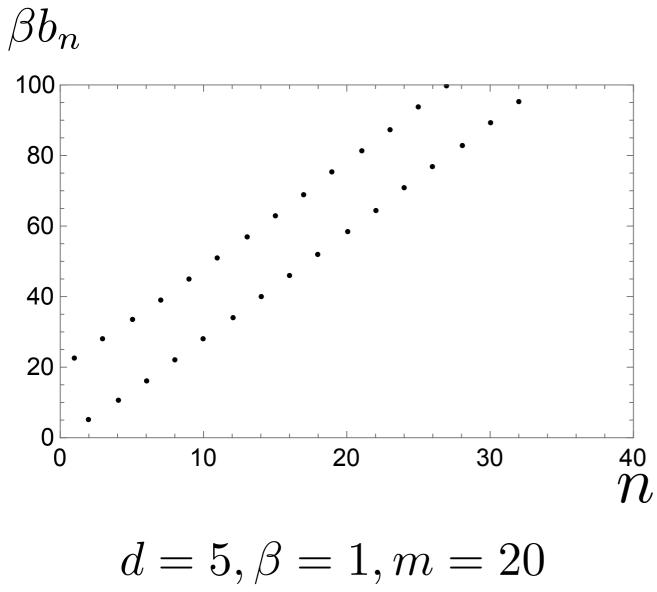
Oscillation due to mass

$$c_1^{(5)}(t) = \frac{\beta^3}{(\beta m + 2) (\beta^2 + 4t^2)^3} \quad \text{Power-law decay}$$

$$c_2^{(5)}(t) = -4t \left(\beta^2 (\beta m + 3) + 4t^2 (\beta m - 1)\right)$$

$$c_3^{(5)}(t) = 2\beta^3 + m \left(\beta^4 - 16t^4\right) - 24\beta t^2$$

b_n of free massive scalar theory



$$b_n \sim \frac{\pi}{\beta} n + \gamma_{\text{odd}} \pmod{n}$$

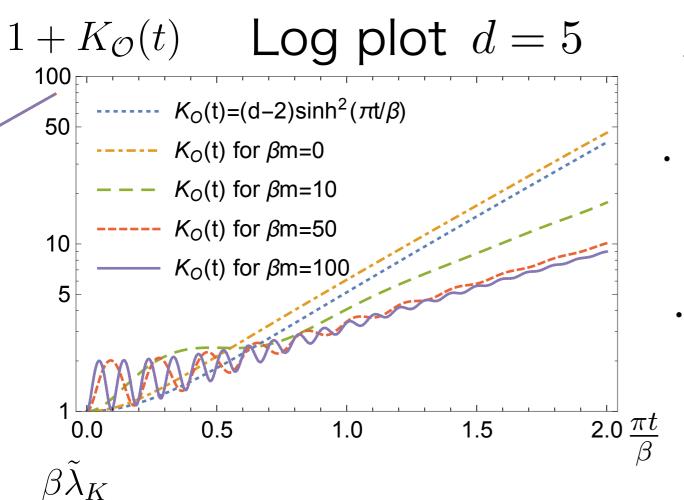
$$b_n \sim \frac{\pi}{\beta} n + \gamma_{\text{even}} \pmod{n}$$

$$\gamma_{\rm odd} - \gamma_{\rm even} \sim m$$

Mass m causes the difference between $b_{
m odd}$ and $b_{
m even}$.

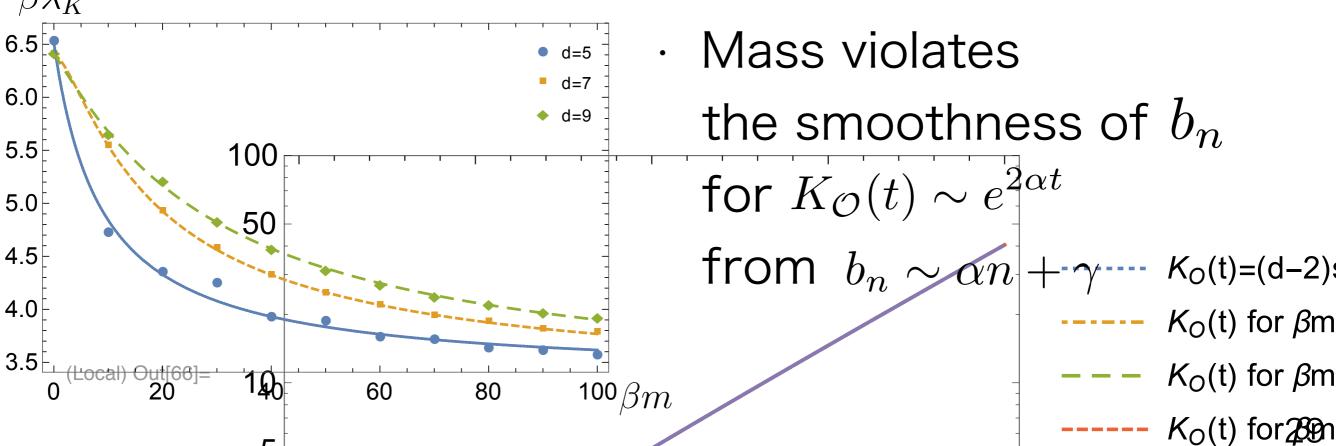
 b_n is not smooth with respect to n due to mass.

$K_{\mathcal{O}}(t)$ of free massive scalar theory



$$K_{\mathcal{O}}(t) \sim e^{\tilde{\lambda}_K t} \quad (1.5 \le \frac{\pi t}{\beta} \le 2.0)$$

- · For $\beta m=0$, $K_{\mathcal{O}}(t)\sim e^{\frac{2\pi}{\beta}t}$ [A. Dymarsky, M. Smolkin, 2021]
- · For $\beta m \neq 0$, $\tilde{\lambda}_K$ decreases due to mass.



Universal behavior of b_n in QFTs

High frequency behavior of $f(\omega)$ [D. Lubinsky, H. Mhaskar, is related to b_n at large n

$$f^{W}(\omega) \sim N(m, \beta, d) e^{-\beta|\omega|/2} \left(\omega^{2} - m^{2}\right)^{(d-3)/2} \Theta(|\omega| - m)$$

$$b_{n} \sim \frac{\pi}{\beta} n$$

The leading term of b_n in QFTs are governed by UV CFTs, but the sub-leading terms depend on IR like mass.

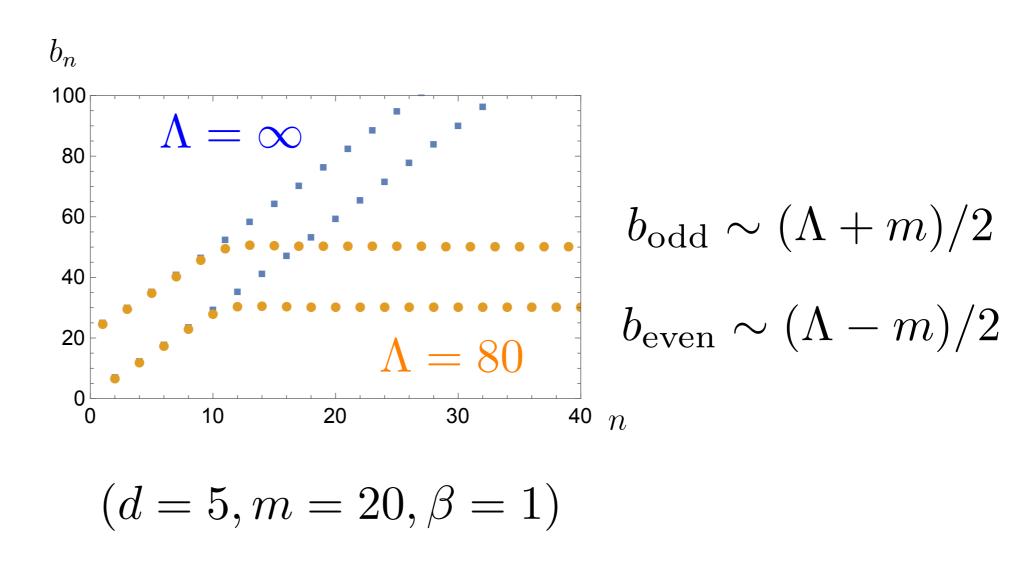
Introducing UV lattice cutoff changes b_n .

[A. Dymarsky's talk, 2022] [A. Avdoshkin, A. Dymarsky, M. Smolkin, 2022]

We introduce hard momentum cutoff.

b_n With finite UV cutoff Λ (d=5)

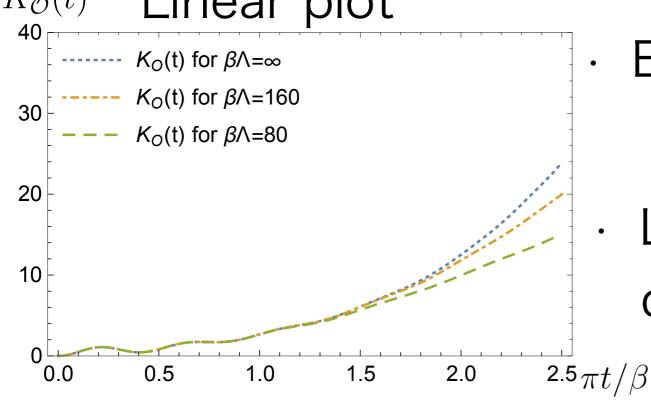
$$f^{W}(\omega) \sim N(m, \beta, \Lambda) (\omega^{2} - m^{2}) e^{-\frac{\beta|\omega|}{2}} \Theta(|\omega| - m, \Lambda - |\omega|)$$



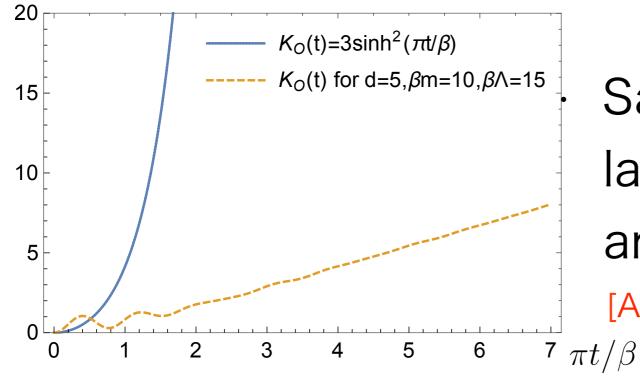
UV cutoff Λ causes the saturation of b_n .

$K_{\mathcal{O}}(t)$ With finite UV cutoff Λ

Linear plot $K_{\mathcal{O}}(t)$



- Early-time exponential growth, independent of Λ
- Late-time linear growth due to saturation of b_n



Saturation of b_n and late-time linear growth of $K_{\mathcal{O}}(t)$ are consistent with free lattice.

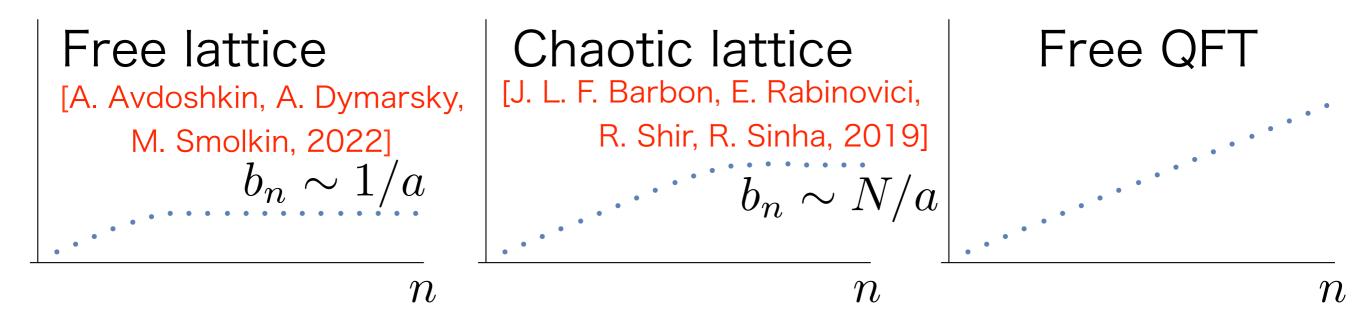
[A. Avdoshkin, A. Dymarsky, M. Smolkin, 2022]

b_n in lattice and continuum theories

Dispersion relation of free massless scalar

periodic
$$\omega = \frac{2}{a} \sin[ka/2] \qquad \text{continuum} \quad \omega = k$$
 lattice

Schematic plots of b_n (N lattice points, lattice spacing a)



In the continuum limit $a\to 0$, we cannot distinguish $1/a\sim\infty$ and $N/a\sim\infty$.

b_n in interacting scalar QFTs

From a given spectral function $\rho(\omega, \mathbf{k})$, we can compute $C(t), M_{2n}, b_n, K_{\mathcal{O}}(t)$

We consider 4d perturbative theory and one-loop effect.

1.
$$L_{int} = g\phi^4/4!$$

2.
$$L_{int} = g\phi^3/3!$$

b_n in 4d $g\phi^4/4!$ theory

One-loop self energy
$$\Pi_E =$$

Thermal mass
$$m_{\rm eff}^2=m^2+m_{\rm th}^2=m^2+\frac{g}{24\beta^2}$$

The effect of $g\phi^4/4!$ is similar to massive free scalar.

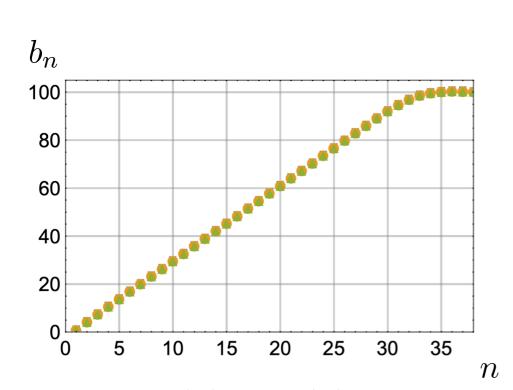
 $g\phi^4/4!$ decreases the exponential growth rate

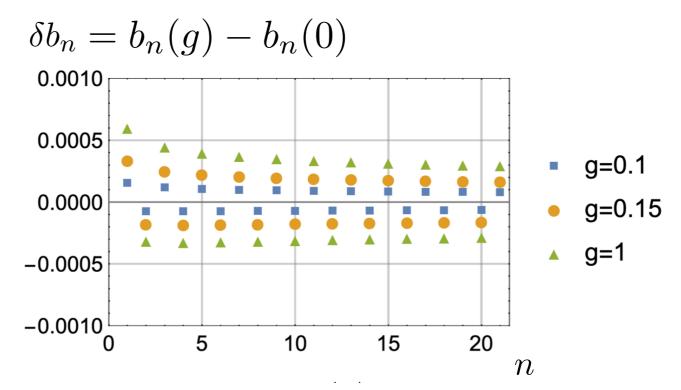
b_n in 4d $g\phi^3/3!$ theory

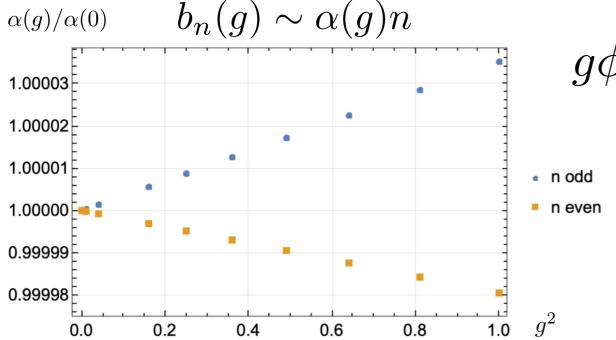
$$(m = 0, \beta = 1, \Lambda = 200)$$

One-loop self energy

$$\Pi_E = \bigcirc$$







 $g\phi^3/3!$ causes the difference between $b_{\rm odd}$ and $b_{\rm even}$.

But, the difference is small because of the perturbation.

まとめ

- ・Lanczos係数 b_n とKrylov complexity $K_{\mathcal{O}}(t)$ は 量子多体系のoperator growthの指標
- 自由 massive scalar場の理論のLanczos係数と Krylov complexityを調べた

- ・場の理論のMass gap とUV cutoffが b_n $K_{\mathcal{O}}(t)$ に影響
- ・ $4d\phi^3$ と $4d\phi^4$ 理論のLanczos係数を摂動的に調べたただし、摂動なので効果はすごく小さい

展望

・Mass gapがある場合の λ_L の計算および λ_K との比較

$$\lambda_L \le \lambda_K \le \frac{2\pi}{\beta}$$

・他の理論での解析

 ϕ^4 matrix theory, TTbar deformed QFT

・Krylov complexityの重力双対