Krylov complexity of free and interacting

 scalar QFTs with bounded power spectrum
Mitsuhiro Nishida

(Pohang University of Science and Technology)
[arXiv:2212.14702]
with Hugo A. Camargo, Viktor Jahnke, Keun-Young Kim
Kyoto University, May 24

今日のセミナーで言いたいこと

－Lanczos係数とKrylov complexityは量子多体系のoperator growthの指標

- 2 点関数から計算できる
- Krylov complexityの指数的増加率 λ_{K} は OTOCのLyapunov指数 λ_{L} を制限

$$
\lambda_{L} \leq \lambda_{K} \leq \frac{2 \pi}{\beta}
$$

（予想）
－場の理論のMass gap とUV cutoffが λ_{K} に影響する

Introduction

Diagnostics for quantum chaos

- Out-of-time-order correlators (OTOC)
$\frac{\langle W(t, \mathbf{d}) V(0,0) W(t, \mathbf{d}) V(0,0)\rangle}{\langle W(t, \mathbf{d}) W(t, \mathbf{d})\rangle\langle V(0,0) V(0,0)\rangle} \sim 1-\varepsilon e^{\lambda_{L}\left(t-\mathbf{d} / v_{B}\right)}+\cdots$
λ_{L} : Lyapunov exponent $\quad v_{B}$: butterfly velocity
- Spectral form factor (SFF) $Z(\beta+i t) Z(\beta-i t)$

Ramp (linear growth) behavior due to random matrix description

They are well-studied even in hep-th community due to a connection to black holes.

Thermal 2pt function may capture quantum chaos for operators.

Time evolution of SFF

SFF is related to
thermal 2pt function without matrix elements.
$\left.\langle\mathcal{O}(t-i \beta / 2) \mathcal{O}(0)\rangle_{\beta}=\frac{1}{Z(\beta)} \sum_{i, j} e^{-\frac{\beta}{2}\left(E_{i}+E_{j}\right)} e^{i t\left(E_{i}-E_{j}\right)}\left|\left\langle E_{j}\right| \mathcal{O}\right| E_{i}\right\rangle\left.\right|^{2}$

Krylov complexity is a measure defined from Rpt functions.

Krylov complexity $K_{\mathcal{O}}(t):=\sum_{n} n\left|\varphi_{n}(t)\right|^{2}$
[D. E. Parker, X. Gao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]
Lanczos algorithm is a mathematical method for Krylov basis \mathcal{O}_{n} for $\mathcal{O}(t)$.

$$
\mathcal{O}(t)=\sum_{n=0} i^{n} \varphi_{n}(t) \mathcal{O}_{n}
$$

Lanczos algorithm can determine Krylov basis \mathcal{O}_{n} Lanczos coefficients b_{n}, and wave functions $\varphi_{n}(t)$.

Conjectured properties of

Krylov complexity for chaotic systems

[D. E. Parker, X. Gao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

- Universal operator growth hypothesis:

Lanczos coefficient b_{n} grows linearly at large n.

$$
b_{n} \sim \alpha n+\gamma
$$

- Krylov complexity $K_{\mathcal{O}}(t)$ grows exponentially and bounds Lyapunov exponent λ_{L}.

$$
K_{\mathcal{O}}(t) \sim e^{2 \alpha t} \quad \lambda_{L} \leq 2 \alpha
$$

These properties have been proved or checked in some systems.
[A. Avdoshkin, A. Dymarsky, 2019], [Y. Gu, A. Kitaev, P. Chang, 2021], [E. Rabinovici, A. Sánchez-Garrido, R. Sher, J. Sonner, 2020], ...

Krylov complexity in CFTs

[A. Dymarsky, M. Smolkin, 2021]
$K_{\mathcal{O}}(t)$ at finite temperature in 2d CFTs, free massless theories, and holographic models were studied.

They found the universal exponential growth behavior $K_{\mathcal{O}}(t) \sim e^{\frac{2 \pi}{\beta} t}$ in any theories.

The exponential growth of $K_{\mathcal{O}}(t)$ may not be chaotic behavior in CFTs.

My motivation

Understand the meaning of CFT results in [A. Dymarsky, M. Smolkin, 2021]

Understand how much difference of Krylov complexity in lattice and continuum theories

Compute Krylov complexity of familiar and simple theories in QFT's textbooks

我々がやったこと

－自由massive scalar場の理論のLanczos係数と Krylov complexityを調べた
－Mass gap とUV cutoff の効果を調べた

$1+K_{\mathcal{O}}(t)$

Outline

1. Lanczos coefficients and Krylov complexity
2. Conjectures for quantum chaos
3. Lanczos coefficients and Krylov complexity in scalar QFTs
4. Summary

Lanczos coefficients and Krylov complexity

－Lanczos係数とKrylov complexityは量子多体系のoperator growthの指標

- 2 点関数から計算できる
- Krylov complexity $K_{\mathcal{O}}(t):=\sum n\left|\varphi_{n}(t)\right|^{2}$ の増加は φ_{0} から φ_{n} への伝搬を意味する ${ }^{n}$

$$
\mathcal{O}(t)=\sum_{n=0} i^{n} \varphi_{n}(t) \mathcal{O}_{n}
$$

Expansion of $\mathcal{O}(t)$ and inner product

$$
\mathcal{O}(t)=e^{i H t} \mathcal{O} e^{-i H t}=\sum_{n=0} \frac{(i t)^{n}}{n!} \mathcal{L}^{n} \mathcal{O}
$$

$$
\mathcal{L O}:=[H, \mathcal{O}]
$$

We want to construct an orthonormal basis for $\left\{\mathcal{L}^{n} \mathcal{O}\right\}$ choosing an inner product.

Choices of inner products
$(A \mid B):=\operatorname{Tr}\left[A^{\dagger} B\right] / \operatorname{Tr}[1]$
$(A \mid B)_{\beta}^{S}:=\frac{1}{2 Z} \operatorname{Tr}\left[e^{-\beta H}\left(A^{\dagger} B+B A^{\dagger}\right)\right] \quad$ Standard inner product
$(A \mid B)_{\beta}^{W}:=\frac{1}{Z} \operatorname{Tr}\left[e^{-\beta H / 2} A^{\dagger} e^{-\beta H / 2} B\right] \quad$ Wightman inner product

Infinte temperature

Construction of orthonormal basis

$$
\begin{aligned}
\left.\mid \mathcal{O}_{0}\right) & =\mid \mathcal{O}), \quad\left(\mathcal{O}_{0}|\mathcal{L}| \mathcal{O}_{0}\right):=\left(\mathcal{O}_{0} \mid \mathcal{L} \mathcal{O}_{0}\right) \\
a_{0} & \left.\left.\left.=\left(\mathcal{O}_{0}|\mathcal{L}| \mathcal{O}_{0}\right), \quad \mid A_{1}\right):=\mathcal{L} \mid \mathcal{O}_{0}\right)-a_{0} \mid \mathcal{O}_{0}\right) \\
b_{1} & \left.\left.=\sqrt{\left(A_{1} \mid A_{1}\right)}, \quad \mid \mathcal{O}_{1}\right)=b_{1}^{-1} \mid A_{1}\right) \\
a_{1} & \left.\left.\left.\left.=\left(\mathcal{O}_{1}|\mathcal{L}| \mathcal{O}_{1}\right), \quad \mid A_{2}\right):=\mathcal{L} \mid \mathcal{O}_{1}\right)-a_{1} \mid \mathcal{O}_{1}\right)-b_{1} \mid \mathcal{O}_{0}\right) \\
b_{2} & \left.\left.=\sqrt{\left(A_{2} \mid A_{2}\right)}, \quad \mid \mathcal{O}_{2}\right)=b_{2}^{-1} \mid A_{2}\right)
\end{aligned}
$$

We can construct $\left.\mid \mathcal{O}_{n}\right)$ such that $\left(\mathcal{O}_{m} \mid \mathcal{O}_{n}\right)=\delta_{m n}$

Lanczos algorithm

An algorithm for tridiagonalization of a Hermitian matrix

$$
\text { If }\left(\mathcal{L}^{m} \mathcal{O}|\mathcal{L}| \mathcal{L}^{n} \mathcal{O}\right):=\left(\mathcal{L}^{m} \mathcal{O} \mid \mathcal{L}^{n+1} \mathcal{O}\right) \text { is Hermitian, }
$$ one can construct an orthonormal basis $\left|\mathcal{O}_{n}\right|$

$$
\left.\left.\left.\left.\left.\left|\mathcal{O}_{-1}\right\rangle:=0,\left|\mathcal{O}_{0}\right\rangle:=\mid \mathcal{O}\right), \mathcal{L} \mid \mathcal{O}_{n}\right)=a_{n} \mid \mathcal{O}_{n}\right)+b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right)
$$

Krylov subspace
$\operatorname{Span}\left\{\mathcal{L}^{n} \mathcal{O}\right\}$
Krylov basis $\left|\mathcal{O}_{n}\right|$
a_{n}, b_{n} : Lanczos coefficients

Lanczos coefficients can be determined from a $2 p t$ function.

2pt function $C(t):=(\mathcal{O} \mid \mathcal{O}(-t))=\sum_{n=0} M_{n} \frac{(-i t)^{n}}{n!}$
Moments

$$
M_{n}:=\left.\frac{1}{(-i)^{n}} \frac{d^{n} C(t)}{d t^{n}}\right|_{t=0}=\left(\mathcal{O}_{0}\left|\mathcal{L}^{n}\right| \mathcal{O}_{0}\right)
$$

Moments determine Lanczos coefficients.

$$
\begin{aligned}
& M_{1}=\left(\mathcal{O}_{0}|\mathcal{L}| \mathcal{O}_{0}\right) \\
& M_{2}=\left(\mathcal{O}_{0}\left|\mathcal{L}^{2}\right| \mathcal{O}_{0}\right) \\
& M_{3}^{2}+b_{1}^{2} \\
& M_{3}=\left(\mathcal{O}_{0}\left|\mathcal{L}^{3}\right| \mathcal{O}_{0}\right)=a_{0}^{3}+2 a_{0} b_{1}^{2}+a_{1} b_{1}^{2} \\
& M_{4}=\left(\mathcal{O}_{0}\left|\mathcal{L}^{4}\right| \mathcal{O}_{0}\right)=\left(a_{0}+a_{1}\right)^{2} b_{1}^{2}+\left(a_{0}^{2}+b_{1}^{2}\right)^{2}+b_{1}^{2} b_{2}^{2}
\end{aligned}
$$

Time evolution of $\varphi_{n}(t)$

$$
\begin{gathered}
\left.\mid \mathcal{O}(t))=\sum_{n=0} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right), \quad \varphi_{n}(t):=i^{-n}\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right) \\
\left.\left.\left.\left.\left.\left.\left.\mid \mathcal{O}_{-1}\right):=0, \mid \mathcal{O}_{0}\right):=\mid \mathcal{O}\right), \mathcal{L} \mid \mathcal{O}_{n}\right)=a_{n} \mid \mathcal{O}_{n}\right)+b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right) \\
\varphi_{-1}(t):=0, \varphi_{0}(t)=C(-t), \frac{d \varphi_{n}(t)}{d t}=i a_{n} \varphi_{n}(t)+b_{n} \varphi_{n-1}(t)-b_{n+1} \varphi_{n+1}(t)
\end{gathered}
$$

From $C(t)$, we can determine a_{n}, b_{n} and solve $\varphi_{n}(t)$ recursively.

Krylov complexity $K_{\mathcal{O}}(t):=\sum_{n} n\left|\varphi_{n}(t)\right|^{2}$ [D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

- $K_{\mathcal{O}}(0)=0$ due to $\varphi_{0}(0)=1, \sum_{n}\left|\varphi_{n}(t)\right|^{2}=1$

$$
\left.\mid \mathcal{O}(t))=\sum_{n=0} i^{n} \varphi_{n}(t) \mid \mathcal{O}_{n}\right), \quad \varphi_{n}(t)^{n}:=i^{-n}\left(\mathcal{O}_{n} \mid \mathcal{O}(t)\right)
$$

- For large $K_{\mathcal{O}}(t), \varphi_{n}(t)$ with large n should have nonzero values.
- Increase of $K_{\mathcal{O}}(t)$ under time evolution means spreading from $\varphi_{0}(t)$ to $\varphi_{n}(t)$.

Lanczos coefficients and Krylov complexity

－Lanczos係数とKrylov complexityは量子多体系のoperator growthの指標

- 2 点関数から計算できる
- Krylov complexity $K_{\mathcal{O}}(t):=\sum n\left|\varphi_{n}(t)\right|^{2}$ の増加は φ_{0} から φ_{n} への伝搬を意味する ${ }^{n}$

$$
\mathcal{O}(t)=\sum_{n=0} i^{n} \varphi_{n}(t) \mathcal{O}_{n}
$$

Conjectures for quantum chaos

- 量子カオス $\Rightarrow b_{n} \sim \alpha n+\gamma \quad$（予想）
- Krylov complexityの指数的増加率 λ_{K} は OTOCのLyapunov指数 λ_{L} を制限

$$
\lambda_{L} \leq \lambda_{K} \leq \frac{2 \pi}{\beta} \quad \text { (予想) }
$$

－$b_{n} \sim \alpha n+\gamma \nRightarrow$ 量子カオス

Universal operator growth hypothesis

 b_{n} of chaotic quantum many-body systems with local interactions grows linearly.$$
b_{n} \sim \alpha n+\gamma \quad \text { at large } n
$$

[D. E. Parker, X. Cao, A. Avdoshkin, T. Scaffidi, E. Altman, 2018]

$$
\left.\left.\left.\left.\left.\left|\mathcal{O}_{-1}\right\rangle:=0,\left|\mathcal{O}_{0}\right\rangle:=\mid \mathcal{O}\right), \mathcal{L} \mid \mathcal{O}_{n}\right)=a_{n} \mid \mathcal{O}_{n}\right)+b_{n} \mid \mathcal{O}_{n-1}\right)+b_{n+1} \mid \mathcal{O}_{n+1}\right)
$$

Large-N, large-q limit of SYK

$$
b_{n}^{W}=\begin{aligned}
v \pi T \sqrt{2 / q}+O(1 / q) & n=1 \\
v \pi T \sqrt{n(n-1)}+O(1 / q) & n>1
\end{aligned}
$$

$$
\underline{T}=\underline{\cos \frac{\pi v}{2}} \text { Lyapunov exponent }
$$

$$
\overline{\mathcal{J}}=\overline{\pi v} \quad \lambda_{L}=2 v \pi T=2 \alpha
$$

λ_{K} bounds λ_{L}

Smooth linear behavior $b_{n} \sim \alpha n+\gamma$ implies
the exponential growth behavior $K_{\mathcal{O}}(t) \sim e^{2 \alpha t}=e^{\lambda_{K} t}$
[J.L.F. Barbon, E. Rabinovici, R. Shir, R. Sinha, 2019]
An exact example

$$
C(t)=\frac{1}{(\cosh (\alpha t))^{\eta}}, \quad b_{n}=\alpha \sqrt{n(n-1+\eta)}, \quad K_{\mathcal{O}}(t)=\eta \sinh ^{2}(\alpha t)
$$

Generalized chaos bound

$\lambda_{L} \leq \lambda_{K}=2 \alpha$

$$
\lambda_{L} \leq \lambda_{K} \leq 2 \pi T
$$

proved $\quad(T=\infty)$
[D. E. Parker, X. Cao, A. Avdoshkin, [A. Avdoshkin, A. Dymarsky, 2019],
T. Scaffidi, E. Altman, 2018] [Y. Gu, A. Kitaev, P. Zhang, 2021]

$$
b_{n} \sim \alpha n+\gamma \nRightarrow \text { Chaos }
$$

- Linear growth from saddle-dominated scrambling
[B. Bhattacharjee, X. Cao, P. Nandy, T. Pathak, 2022]
- Linear growth in free CFTs
[A. Dymarsky, M. Smolkin, 2021]

In momentum space, a free scalar QFT includes
continuous infinite harmonic oscillators with $\omega^{2}=m^{2}+k^{2}$

This subtlety in QFTs is solved by UV cutoff.

Conjectures for quantum chaos

- 量子カオス $\Rightarrow b_{n} \sim \alpha n+\gamma \quad$（予想）
- Krylov complexityの指数的増加率 λ_{K} は OTOCのLyapunov指数 λ_{L} を制限

$$
\lambda_{L} \leq \lambda_{K} \leq \frac{2 \pi}{\beta} \quad \text { (予想) }
$$

－$b_{n} \sim \alpha n+\gamma \nRightarrow$ 量子カオス

Lanczos coefficients and Krylov complexity in scalar QFTs
－自由 massive scalar場の理論のLanczos係数と Krylov complexityを調べた
－Mass gapの効果：$b_{\text {odd }}$ と $b_{\text {even }}$ のずれ $K_{\mathcal{O}}(t) \sim e^{\lambda_{K} t}$ の指数の減少 $\lambda_{K}<2 \pi / \beta$
－UV cutoffの効果：b_{n} のsaturation $K_{\mathcal{O}}(t)$ の線形増加
－ $4 \mathrm{~d} \phi^{3}$ と $4 \mathrm{~d} \phi^{4}$ 理論のLanczos係数 を摂動的に調べた

How to compute b_{n} and $K_{\mathcal{O}}(t):=\sum_{n} n\left|\varphi_{n}(t)\right|^{2}$

2pt function

$$
\begin{aligned}
C(t) & =\langle\phi(t-i \beta / 2, \mathbf{0}) \phi(0, \mathbf{0})\rangle_{\beta} \\
f^{W}(\omega) & :=\int \mathrm{d} t C(t) e^{i \omega t} \\
& =\frac{1}{\sinh [\beta \omega / 2]} \int \frac{\mathrm{d}^{d-1} \mathbf{k}}{(2 \pi)^{d-1}} \rho(\omega, \mathbf{k}) \\
M_{2 n} & :=\left.\frac{1}{(-i)^{2 n}} \frac{d^{2 n} C(t)}{d t^{2 n}}\right|_{t=0} \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} d \omega \omega^{2 n} f^{W}(\omega)
\end{aligned}
$$

Moments
Wightman power spectrum

From a given spectral function $\rho(\omega, \mathbf{k})$, we can compute $C(t), M_{2 n}, b_{n}, K_{\mathcal{O}}(t)$
d-dim free scalar with odd $d, \beta m \gg 1$

$$
\rho(\omega, \mathbf{k})=\frac{N}{\epsilon_{k}}\left[\delta\left(\omega-\epsilon_{k}\right)-\delta\left(\omega+\epsilon_{k}\right)\right] \quad \epsilon_{k}=\sqrt{|\mathbf{k}|^{2}+m^{2}}
$$

$$
f^{W}(\omega) \sim N(m, \beta, d) e^{-\beta|\omega| / 2}\left(\omega^{2}-m^{2}\right)^{(d-3) / 2} \Theta(|\omega|-m)
$$

Mass gap

$$
C^{(d)}(t)=c_{1}^{(d)}(t)\left(c_{2}^{(d)}(t) \sin (m t)+c_{3}^{(d)}(t) \cos (m t)\right)
$$

Oscillation due to mass
$c_{1}^{(5)}(t)=\frac{\beta^{3}}{(\beta m+2)\left(\beta^{2}+4 t^{2}\right)^{3}}$
Power-law decay
$c_{2}^{(5)}(t)=-4 t\left(\beta^{2}(\beta m+3)+4 t^{2}(\beta m-1)\right)$
$c_{3}^{(5)}(t)=2 \beta^{3}+m\left(\beta^{4}-16 t^{4}\right)-24 \beta t^{2}$

b_{n} of free massive scalar theory

Mass m causes the difference between $b_{\text {odd }}$ and $b_{\text {even }}$.
b_{n} is not smooth with respect to n due to mass.

$K_{\mathcal{O}}(t)$ of free massive scalar theory

- For $\beta m \neq 0, \tilde{\lambda}_{K}$ decreases due to mass.
- Mass violates the smoothness of b_{n} for $K_{\mathcal{O}}(t) \sim e^{2 \alpha t}$ from $b_{n} \sim \alpha n+\gamma$

Universal behavior of b_{n} in QFTs

High frequency behavior of $f(\omega)$ [D. Lubinsky, H. Mhaskar, is related to b_{n} at large n E. Saff, 1988]

$$
f^{W}(\omega) \sim N(m, \beta, d) \underset{e^{-\beta|\omega| / 2}}{b_{n} \sim \frac{\pi}{\beta} n}\left(\omega^{2}-m^{2}\right)^{(d-3) / 2} \Theta(|\omega|-m)
$$

The leading term of b_{n} in QFTs are governed by UV CFTs, but the sub-leading terms depend on IR like mass.

Introducing UV lattice cutoff changes b_{n}.
[A. Dymarsky's talk, 2022] [A. Avdoshkin, A. Dymarsky, M. Smolkin, 2022]
We introduce hard momentum cutoff.

b_{n} With finite UV cutoff $\Lambda \quad(d=5)$

$$
f^{W}(\omega) \sim N(m, \beta, \Lambda)\left(\omega^{2}-m^{2}\right) e^{-\frac{\beta|\omega|}{2}} \Theta(|\omega|-m, \Lambda-|\omega|)
$$

$$
\begin{aligned}
& (d=5, m=20, \beta=1)
\end{aligned}
$$

UV cutoff Λ causes the saturation of b_{n}.

$K_{\mathcal{O}}(t)$ With finite UV cutoff Λ

$K_{0}(t) \quad$ Linear plot

$K_{o(t)} \quad$ Linear plot

b_{n} in lattice and continuum theories

Dispersion relation of free massless scalar
periodic

$$
\omega=\frac{2}{a} \sin [k a / 2]
$$

continuum

$$
\omega=k
$$

Schematic plots of b_{n} (N lattice points, lattice spacing a)

Free lattice
[A. Avdoshkin, A. Dymarsky,
M. Smolkin, 2022] $b_{n} \sim 1 / a$

Chaotic lattice
Free QFT
n
[J. L. F. Barbon, E. Rabinovici,
R. Shir, R. Sinha, 2019]
$b_{n} \sim N / a$
n
In the continuum limit $a \rightarrow 0$, we cannot distinguish

$$
1 / a \sim \infty \text { and } N / a \sim \infty
$$

b_{n} in interacting scalar QFTs

From a given spectral function $\rho(\omega, \mathbf{k})$, we can compute $C(t), M_{2 n}, b_{n}, K_{\mathcal{O}}(t)$

We consider 4d perturbative theory and one-loop effect.

$$
\begin{aligned}
& \text { 1. } L_{i n t}=g \phi^{4} / 4 \text { ! } \\
& \text { 2. } L_{i n t}=g \phi^{3} / 3 \text { ! }
\end{aligned}
$$

b_{n} in $\mathbf{4 d} g \phi^{4} / 4$ t theory

One-loop self energy
 $$
\Pi_{E}=
$$

Thermal mass $m_{\text {eff }}^{2}=m^{2}+m_{\text {th }}^{2}=m^{2}+\frac{g}{24 \beta^{2}}$

The effect of $g \phi^{4} / 4$! is similar to massive free scalar.

$g \phi^{4} / 4$! decreases the exponential growth rate
$K_{\mathcal{O}}(t) \sim e^{\tilde{\lambda}_{K} t} \quad \tilde{\lambda}_{K}(g) \leq \tilde{\lambda}_{K}(0) \leq 2 \pi / \beta$

b_{n} in 4d $g \phi^{3} / 3$! theory $(m=0, \beta=1, \Lambda=200)$

One-loop self energy $\quad \Pi_{E}=$

$\alpha(g) / \alpha(0) \quad b_{n}(g) \sim \alpha(g) n$

$g \phi^{3} / 3$! causes the difference between $b_{\text {odd }}$ and $b_{\text {even }}$.

まとめ

－Lanczos係数 b_{n} とKrylov complexity $K_{\mathcal{O}}(t)$ は量子多体系のoperator growthの指標
－自由 massive scalar場の理論のLanczos係数と Krylov complexityを調べた

- 場の理論のMass gap とUV cutoffが $b_{n} K_{\mathcal{O}}(t)$ に影響
- $4 \mathrm{~d} \phi^{3}$ と $4 \mathrm{~d} \phi^{4}$ 理論のLanczos係数を摂動的に調べた ただし，掁動なので効果はすごく小さい

展望

－Mass gapがある場合の λ_{L} の計算および λ_{K} との比較

$$
\lambda_{L} \leq \lambda_{K} \leq \frac{2 \pi}{\beta}
$$

－他の理論での解析
ϕ^{4} matrix theory，TTbar deformed QFT
－Krylov complexityの重力双対

