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Introduction

Today | will talk about the universal formula for ¢ > 1 , unitary BCFT2
without extended symmetry

The basic technique is analytic conformal bootstraps
those were recently developed.

So | start with the motivation to conformal bootstrap approach first.

Cardy formula is a relatively well known example of the consequence
of analytic bootstrap, so we review them with a modern point of view
with recent techniques.



Phase diagrams

[pictures from Pelisseto-Vicari 02]
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Universality: experimental results

Monte Carlo simulation of Ising model

[table from Pelisseto-Vicari 02]

Ref.

info

Y v n e 1) w
[513] 1999 FSS ¢> 1.2366(15)* 0.6297(5) 0.0362(8) 0.1109(15)* 0.3262(4)* 0.845(10)
[162] 1909 FSS §-= nn,3n 1.2372(13)* 0.63032(56) 0.0372(10) 0.1090(17)* 0.3269(5)* 0.82(3)
[512] 1909 FSS q;‘z 1.2367(11)* 0.6296(7) 0.0358(9) 0.1112(21)* 0.3261(5)* 0.845(10)
(98] 1999 FSS s-% 1.2353(25)* 0.6294(10) 0.0374(12) 0.1118(30)* 0.3265(4)* 0.87(9)
[520] 1999 FSS ¢ 1.2366(11)* 0.6298(5) 0.0366(8) 0.1106(15)* 0.3264(4)*
[296] 1999 FSS s-2 0.036(2)
[519] 1908 FSS s-i 0.6308(10)* 0.1076(30)
[161] 1005 FSS s-2,51.3n, s-1 1.237(2)* 0.6301(8) 0.037(3) 0.110(2)* 0.3267(10)* 0.82(6)
[394] 1901 FSS 8-5 1.239(7)* 0.6289(8) 0.030(11) 0.1133(24)* 0.3258(44)*
Experiments
Ref. v v n o 3
lv [1035] 2000 1.14(5) 0.62(3)
[530] 1999 0. 11()—+g 3370
o (314] 1998 0.042(6)
Liquid-Vapor  [680] 1905 0.341(2)
(1] 1994 0.111(1) 0.324(2)
(1029] 1903 0.1075(54)
[912] 1984 1.233(10) 0.327(2)
ms [610] 2001 1.14(7) 0.34(2)
[760] 1995 0.11(3)
(761] 1995 0.11(3)
Magnet (763] 1994 0.10(2)
[770] 1994 0.325(2)
(974] 1903 0.11(3)
[1034] 1993 1.25(2 0.315(15)
(122] 1087  1.25(2) 0.64(1)
[121] 1083 0.110(5) 0.331(6)

Both agrees well !



Conformal bootstrap

We can study the /attice Ising model to study critical exponents of water.

but we also wonder whether we can access the exponents themselves
directly in a model independent way.

— conformal bootstrap [Ferrara-Gatto-Grillo 73, Polyakov 74]

In particular, without relying Lagrangian,
duality invariant etc...
even we don’t start by writing Hamiltonians!

comparison to Monte Carlo

A,
For example, by solving bootstrap equations '
in 2+1d Zs symmetric CFT P ;
w/ 2 relevant operators (fine tunings), Lasf |
we get critical exponents ! S y s
[figure from D.Simons-Duffin 15] lliil e |
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Today, we talk on a universal consequence of Virasoro symmetry
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Some basics of 1+1d CFT

global conformal symmetry = Poincare + Scale inv + special conformal = SL(2, C)
z—sz+e z=z+ez 2z z2+ez e C

symmetry generators: L_4 Lo L

In 1+1d it is extended to Virasoro symmetry 2z — 2 + ez 1

Ly,

- operator state correspondence E O
Via Weyl transformation, T
we can map the cylinder to plane — [O)
States are mapped to local operators Rl

PP p ;

Scaling dimension (+ spin) = eigenvalue of dilatation: Lg |O) = heo |O)

- 2 and 3 pt: position dependence are determined by global conformal symmetry
(Zl _ Z2>h1—|—h2 (51 _ 22)B1+B2

<OZ‘(2’1, 21)03' (ZQ, Zg)> —

Cliik

3 _ _ B J

(Oi(21,71)0j(22, 22)Op (23, 23)) = hithy—hy _hj+he—hi he+hi—h; _hith;—hi _h;+hk—h; _he+hi—h;
<12 <93 <13 %19 293 <13

v



A natural parametrization in Virasoro representation
To employ Virasoro symmetry, it is convenient to “Liouville “ parametrization:

c=1+6Q°
Q=b+0b"
h=(3) +P* =a@-a)

cf) parametrization in minimal models

2
D —q . .
C(p,Q):l_G( pq) :1+6(ZVP/CI‘|‘(Z p/Q))251+6Q%p,Q)

_ . |P
Qp,g) = b(p.g) T b(p}q) b(p,q) = Z\/;

(pm —qn)*  (p—q)? (.0) 12 (ra) | po2
himm) = ” + g = 4’ + (imb(p,q) + znb(p,q)) = + P(mm)

basically the same parametrization



CFT Data

any Riemann surfaces are decomposed Ve > > I
into “pants” [

= inserting the resolution of identity 1 =) [0;) (0; T T~
we can represent the correlation function [
using spectrum and three point functions

— CFT is determined through / ) >

- the dimension of primary operators (%, h;) \ > > ./

- OPE coefficient C;;i that determines the three pt function

(Oi(21,21)0; (22, 22) Ok (23, 23))

_ Cijk
o hz—FhJ—hk hj—l—hk—hz hk—|—hz—h3 _Bi—l—ﬁj—ﬁk _?Lj—i—ka—}_li _}_L]g—l—fbi—;bj
219 <93 <13 219 <93 <13

There are many ways to decompose it.
Consistency condition = conformal bootstrap equation !
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example: bootstrap equation of 4pt functions

(0;(0,0)0;(1,1)Ok(2,2) O (00, 00))

=Y G i 1| w2 |} 1] ol

| ] _
q
— gives an infinite set of polynomial equations.

F [; ‘;] (p|z) : conformal block

in 1+1d for minimal models this equation is solved (= RCFT is solved!)
(equations are for finite number of OPE coefficients) [cf: Belavin-Polyakov-Zamolodchikov 84]

comparison to Monte Carlo

in 2+1d Z, symmetric CFT with 2 relevantops, ™
this is numerically solved '
[El Showk-Paulos-Poland-Rychkov-Simons Duffin-Vichi 12] 121 yd |
[Kos-Poland-Simons Duffin 14] ... La125] oo |
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Modular bootstrap and Cardy formula T

» J—»

2
Z(B) = Z(4n*/B) » X
A A = 2m4+ 4
/N e PEAE p
» »
27T 3

The density of state is derived by the inverse Laplace transformation
N(E) = [ d52(p)e"”

Using the modular invariance, the high energy is dominated in the
low temperature regime in the dual channel:

N(F) = /dﬁZ(47r2/6)65E = /dﬁ egiﬁc(l + excited states))e””

Casimir energy: fixed by conformal anomaly !

cE
~le?™ 3T | FE = oo

saddle pt. Cardy formula
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Virasoro Characters

Virasoro characters for generic representation

X1(7) = X%(b+b—1)(7) - X_g(b—b—l)(T) . vacuum character

By simple Fourier trasformations, these transform as

xr(-1/1) = [ G (oSl

Spp/ [1] = 2\/5 COS(47TPP/)

12



Cardyv formula as crossing Kernel

(o) =

Z(7,7) = / LAl b Pyp(rxp(F)  p(P.P) =S 6(P— P)s(P— F)

2 2

z-1r =1/ = [ G S Spp (118 e 1P, Phxe (r)e (7

o

Modular invariance:

_ dP’ dP’ _
o(P, P) — / S 1ISpp [1]p(P, P

p(P, P) ~ Sp1|1|Spq (1] P—o0o P — o0
N 2627TQP627TQP

Cardy formula (for primaries) as crossing Kernel !
13



The universal OPE density

We derived an asymptotic formula for the density of states.

So next we should consider is the statistics of OPE coefficients!

—Any asymptotics of OPE densities are uniformly expressed using the function

1 Ty(2Q) TI.Te(§ +iPy +iPy +iPs)
Colfs, B Bs) = V2 Th(Q)3 T, Th(Q + 2i P )T (Q — 2iPy)

where . 0 o
> dt e_xt—e_Tt (— _33)2 Q _ 4
looc T — N2 -t 2
og Lo () -/0 t {(1 — e bt)(1 —eb™'?) > t
FQ(x’b7 b_l)
= log —
[o(@lw, we) = H (# 4+ nwi +mw2) ™" - double gamma function
n,m=0

14



The asymptotic formula for OPE density

For any of H-L-L, H-H-L, H-H-H cases,

the average of OPE density is universally summarized as

‘CZQk‘ZNCO(PMPJaPk)CO( 7 jaPk)

[Collier-Maloney-Maxfield-Tsiares 19]

(at least one of FP;, P;, P, islarge)

15



Elementary Kernels [Ponsot-Tschner 99,01]

Fusion transformation: transformation of sphere 4pt conformal blocks

OO

r
>
p, \ O~/
P, P d P, . P P, Py
F lpg PJ / — PP [P PJ]: [Pl PJ (Pl = 2)
conformal block kernel conformal block

Modular S transformation: transformation of torus 1pt conformal blocks

dP’
hOFPQ P|7’ SP’PPO P() P‘—l/T

These are purely kinematical (fixed by Virasoro symmetry)
16



Analogy with hypergeometric function

oFy(a, B,y 2) = ?E;i?ii : z; (—2)%2F1(a,a+1—vy,a+1—p5;1/2)
“block” kernel “block”
+11:8))11:((3 : g; (—2) PP (B,8+1—7,8+1—a;1/z)
kernel ‘block?
where
logl'(z) = /OOO ait lejt__eet_t + (z — 1)6_1 : "single” gamma function

(1ogrb(x):/°°@[ et _ =% _(%—x)2€_t_g_x] \

o t (1 —e ) (1—eb't) t

Actually if one of 4 operators is in a degenerate representation,
conformal blocks is represented by hypergeometric functions.

'minimal models; Belavin-Polyakov-Zamolodchikov 84]
in Liouville theory; Tschner 95]

difference: We do not know blocks explicitly, but still can write down kernels!

17



Analogy with SU(2) 6] symbol

6j-symbol: a transformation of basis of 3 angular momentums:

a b c| - INCAAN AR (k+1)!
{d € f}l_ll ™ Z);( Y [T—i (k= o) L=, (B — B)!

Fusion matrix is basically 6] symbol for Virasoro group

(generically for representations of any group G we have fusion matrices)

( Actually 6) symbol is a data of fusion category.
The representation of G, Rep , is a fusion category.

Modular tensor category, which is the underlying structure in 2d (R)CFT,
IS also automatically a fusion category.)

18



Elementary Kernels: explicit form

[Ponsot-Tschner 99,01]

_ [cf; Kusuki 18, Collier-Gobeil-Maxfield-Perlmutter 18]
Fusion kernel:

P, P ds Sp(s + U
Fp,p, [P§ ij Py(Py; Py, P) Py(Py; = P, Pt/ H oo U

Sb S—I—Vk)

Modular S kernel:

S [Py] — po(P)  Tp(Q+2iPTH(Q — 2iP)TH (L +i(2P — P)Th(% —i(2P + Ry))
T 60(2 +iPy) Ty(Q + 2iP)Tw(Q — 2iP))Ty (2 Q _

+i(2P' — Py))ls(5 —i(2P' + )
) / A€ _snpre (6 + F +i(P+ 1Po)) Sp(€+ 5 —i(P — 5 R))
i Sp(€ + 3Q +i(P— 3P0))Sp(§+ 22 —i(P+ 3 Po))

What is important is the following limits:

P, P :
Fp,1 [Pz Pi] = po(Ps)Co(P1, P2, Ps)  (OPE density)

Sp.1[1] = 4V2sinh(27bP) sinh(2rb~ ' P) = po(P) (Cardy density)

19



Heavy-Light-Light case

P1 Pl
Py Py
P, P P
> C12,C1as F [ P, Pj (Ps|2)F [ b,
Os
5 B OPE density
P, P P, P, - _
Y C11:ConF [ Pf Pﬂ (Pl — 2)F [ Pi Pﬂ (P|1 — %)
Ot _ _ _
[ dP,dP, _ P, P, P, P, = _
— TTIOt(Pt,Pt)F [Pl Pl (Pt‘].—Z)F Pl pl (PS|1—Z)

P, P dP, P, P P, P
Kernel: Flpi Pj (Ps|z>=/7tFpspt [P; Pﬂflpf Pj (P~ 2)

2 2

= P, P P, P >
(P (PC ~ Fry 2 | Fra (2 1| Po Py o0

= po(Ps)po(Ps)Co(P1, P2, Ps)Co(P1, Po, Ps)
20

_ dP; dP _
Bootstrap eq: pS(PS,PS):/ " IFp p,Fp p pi(Pr, P)




Heavy-Heavy-Light case
The game is basically the same:

Start with OPE square, join holes for heavy operators, then transform
to the dual channel where identity dominates

PO PO

SEEVAE SN
P() PO

_ dPl dP2 / Py P,
= | 5 %5%Sp p/ [B]F p, P [pfpf]

_ _ Py P Py, P
po(P1)po(Pr)po(P2)po(P2)|Cor2]? ~ Spi1[1]Fp,a [Pg Pj SpiaHF [Pg Pj
= po(P1)po(P1)po(P2)po(Ps)Co(Po, Pr, Py)Co(Py, P1, Ps)

Pl,pl,PQ,PQ — OO

21



Heavy-Heavy-Heavy case

; ; / d d | /
e ) - R RS tR)
- f dg’l d§2 d§3 Splp{[ §]8P2P2’ [Pé]l]'_Pspé [2 g]

po(P1)po(Pr)po(P2)po(P2)po(P3)po(Ps)|Clas)?

P, P P
~ Sp,1[1]Sp,1[1]Fp,1 {Pi Pﬂ Sp111]Sp,1[1]Fp,3 {Pi

o |C:U|

= po(P1)po(P1)po(P2)po(P2)Co(Pr, Po, Ps)Co(Py, Py, Ps)
Py, Py, P3, P1, Py, P3 — o0

22



Boundary conformal field theory

Appears in many physics contexts like:

* boundary critical phenomena

 Kondo effect
* monopole-fermion scattering r

- open strings and D-branes w . 1+1d
- black holes coupled to a bath efc... boundary
| think 1+1d BCFT is ubiquitous since the radial direction has a boundary
and only s-wave can reach the core of impurities.

According to Pauli, “God made solids, but surfaces were the work of the
devil”. So boundaries are complicated.

So Boundary CFT may be rich enough to lack universal formula...

23



Some basics of 1+1d BCFT

global conformal symmetry = Translation + Scale inv + special conformal SL(2,R)

z2—2+€ z— 2+ €z z%z—l—e,ZQ e € R

symmetry generators: L_4 Lg L+
In 1+1d it is extended to Virasoro symmetry 2z — 2 + ezt
Ly,
- operator state correspondence
. : |2 a b
Via Weyl transformgtlon, m ey
we can map the strip to UHP -
Q \Ij? b
States are mapped to boundary operators

Scaling dimension = eigenvalue of dilatation: Lo [U{*”) = A, |¥!*?))

- 2 and 3 pt: position dependence are determined by global conformal symmetry

(@) gy (b0) 9i; 01 . Cet
b h C-(Q:C) Oi o Oj Oi e Oj
(W77 (1) W (22) U (23)) . : °

- 710|212 |23 B2s |y 5] B1s

> = =5
doubling \Ijz‘ ¢
trick

°
ab
\Iji

24



Boundary entropy

Cardy condition (“modular invariance” for cylinder) relates open channel

and closed c.;hannel: - . () open channel{,;) b
> nwxi(m) = Y BiBixi(-1/7)
VicHab O, EHE22n ]
where n’, € 7 is a number of representation 7 aO C'Os‘fd}a””ff') b
Expansion of Boundary state |B,) = Z B. |P;)) by Ishibashi state

O; E?—Lifgslgé Ishibashi state
[Ishibashi 89, Ishibashi-Onogi 89]

(r.h.s and l.h.s are different quantities. This differs from modular invariance)
Similar to the torus case, in 7 — 0 we obtain the Cardy formula for open spectrum

por (P) ~ gagspo(P) P — 00

Jg = Bg Is essentially a disc partition function

log g, :boundary entropy  [Affleck-Ludwig 91]

Boundary entropy is the only new ingredient for universal formula in BCFT!
25



M [Cardy 89] [Lewellen 92] [Runkel's PhD thesis 00] .

Similarly to bulk CFT,

AN T
inserting the resolution of identity 1 =) [0;) (O] >
we can represent the correlation function 5 N
using boundary operator spectrum, \ >
bulk-boundary functions and boundary 3pt function

On top of bulk data, BCFT is characterized by

- the dimension A, of boundary primary operators ¥;*”

- OPE coefficient C{'° that determines the 3pt function e
¢ # ca
(WP (1) W2 (22) U5 (23)) = Cui’ b P

- OPE coefficient C'“ that determines the three pt function

(a)
COé’i 3 C/Z()é k.

‘Z _ 2‘2ha—Ai

(Oal(z, 2)Vi"(z)) =

z — x|?Ai

26



Boundary Kernels

fixed by doubling trick

transformation of bulk 2pt conformal blocks

. 4P Py By
_IT[FPP,[POPO]

transformation of boundary 4pt conformal blocks

‘I}L’/W\\}I}l WL’/W\\EI}]
b b f dP I]_‘ , Po P | & b
o 2 " PP'| P, Py
‘I;éx/?\,fiﬁz \I;ixmxiﬁz

open closed duality

b b
o[ O ) s @)
27




Boundary 3pt: Heavy-Light-Light case

[TN-Tsiares 22]

Py WL\E/\I’I Py Pl\ll/])/w\\}lil !
b b f dP F , Py P | & b
o 2 ' PP | p, P
Py \1}2;\\/7\/{1;2P2 P, \1,2/7\‘1,2 P,
(abe)k ~(bea) — | P2 Pi B (bab)i ~(beb) — | Po Po
Z Cry " Coyy  F [p2 Pl] (Pkln) = Z C1p " Cog ' F P, P (Ps|n)
\Dkeﬁgf)cen qjiEHg,pben

. bab)1l bcb — ab bc
using Cfl ) 0521) =g 19&1 )952)

gz(-?b) . two point function (boundary Zamolodchikov metric)

O\ 12 ~ g tgr g Co(Py, Py, P)

where[ofg” = Cfg o

28



Boundary 3pt: Heavy-Heavy-Light case

b b

Y W~
, o ,
ﬁ@ = 5 Spp P ;?@
W~ b
dP; dP ’
:f 21 22SP1P1’[P2/][FP2P5 [11211;8] ;}@

Boundary 3pt: Heavy-Heavy-Heavy case

= | S [ PSmnP) O O
= [ BB, [PS ,py PF g [ ]

essentially we are using the doubling trick

29



Bulk-boundary: Heavy-Light case

_ (@) |2 Py 3
S DAL R LU

\If EHscalar

closed

Pa

.

po(P;)Co(Py, Py, P;)

gapo(P)|Ce7 > = C1Fpa
9a

N |£U|

C' Y2 ~ g1 Co(Py, P, P)

where |C\¥|2 = ¢'¥ (@)

30



Bulk-boundary: Heavy-Heavy case

Ll <= dPy dP A R
w@ - f 21 21SP1P1’ [PQ,]Splpll [Pé] a N

__ [ dPL dP, dP, ne _ _ [(p! P, P, {l‘; T

Bulk-boundary: Light-Heavy case

[ \ [

- L (cy1—2pt) ' .
| — KPP;Plpz[P@] =

(cyl-2pt) _ P’y |P P ) P P
KP?;Plpz [PZ] - / TFP/PQ |:P1 P; SPPl [P,]FPP’ P P

We could not derive this kernel only using the basic fusion transformations.
we rather employ the doubling trick directly.
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Some differences with bulk formula

- We have boundary entropy factors

|O(abC)P‘ gcjlgb Ye 1CO(P17 P27 P)

’C(Q)P ~ ga_lCo(Pm Paa Pz)

- We couldn’t set the boundary two point function to be 1

(boundary Zamolodchikov metric can be diagonal but can not be set to identity matrix)

and no canonical nomalization, so we care the upper and lower indices

‘C(abC)P‘ C(abc)PC(cba)21

- Like Cardy formula for open spectrum, bootstrap eq relates

different OPE coefficients.
It is still powerful enough to derive the universal formula.

(cf: (Selberg)-zeta functions and the asymptotics of the length of primary geodesics)
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large c limit:

[Collier-Maloney-Maxfield-Tsiares 19]

Since our formula is universal, and in particular we can take the large ¢ limit

- in BTZ limit, we recover the spectral density of particle around BTZ BH

PL=b"'p+bd Po=blp-b5 Py=1i(Q/2—bh) b—0

(2p)?" I'(h + 2i6)T'(h — 2i0)
271h ['(2h)

(BH1|O|BHs3) = po (b~ p)Co(Py, Py, Ps) ~
(heavy operators = BH microstates)

- in Shwarzian limit, we recover the near extremal BTZ BH dynamics:

[Ghosh-Triaci-Maxfield 19]
Py =bk;, Py=bky  P3y=1i(Q/2— bh)

po(bk) ~ 8V 2b%k sinh(27k)

pih .. D(h =+ iky £ iks)
V2(2mb)3 I'(2h)

CO(bkla ka? Z(Q/Q o bh)) ~

33



large c limit: BCFT case

[TN-Tsiares 22]

Since our formula is universal, and in particular we can take the large ¢ limit

- in BTZ limit, we recover the spectral density of particle around BTZ BH

with End of the World branes = 2BH coupled to a bath (bulk CFT)
[cf: Gen-Lust-Mishra-Wakeham, 21]

Po=b'p+bd Po=b'p—b5  P3y=1i(Q/2— bh) b—0

— (b p)Co(PL. Py, Py) ~ (2p)?" T'(h + 2i6)'(h — 2i0)

bc
ab <BH1’\IJ ‘BH2>CLC _ 27b F(Qh)

- in Shwarzian limit, we recover the near extremal BTZ BH dynamics:
P, = bkq Py = bk, P; =i(Q/2 — bh)

pleb) (bk) ~ 8v/2gagpbk sinh(2mk)
b [liy T(h % iky £ iko)
V2(2mb)3 I'(2h)

Co(bky, bk2,i(Q/2 — bh)) ~

34



Some comments:

In the last discussion, we do not specify how we can extend the validity of formulae.

In holographic CFT, we expect that the Cardy formula is valid at relatively low energy
E ~ ¢/6 c — 00

whereas the universal derivation of Cardy formula we take £ — oo first.

This extension requires the sparse spectrum for low lying operators [Hartman-Keller-Stoica 15]

for OPE we need stronger condition [B.Michel 19] .

We do not know in the case of BCFT we do not know similar argument
so we are not deriving the AdS/(B)CFT description [Takayanagi 11] [Randall-Sundrum 98]
still give some formula which AdS/BCFT should also reproduce

EOW
brane
or

AdS boundary

AdS scale
objects

\

AdS boundary
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Some Related works:
- As we discussed, our formula is a straightforward generalization of former work

[Collier-Maloney-Maxfield-Tsiares 19]

- For Cardy formula, people also include the width of smearing (“Tauberian theorem?)
[Mukhametzhanov-Zhiboedov 19]

- There are many papers on universal formula with (generalized) symmetries
[Pal-Sun 20] [Ooguri-Harlow 21] [Magan 21] [Kang-Lee-Ooguri 22] [Lin-Okuda-Seifnashri-Tachikawa 22] ...

Their formulas are formula with topological defects, whereas our formulas are
a sort of those with non-topological defect

(any defects are formulated as boundary problem by folding [Affleck-Oshikawa 96] )
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Summary

- We discussed a motivation to Conformal Bootstrap approach.

- Review of Cardy formula with a Kernel point of veiw

- Review of former work by Collier-Maxfield-Maloney-Tsiares:
Ciik|? ~ Co(P;, P;, Py)Co(P;, P;, Pr)

asympototics of average of OPE coefficients are given by ()

which is a combination of double gamma functions

- Universal formula for BCFT; essentially the same with the bulk but with a factor of
boundary entropy

abc)P 1 -1 —
‘052 ) ‘QNga,lgb 19(: 1CO(P17P27P)

’C(()Z‘J)‘Q ™~ gglcO(Pou Pompi)

- Evil vs Universality: at least asymptotics of 1+1d BCFT data, they are universal.
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Future works

* Include symmetries
- Tauberian

- condition for extended validity for large ¢ BCFT

- Extension to non-unitary BCFT

- Test in explicit examples of ¢c>1 unitary (B)CFT

-+ We also find that the normalization of boundary Zamolodchikov metric g?f = \/9a9b0i;
Is a natural one. Make use of it.

- We focus on the analytic bootstrap. It is interesting to study the numerical one.

[Collier-Mazac-Wang, 21] find that numerical bootstrap of Cardy condition constrains

boundary entropy. it is interesting to study other bootstrap equations.
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