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Motivation

Recently, nonlocal operators and higher form symmetries (under

which they are charged) gained renewed interests in QFT.

A new type of symmetry structure: higher group/category with

non/invertible symmetry generators
Gaiotto-Kapustin-Seiberg-Willett, Cordova-Dumitrescu-Intriligator
Kaidi-Ohmori-Zheng, Choi-Cordova-Hsin-Lam-Shao...

New 1nsights into the phase structure of QFT via mixed ’t Hooft

anomaly 1nvolving higher form symmetries.

Gaiotto-Kapustin-Komargodski-Seiberg. ..

They can be used to reveal the intricate structure of the duality

web.



e Mecanwhile, string theory naturally hosts the ingredients for these
developments:
(non)local operators = branes
its associated higher form gauge fields = RR and NSNS forms

higher group or category = combining (bound states of) branes

Albertini-Del Zotto-Garcia Etxebarria-Heidenreich-Hosseini-Regalado, Bah-Bonetti-Minasian
Apruzzi-van Beest-Gould-Schafer-Nameki. ..

¢ Via holography (AdS/CFT), we can thus expect to gain a more
elementary and intuitive understanding of the recent developments

iIl hlgher fOI‘In Symmetries, Aharony-Tachikawa, Bergman-Tachikawa-Zafrir

¢ [t is hoped that this line of study provides new perspectives both on

QFT and string theory.



N =4 su(N) SYM theories

1. Gauging center symmetry

e The SU(N) group has the Z,, center symmetry. By gauging a subgroup of Z,,
we can construct new theories:

N =4 SUN)/Z, SYM theories with N = kk’

Note: The SU(N)/Zy, theory is the S-dual of the SU(N) theory
e This 1s not the end of the story and the life 1s more intricate:

The SU(N)/Z, theory are further classified into sub-theories distinguished

by the line operator spectrum
Aharony-Seiberg-Tachikawa



2. Line operator spectrum

e The line operators are Wilson, ’t Hooft, and dyonic lines
(determined by the mutual locality condition z,z,, — z,z,, = 0 mod N)

Lk,f = {(Zw Zm) —

e(k,0) + m(Z, k') mod N}

\

k Wilson lines £’ 't Hooft lines 4+ 7 Witten effect

e The su(N) theories (center symmetry gauging + line operator spectrum)

N =4 [SUN)/Z], SYM theories

where £ =0,1,---,k— 1

with N = kk’



3. 1-form symmetry

e The most basic SU(N) theory has an (electric) Zy 1-form symmetry.
= gauging magnetic Zy symmetry
ZN 2mi

wWliL) — eV W(L)

Zy charge

e The SU(N)/Z, theories has an (electric) Z,, 1-form symmetry:

= gauging magnetic Z,, symmetry

WLt 2L HFwWk= f WLF

Z, invariant Zy charge

e In fact, the [SU(N)/Z,], theory has Z X Z* 1-form symmetry:

TWWY -2 ST = & T

——

N ——

Z invariant Z; charge



e The 1-form symmetry of the general [SU(NV)/Z,], theory

Lnjacd(kk'.t) X Locd(kk'£)

C Ze X Zjgeawe) ) Lirgeaiie.¢)

(-

-~

electric i
dyonic Gaiotto-Kapustin-Seiberg-Willett

WL, WLYTWLF & wi (WL = (WL TLF)"

I\

k Z, charged ZN/gcd(k’,f) charged ) Z, fecd(k ) charged

for the line operator spectrum

L, = {(z.,z,) =|e(k,0) Hm(Z, k") mod N}

\Y4
k Wilson lines k£’ 't Hooft lines 4+ Z Witten effect
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Holographic description for ./ = 4 su(N) SYM theories

e The line operator spectrum of all [SU(N)/Z,], theories and its center

symmetry are encoded in the 5d topological theory (at low energies)
Witten & Aharony-Witten
N
SCS:[ Bz/\dCZ/\dC4:_J Bz/\dCz
AdSsxS? AdS;s

27

¢ (Global) 1-form symmetries (on the boundary)

B,—> B, +dA", G- C+dA® with di, =0 & Ni;=0

e By canonical quantization, (B,, C,) are a canonical conjugate pair like (x, p)

27l . /
S S’
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S-dual SUN)/Zy theory (¢ =0, b free )

1. Boundary conditions

e The simplest case dual to the SU(NN) theory

(b=0, c free )

Dirichlet Neumann

Nc =0
line operator (Wilson line) surface operator
WN TN
A D1
S/
F1 D1
a C
bh=0 ncx0m=0,1,--N-1)
Nc =0

- » =3

D1 surface = AdS; x S' D3 with F

Gukov-Witten, Drukker-Gomis-Matsuura
12

Dirichlet Neumann

Witten, Aharony-Tachikawa, Bergman-SH

analogous to fixed x and fluctuating p

equivalent to Neumann

Wn)V=1

D54s|N F1

Nb =0

Ce (Dirichlet), B (Neumann)



Bergman-SH

e The all admissible boundary conditions dual to the [SU(N)/Z,], theory

mutual locality = mutually commuting pair

z,b+z,c=0, zZb+z,¢c=0 with 2,2 — 2%, = 0 mod N

two BCs commute mod N

equivalent to Dirac quantisation condition

By an SL(2,7) rotation, the B.C.s can be brought into a canonical form

Se  Zm kK O
' —> — kb=0, kic+¢b=0
2, 2, k' - - . 3
k Fl (Z,k") string

where £ =0,1,---,k—1
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“Dirichlet” = line operator

i

/

k F'1

—_— 3

Y

/

r (C/r,k'/r) strings

“Neumann” = surface operator

nFl/

n F'1

> =3
Q
c
S |5
2! >
S
o
=
—_
_—

yN/T’= 1

/

N (¢/r, k' [r) strings  kr (¢/r, k' /r) strings

k F1

(¢/r, k' /r)5gs

N S5gs

x o kb=0
y < kc+¢b=0

14

r=gcdk',?)
n+mk,N



2. SL(2,7Z) duality orbits

Bergman-SH

The SL(2,Z) rotates (b, ¢), and so the duality web of the su(/N) theories
can be understood by analysing how diff. B.C.s are related by SL(2,7)

# of SL(2,7Z) orbits = # of k with k = gcd(k, N/k) = # of square divisors of N

Note: gcd(k, k', ¢) is SL(2,Z) invariant acd(k, K, £) = 1
ged(k, k', ) = ged(k,_, k) =k _,
ged(k, k', 0) = ged(ky, ky) =k SUNN)/Zy
[SUN)/Z 1o / S I '\i SUNYZ, Ty
\i o0 sz, SUNZ ) o 7/5 \i
P ({

[SUN)/Z,] [SUN)IZ, )y [SUNYZy,_ Vmi, k5, [SUN)/Z i

mky—kq 1

I [SUN)/Z, 1o I I [SUN)/Z,_\Jg I

SL(2,7Z) duality web of /" = 4 su(N) SYM theories Aharony-Seiberg-Tachikawa
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3. Mixed ’t Hooft anomaly from type 1IB SUGRA
e There are two types of mixed anomalies in the su(/N) (S)YM theories:

(1) The 1-form symmetries Zyyo.qii'.2) X ZLocd(k i) ar¢ anomalous 1f we try to

gauge both 1-form symmetries (or equivalently, in the presence of the background
2-form gauge ﬁelds). Gaiotto-Kapustin-Seiberg-Willett, Hsin-Lam

(2) The electric Z,, subgroup of the 1-form symmetries combined with the shift

0 — 0 + 2nk 1s anomalous if we try to gauge the Z;, 1-form symmetry.
Gaiotto-Kapustin-Kormagodski-Seiberg

e Both are accounted for, holographically, by the the same type IIB CS action

Bz/\F'3/\F5+J CoBy AdB, A Fy

SCS:J BzAdC2AF5:J
AdSsxS3 A AdSsxS>

dSsxS3

former latter

(continuous version, to be precise)

16



(1) The mixed Z, 44 4 o) anomaly between 1-form symmetries Zy,o i x.2) X Zocdkk'.2)

7
gcd(k, k', 0)

N " " Z
Scg = —J BS AdC5 + local counterterms W/ JBé € —, JdCé €
27 )4 s N

where (B,, () 1s an SL(2,Z) rotation of (B,, C,) and diagonal w.r.t. the 1-form
symmetries

(2) The mixed anomaly between 1-form symmetries 0 — 6 + 2zk and the electric Z,
1-form symmetry

N
AdSs

To be more precise, the O(N?) term is missing and it agrees only on spin manifolds X

17



4. Axionic Janus as interfaces between different 6 angles
D’Hoker-Estes-Gutperle Bak-Gutperle-SH

e For pure SUN) YM, the mixed ’t Hooft anomaly implies SSB CP at 8 = x (out of
options, nontrivial gapless theory, gapped TFT, or SSB) and the existence of domain
walls. Meanwhile, /" = 4 SU(N) SYM is conformal and a nontrivial gapless theory
w/0 SSB. No dynamical DW, but interfaces separating 8 = *+ r exist.

AdS. slice

The interface theory = U(k)_, CS theory on D7s AdS. s'i";‘"""--..‘ ______________________________________ .-"""""'de4 i
N e ” H 0 ..... *
R1.2%S5 R1.2
L interface 3
dary

Janus = deformed AdS;s
(in AdS, slices) with two faces

g k D7 branes wrapping §° = (2 + 1)d wall in R



Holographic description for ./ = 4 so(N/2) SYM theories

e The basic differences from su(N):

(1) ND3s — even N D3s + O3~ for so(2n) w/ (Opp, Org) = (0,0)
+03 for s02n + 1) W/ (Ogp, Oye) = (1/2,0) ) ¢
+ O3 for sp(n) w/ (Bgg, Oyvg) = (0,1/2)
203" for 5(n) Wi (O Os) = (1/2,112) </ ©

where (B,, C,) is projected out under orientifold Q(— 1)~ except for Z, holonomies

Opp = [C2 and Oy = JBz that leave the wavefunction ¢%™? invariant under Q(— Dz

(2) The internal space: S° — RP° = S$°/Z, (and [

S5

RP>

19



e The groups for so(N/2) and sp(N/2)

GV = 1-form symmetries

so2n+ 1) & sp(n)

so(4k + 2)
theory (20, 2m) | GO theory (2e, 2m) | GV
Spin(4k + 2) (S, )" Z4 Spin(2n+1) | (5, 1)" | Z,
SO(4k + 2)g Ve, V™) | Zy x Zo SO@2n+1) | (I,V)" | Zs
SO(4k + 2), (S, V)" | Zy SO@2n+ 1) | (S,V)" | Zs
(Spin(4k +2)/Z4)¢ | (S5 9)" | Zy Sp(n) (V,1)" | Zy
£ =0,172,3 (Sp(n)/Zs)o | (1, S)" | Zs
(Sp(n)/Zo)1 | (V. S)" | Zy
so(4k)
theory (Zegs Ze s Zms > Zme:) G (1)
Spin(8k + 47) (S, C™, I,1) Zy X L
SO(8k + 45),, (Gnttvm Cn gm Cm) Ty X o
Ss(8k + 47)es (S", Cfs™m SUrm (Cim) Lo X Zs
Sc(8k +47)e. (Stem cn gim Ca+1)m) 7y X 7o
(SO(8k +47)/Z2)esstsc (Stssntlosm Clsontlocm gn Cmy | 7. 5 7,

£=01&j=0,1
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1. Line operator spectrum & strings

so(4k) theories G = 1-form symmetries

theory (z687 Zeos Zmgs ch) el

Spin(8k + 47) (S™,C™ I, 1) Lo X Lo
SO8k + 47)e, (gnttvm Cn gm (Cm) Lo X Lo
Ss(8k + 47) (87, Ctsm SUHLm (Ciym) To X Too
Sc(8k + 47),,, (Stem Cn Sim CU+m) Ty X 7o
(SO(8k + 4j)/Zg)§SsiSC (Stssnttosm (bscntboem Gn Cmy | 7, x T

cs*CccC

(1) S X C =V vector (Wilson, ’t Hooft) lines = (F1, D1)
(2) S-spinor (Wilson, ’t Hooft) lines = (D5 on RP* NS5 on RP%)

(3) S X V = C-spinor (W, T) lines = (D5 on RP*+ F1, NS5 on RP*+ D1)

3-5 F-string ground states = electric fermions all Z, charged: 2x(branes) = nothing

21



(5,1)

(SxV,I)=(C,I)

/

D5RP4

/

D5RP4 + 1

(1) S X C =V vector (Wilson, ’t Hooft) lines = (F1, D1)

(2) S-spinor (Wilson, ’t Hooft) lines = (D5 on RP* NS5 on RP%)

(3) S X V = C-spinor (W, T) lines = (D5 on RP*+ F1, NS5 on RP* + DI)

3-5 F-string ground states = fermions

22

all Z, charged: 2X(branes) = nothing



2. Boundary conditions
Bergman-SH

e The line operator spectrum of all these theories and its center symmetry are
encoded in the 5d topological theory (at low energies)

(b b ¢ )

-~ 1 - 1 -
T T T

AdS;s

\ CS - B, kinetic - C, kinetic )
where (B,, C,) = J B, J Cs | and (dBg, dCy) = (*dB,, * dC,)
R P R P4

¢ The canonical quantization yields the commutation relations

(c.&]=[b.B] = zi mod 27zi .,  [B.¢& =% mod 27i

23



e The all admissible boundary conditions dual to these theories

mutual locality = mutually commuting pair

mb +n.c+ngb+ né =

nb +n.c+nb+n

C =

- / Y, / / Y AN
with  nn; + ngny, + nonz + nang + j(ngnz + nen;) = 0 mod 2

Z, X Z,
theory boundary conditions
Spin(8k + 4j) ¢c=0
b=10
SO(8k + 47) ¢, b=0
c+lyc=0
Ss(8k 4+ 47) e c=0
b+ jc+Llshb=0
Sc(8k +47)e, c+b=0
c+b+je+ ot =0
(SO8k +47)/Z3)esstsc | b+ (bss + lsc)C+ Lscb =0

tostoco

C+B+ (605 -l-fcc)é-l—fccb =0

Z,0r £y X 2,5
theory BC’s
Spin(4k + 2) c=0
SO(4k + 2), 2b =0, 26 =0
SO(4k + 2), c+2b=0
(Spin(4k +2)/Z4)e | b+ 4c =0
b=2¢,c=2b

24

ZZ

theory boundary conditions
Spin(2n+1) | ¢=0

SO2n+1)y | c=0

SO(2n+1); |c+¢c=0

Sp(n) b=0

(Sp(n)/Zz)o | b=0

(Sp(n)/Zs); |b+b=0

b, b absent




Holographic description of higher group/category

Garcia Etxebarria, Apruzzi-Bah-Bonetti-Schafer-Nameki

In addition to the Z, X Z, 1-form symmetry, the so(4k) theories have a Z, 0-form
symmetry that exchanges S and C-spinors. These two together form a 2-category

symmetry, in which the 0-form generator G is noninvertible, with the following
fusions:

GOWM,) x GO, =1 + GY(WM,)
GOM,) x GVM,) = GOM,)

where G(O)(Ms) — ZD3 DW on RPl(F =0)+ ZD3 DWon RPl(F =1)and G (1)(M2) — ZDl surface

D3 3-surface D3 3-§urface

F1

Before D5 > After created by HW / D5

moving across

D5 = S-line or S, D5 + F1 =C-line or S_

Z, 0-form action = Hanany-Witten etfect

25



Discussions

e An ensemble of /' = 4 SYM theories? Could there be the factorization
problem in AdS,, /CFT,;with d > 37?

As an example, consider CFT,; [SU(N)/Zy] X CFTR[SU(N)/Zy] and 1dentify
two magnetic flux vectors m; = mp = m € H*(X, Z,). The resulting theory is
the self S-dual (SU(N) X SU(N))/Z, theory with the S-duality invariant
partition function

_ 27T 27T -
LSUNYXSUN)IZy = Z 2, (e )2, (e77) Vaia: Witten
meH*(X,Z,)

which 1s not factorized.

This 1s different from the TFD state, so it is not quite the two-sided AdS
Schwarzschild. Is there a dual geometry and is it a spacetime wormhole?

20



Thank you!



Back-up: diagonal line operators

e In the diagonal basis, the 1-form symmetry of the [SU(N)/Z,], theory

Lnjacd(k'.t) X Locd(k k' £)

under which the following line operators are charged:

27

eMeedtek.6) (W(L)P k+”ﬂT(L)k/)

ZN/gcd(k,k’,f)

W(L)pk+fT(L)k'

Bergman-SH

27l

__ON _
e ecd(k, k., £) (W( L) ged(k, k, £) T( L) ged(k, k, £) )

chd(k,k',f)

ON yN
W(L)eedtk'.0) T(L)gedk. k')

where there always exists p € Z such that gcd(pk + £, k') = ged(k, k', £)

5 k' pk+¢
scd k. 2) | gcdk k. 2)
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Back-up: SL(2,7) duality

e The different [SU(N)/Z,], theories are connected by SL(2,Z).

e However, not all the [SU(N)/Z,], theories belong to a single SL(2,7) orbit.
There are “islands” of SL(2,Z) orbits distinguished by the 1-form symmetry:

Lnjacdik' £) X Lacd('.£)

¢ This can be most manifestly understood from the SL(2,7Z) transformations
of the boundary conditions (in the diagonal basis of the 1-form symmetry):

Ljocd(kk'£) - pk+¢ k b = 1 (P =0 T : B— B, C—-C+B
V4 oy ON N <)= D<c>_ S B—-—-C, C > B
ged(kk',2) ocd(k, k', £)  ged(k, k', )

e The duality orbit can be understood from the following relation:

pk+ 7 % ,
M, ged(k,k',¢)  gedk, k', 0) | = ged(k, k', ) 0
o y 0 Nl/gcd(k, k', )

[SUN)/Z,, ;& )0 theor
SL(2,Z) duality rotation (NI Zyeaw i )0 y

29



Back-up: Mixed anomaly

e There 1s a mixed ’t Hooft anomaly by gauging the (electric) Z;, subgroup of
the 1-form symmetry in the presence of 6, which breaks CP at 8 = .
For the SU (N ) thCOI'y (k, = N) Gaiotto-Kapustin-Seiberg-Willett

‘N—1[ 2@B)
Z[0 + 2r] = Z[Olexp | 2xi J —
X

N 2

where B € H*(X, Zy) the background 2-form gauge field, Z°( - ) the Pontryagin
square operation; &P(B)/N =~ fractional instanton number by Z,, gauging.

e The anomaly action (to be reproduced by gravity dual)

N-—-1 J d0 P(B) SUN)/Z, NN -1) J' d0 SP(B)
Ss; = 2mi > 2mi ,
2r 2 k2 2r 2

where B € H(X, Z,) for the latter
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Back-up: Axionic Janus

o The relevant part of type IIB SUGRA 1s that of gravity g, and axio-dilaton

T = CO + ie —¢
Axio-dilaton
Ty = e_¢
uF0
Boundary Boundary

H=—H

B=+H

CO=—9

C0=+9

71 =

The dilaton = YM coupling does not vary in the boundary,

whereas the axion = 6 angle jumps across the interface

31

Axion
Tl = CO
| Boundary
CO =+ 9
half AdSs boundary
Excursion |in the bulk H
Boundary
CO = - 0
half AdSs boundary

Another illustration of a sadden jump of the axion
across the interface in the boundary



Ansatz

ds® = h(,u)(d,u2 + dsjd&) + dQ%
Fs = 2h(u)"du A w45, + 2055
T” 3h/ . T/
+1 =

Im(7)

_|_
T 2h

deformed bulk AdSsboundary

-
»

h

particle motion

32

Solution

p)
h2 = ahd 4+ ap? = 20
6h

|7'|°/(Im(2))? = ¢2/h3

2 2
[T " =7 (reR)
h(u)
K==l H=+p
half AdSs boundary half AdSs boundary



