The holography of duality in $\mathcal{N} = 4$ SYM theory

Shinji Hirano

Huzhou University & YITP (CGPQI)

based on arXiv:2208.09396 in collaboration with Oren Bergman (Technion)

An overview of this talk

$$\mathcal{N} = 4 SU(N) SYM$$

Type IIB on
$$AdS_5 \times S^5$$

(gauge inv.) local operators

nonlocal operators (e.g. Wilson & 't Hooft loops)

(generating function of) correlators massless & massive string excitation modes

branes (e.g. F & D-strings)

boundary deformed partition function via GKPW $\mathcal{N} = 4 \ su(N) \ \text{SYMs}$ with different 1-form symmetries & its associated line operator spectrum

(gauge inv.) local operators

nonlocal operators
(e.g. Wilson & 't Hooft loops)

(generating function of) correlators Type IIB on $AdS_5 \times S^5$ with all admissible boundary conditions on (B_2, C_2)

> massless & massive string excitation modes

branes (e.g. F & D-strings)

boundary deformed partition function via GKPW $\mathcal{N} = 4 \ so(N/2) \& \ sp(N/2) \text{ SYMs}$ with different 1-form (and 0-form) symmetries & line (and point) operator spectrum

(gauge inv.) local operators

nonlocal operators
(e.g. Wilson & 't Hooft loops)

(generating function of) correlators **Type IIB on** $AdS_5 \times RP^5$ with discrete (θ_{NS}, θ_{RR}) all admissible boundary conditions on (b, c) & (b', c')

> massless & massive string excitation modes branes (e.g. F & D-strings wrapped NS5 & D5-branes)

boundary deformed partition function via GKPW

Motivation

- Recently, nonlocal operators and higher form symmetries (under which they are charged) gained renewed interests in QFT.
- A new type of symmetry structure: higher group/category with non/invertible symmetry generators Gaiotto-Kapustin-Seiberg-Willett, Cordova-Dumitrescu-Intriligator Kaidi-Ohmori-Zheng, Choi-Cordova-Hsin-Lam-Shao...
- New insights into the phase structure of QFT via mixed 't Hooft anomaly involving higher form symmetries.

Gaiotto-Kapustin-Komargodski-Seiberg...

• They can be used to reveal the intricate structure of the duality web.

• Meanwhile, string theory naturally hosts the ingredients for these developments:

```
(non)local operators = branes
```

its associated higher form gauge fields = RR and NSNS forms higher group or category = combining (bound states of) branes

- Albertini-Del Zotto-Garcia Etxebarria-Heidenreich-Hosseini-Regalado, Bah-Bonetti-Minasian Apruzzi-van Beest-Gould-Schafer-Nameki...
- Via holography (AdS/CFT), we can thus expect to gain a more elementary and intuitive understanding of the recent developments in higher form symmetries. Aharony-Tachikawa, Bergman-Tachikawa-Zafrir
- It is hoped that this line of study provides new perspectives both on QFT and string theory.

$$\mathcal{N} = 4 \, su(N)$$
 SYM theories

1. Gauging center symmetry

• The SU(N) group has the Z_N center symmetry. By gauging a subgroup of Z_N , we can construct new theories:

$\mathcal{N} = 4 SU(N)/Z_k$ SYM theories with N = kk'

Note: The $SU(N)/Z_N$ theory is the S-dual of the SU(N) theory

• This is not the end of the story and the life is more intricate:

The $SU(N)/Z_k$ theory are further classified into sub-theories distinguished by the line operator spectrum

Aharony-Seiberg-Tachikawa

2. Line operator spectrum

• The line operators are Wilson, 't Hooft, and dyonic lines (determined by the mutual locality condition $z_e z'_m - z'_e z_m = 0 \mod N$)

$$L_{k,\ell} := \{ (z_e, z_m) = e(k,0) + m(\ell, k') \mod N \}$$

k Wilson lines k''t Hooft lines + ℓ Witten effect

• The su(N) theories (center symmetry gauging + line operator spectrum)

$$\mathcal{N} = 4 [SU(N)/Z_k]_{\ell}$$
 SYM theories

where
$$\ell = 0, 1, \dots, k - 1$$
 with $N = kk'$

3. 1-form symmetry

• The most basic SU(N) theory has an (electric) Z_N 1-form symmetry.

= gauging magnetic Z_N symmetry

$$W(L) \xrightarrow{Z_N} \underbrace{e^{\frac{2\pi i}{N}}} W(L)$$

 Z_N charge

• The $SU(N)/Z_k$ theories has an (electric) $Z_{k'}$ 1-form symmetry:

= gauging magnetic $Z_{k'}$ symmetry

$$\underbrace{W(L)^{k}}_{Z_{k} \text{ invariant}} \xrightarrow{Z_{k'}} e^{\frac{2\pi i k}{N}} W(L)^{k} = \underbrace{e^{\frac{2\pi i}{k'}}}_{Z_{k'} \text{ charge}} W(L)^{k}$$

• In fact, the $[SU(N)/Z_k]_0$ theory has $Z_{k'}^e \times Z_k^m$ 1-form symmetry:

$$\underbrace{T(L')^{k'}}_{Z_{k'} \text{ invariant}} \xrightarrow{Z_k} e^{\frac{2\pi i k'}{N}} T(L')^{k'} = \underbrace{e^{\frac{2\pi i}{k}}}_{Z_k \text{ charge}} T(L')^{k'}$$

• The 1-form symmetry of the general $[SU(N)/Z_k]_{\ell}$ theory

$$\left(\underbrace{Z_{k'}}_{(\mathcal{L}_{k'})} \times \underbrace{Z_{N/gcd(k',\ell')}}_{\text{dyonic}}\right) / Z_{k'/gcd(k',\ell')} = \underbrace{Z_{N/gcd(k,k',\ell)} \times Z_{gcd(k,k',\ell')}}_{\text{Gaiotto-Kapustin-Seiberg-Willett}}$$

$$\left\{\underbrace{W(L)^{k}}_{Z_{k'}\text{charged}}, \underbrace{W(L)^{\ell}T(L)^{k'}}_{Z_{k'gcd(k',\ell')}\text{charged}}\right\} \le \underbrace{W'(W(L)^{k'})^{\ell}}_{Z_{k'gcd(k',\ell')}\text{charged}} = \underbrace{W(L)^{\ell}T(L)^{k'}}_{Z_{k'gcd(k',\ell')}\text{charged}}$$

for the line operator spectrum

$$L_{k,\ell} := \{ (z_e, z_m) = e(k,0) + m(\ell, k') \mod N \}$$

k Wilson lines k''t Hooft lines + ℓ Witten effect

Holographic description for $\mathcal{N} = 4 su(N)$ **SYM theories**

• The line operator spectrum of all $[SU(N)/Z_k]_{\ell}$ theories and its center symmetry are encoded in the 5d topological theory (at low energies)

Witten & Aharony-Witten

$$S_{CS} = \int_{AdS_5 \times S^5} B_2 \wedge dC_2 \wedge dC_4 = \frac{N}{2\pi} \int_{AdS_5} B_2 \wedge dC_2$$

• (Global) 1-form symmetries (on the boundary)

$$B_2 \rightarrow B_2 + d_z \lambda_1^{NS}$$
, $C_2 \rightarrow C_2 + d_z \lambda_1^{RR}$ with $d_x \lambda_1 = 0$ & $N\lambda_1 = 0$

• By canonical quantization, (B_2, C_2) are a canonical conjugate pair like (x, p)

$$[b,c] = \frac{2\pi i}{N}$$
 with $b = \int_{S} B_2, \quad c = \int_{S'} C_2 \quad (S \cdot S' \neq 0)$

1. Boundary conditions

S-dual $SU(N)/Z_N$ theory $(\underbrace{c=0}_{\text{Dirichlet Neumann}}, \underbrace{b \text{ free}}_{\text{Neumann}})$

• The simplest case dual to the SU(N) theory Witten, Ahard

Witten, Aharony-Tachikawa, Bergman-SH

• The all admissible boundary conditions dual to the $[SU(N)/Z_k]_{\ell}$ theory

mutual locality = mutually commuting pair

 $z_e b + z_m c = 0$, $z'_e b + z'_m c = 0$ with

 $z_e z'_m - z'_e z_m = 0 \mod N$

two BCs commute mod *N* equivalent to Dirac quantisation condition

By an SL(2,Z) rotation, the B.C.s can be brought into a canonical form

$$\begin{pmatrix} z_e & z_m \\ z'_e & z'_m \end{pmatrix} \longrightarrow \begin{pmatrix} k & 0 \\ \ell & k' \end{pmatrix} \implies \underbrace{kb = 0}_{k \text{ F1}}, \underbrace{k'c + \ell b = 0}_{(\ell,k') \text{ string}}$$

where $\ell = 0, 1, \dots, k-1$

"Dirichlet" = line operator

"Neumann" = surface operator

 $y \leftrightarrow k'c + \ell b = 0$ $n \neq mk$, N

2. SL(2,Z) duality orbits

Bergman-SH

The SL(2,Z) rotates (b, c), and so the duality web of the su(N) theories can be understood by analysing how diff. B.C.s are related by SL(2,Z)

of SL(2,Z) orbits = # of k with k = gcd(k, N/k) = # of square divisors of N

SL(2,Z) duality web of $\mathcal{N} = 4 \ su(N)$ SYM theories Aharony-Seiberg-Tachikawa

3. Mixed 't Hooft anomaly from type IIB SUGRA

• There are two types of mixed anomalies in the su(N) (S)YM theories:

(1) The 1-form symmetries $Z_{N/gcd(k,k',\ell')} \times Z_{gcd(k,k',\ell')}$ are anomalous if we try to gauge both 1-form symmetries (or equivalently, in the presence of the background 2-form gauge fields). Gaiotto-Kapustin-Seiberg-Willett, Hsin-Lam

(2) The electric $Z_{k'}$ subgroup of the 1-form symmetries combined with the shift $\theta \rightarrow \theta + 2\pi k$ is anomalous if we try to gauge the $Z_{k'}$ 1-form symmetry.

Gaiotto-Kapustin-Kormagodski-Seiberg

• Both are accounted for, holographically, by the the same type IIB CS action

$$S_{CS} = \underbrace{\int_{AdS_5 \times S^5} B_2 \wedge dC_2 \wedge F_5}_{\text{former}} = \int_{AdS_5 \times S^5} B_2 \wedge \tilde{F}_3 \wedge F_5 + \underbrace{\int_{AdS_5 \times S^5} C_0 B_2 \wedge dB_2 \wedge F_5}_{\text{latter}}$$

(continuous version, to be precise)

(1) The mixed $Z_{\text{gcd}(k,k',\ell')}$ anomaly between 1-form symmetries $Z_{N/\text{gcd}(k,k',\ell')} \times Z_{\text{gcd}(k,k',\ell')}$

$$S_{CS} = \frac{N}{2\pi} \int_{AdS_5} B'_2 \wedge dC'_2 + \text{"local counterterms"} \quad \mathbf{w/} \quad \int B'_2 \in \frac{\mathbb{Z}}{N}, \int dC'_2 \in \frac{\mathbb{Z}}{\gcd(k, k', \ell')}$$

where (B'_2, C'_2) is an SL(2,Z) rotation of (B_2, C_2) and diagonal w.r.t. the 1-form symmetries

(2) The mixed anomaly between 1-form symmetries $\theta \rightarrow \theta + 2\pi k$ and the electric $Z_{k'}$ 1-form symmetry

$$S_{CS} = -\frac{N}{4\pi} \int_{AdS_5} dC_0 \wedge B_2 \wedge B_2 \quad \text{w/} \quad C_0 = \theta/2\pi \ \& \ k'B_2 = \mathsf{B}_{\mathrm{FT}} \in H^2(X, Z_{k'})$$

To be more precise, the $\mathcal{O}(N^2)$ term is missing and it agrees only on spin manifolds X

4. Axionic Janus as interfaces between different θ angles

D'Hoker-Estes-Gutperle Bak-Gutperle-SH

For pure SU(N) YM, the mixed 't Hooft anomaly implies SSB CP at θ = π (out of options, nontrivial gapless theory, gapped TFT, or SSB) and the existence of domain walls. Meanwhile, N = 4 SU(N) SYM is conformal and a nontrivial gapless theory w/o SSB. No dynamical DW, but interfaces separating θ = ± π exist.

Holographic description for $\mathcal{N} = 4 \text{ so}(N/2)$ **SYM theories**

• The basic differences from *su*(*N*):

(1)
$$N \text{ D3s} \longrightarrow \text{even } N \text{ D3s} + O3^- \text{ for } so(2n) \text{ w/} (\theta_{RR}, \theta_{NS}) = (0,0)$$

+ $\overrightarrow{O3}^- \text{ for } so(2n+1) \text{ w/} (\theta_{RR}, \theta_{NS}) = (1/2,0) \text{ so} S$
+ $O3^+ \text{ for } sp(n) \text{ w/} (\theta_{RR}, \theta_{NS}) = (0,1/2) \text{ so} T$
+ $\overrightarrow{O3}^+ \text{ for } \overrightarrow{sp}(n) \text{ w/} (\theta_{RR}, \theta_{NS}) = (1/2,1/2) \text{ so} T$

where (B_2, C_2) is projected out under orientifold $\Omega(-1)^{F_L}$ except for Z_2 holonomies $\theta_{RR} = \int C_2$ and $\theta_{NS} = \int B_2$ that leave the wavefunction $e^{2\pi i\theta}$ invariant under $\Omega(-1)^{F_L}$

(2) The internal space:
$$S^5 \longrightarrow RP^5 = S^5/Z_2$$
 (and $\int_{S^5} F_5 = N \longrightarrow \int_{RP^5} F_5 = N/2$)

• The groups for so(N/2) and sp(N/2)

theory	(z_e, z_m)	$G^{(1)}$	
Spin(4k+2)	$(S,I)^n$	\mathbb{Z}_4	
$SO(4k+2)_0$	(V^n, V^m)	$\mathbb{Z}_2 \times \mathbb{Z}_2$	
$SO(4k+2)_1$	$(S,V)^n$	\mathbb{Z}_4	
$(Smin(4k+2)/\mathbb{Z}_{4})_{0}$	$(S^{\ell},S)^n$	77.	

so(4k + 2)

$\ell = 0, 1, 2, 3$

$G^{(1)} =$ **1-form symmetries**

$$so(2n + 1) \& sp(n)$$

theory	(z_e, z_m)	$G^{(1)}$
$\int Spin(2n+1)$	$(S, I)^n$	\mathbb{Z}_2
$SO(2n+1)_0$	$(I,V)^n$	\mathbb{Z}_2
$SO(2n+1)_1$	$(S,V)^n$	\mathbb{Z}_2
Sp(n)	$(V,I)^n$	\mathbb{Z}_2
$\int (Sp(n)/\mathbb{Z}_2)_0$	$(I,S)^n$	\mathbb{Z}_2
$(Sp(n)/\mathbb{Z}_2)_1$	$(V,S)^n$	\mathbb{Z}_2

so(4k)

	theory	$(z_{e_S}, z_{e_C}, z_{m_S}, z_{m_C})$	$G^{(1)}$
	$Spin(8k^{(Spin(4k+2)/\mathbb{Z}_4)_1})$	$_{T}(S^n, C^m, I, I)$	$\mathbb{Z}_2 \times \mathbb{Z}_2$
$2) \stackrel{S}{\longleftrightarrow} (Sp)$	$in(4k(4k_1+4j)\ell_V s)$ (Spin)	$(4k+2)/\mathbb{Z}_4)_2 \xrightarrow{C^n \S S^m} (SO(4k+2))_1$	$\mathbb{Z}_2 \times \mathbb{Z}_2$
	$\hat{Ss}(8k+4j)_{\ell_S}$	$\left(S^n, C^{\ell_S m}, S^{(j+1)m}, \mathbb{Q}^{jm}\right)$	$\mathbb{Z}_2 imes \mathbb{Z}_2$
	$Sc(8k+4f)_{\ell_C}^{pin(4k+2)/\mathbb{Z}_4)_3}$	$(S^{\ell_C m}, C^n, S^{jm}, C^{(j+\widecheck{\mathfrak{P}})m})$	$\mathbb{Z}_2 imes \mathbb{Z}_2$
	$(SO(8k+4j)/\mathbb{Z}_2)_{\ell_{SS}\ell_{SC}}$	$\left(S^{\ell_{SS}n+\ell_{CS}m}, C^{\ell_{SC}n+\ell_{CC}m}, S^n, C^m\right)$	$\mathbb{Z}_2 imes \mathbb{Z}_2$
	$\mathcal{L} = (SO(4k+2))_0 0 1$		
	$\iota = 0, 1 \text{alg} J = 0, 1$		
	S.T		

1. Line operator spectrum & strings

	so(4k) theories	$G^{(1)} = 1$ -form sy	mmetries
theory	$(z_{e_S}, z_{e_C}, z_{m_S}, z_{m_C})$	$G^{(1)}$	
Spin(8k+4j)	(S^n, C^m, I, I)	$\mathbb{Z}_2 imes \mathbb{Z}_2$	
$SO(8k+4j)_{\ell_V}$	$(S^{n+\ell_V m}, C^n, S^m, C^m)$	$\mathbb{Z}_2 imes \mathbb{Z}_2$	
$Ss(8k+4j)_{\ell_S}$	$(S^n, C^{\ell_S m}, S^{(j+1)m}, C^{jm})$	$\mathbb{Z}_2 imes \mathbb{Z}_2$	
$Sc(8k+4j)_{\ell_C}$	$\left(S^{\ell_C m}, C^n, S^{jm}, C^{(j+1)m}\right)$	$\mathbb{Z}_2 imes \mathbb{Z}_2$	
$(SO(8k+4j)/\mathbb{Z}_2)_{\ell_{SS}\ell_{SC}}_{\ell_{CS}\ell_{CC}}$	$\left(S^{\ell_{SS}n+\ell_{CS}m}, C^{\ell_{SC}n+\ell_{CC}m}, S^n, C^{\ell_{SC}n+\ell_{CC}m}\right)$	\mathbb{C}^m) $\mathbb{Z}_2 \times \mathbb{Z}_2$	

(1) $S \times C = V$ vector (Wilson, 't Hooft) lines = (F1, D1)

(2) S-spinor (Wilson, 't Hooft) lines = (D5 on RP^4 , NS5 on RP^4)

(3) $S \times V = C$ -spinor (W, T) lines = (D5 on $RP^4 + F1$, NS5 on $RP^4 + D1$)

3-5 F-string ground states = electric fermions

all Z_2 charged: $2 \times (branes) = nothing$

(1) $S \times C = V$ vector (Wilson, 't Hooft) lines = (F1, D1)

(2) S-spinor (Wilson, 't Hooft) lines = (D5 on RP^4 , NS5 on RP^4)

(3) S × V = C-spinor (W, T) lines = (D5 on RP^4 + F1, NS5 on RP^4 + D1)

3-5 F-string ground states = fermions

all Z_2 charged: $2 \times (branes) = nothing$

2. Boundary conditions

Bergman-SH

• The line operator spectrum of all these theories and its center symmetry are encoded in the 5d topological theory (at low energies)

$$S_{CS}[B_{2}, C_{2}, \tilde{B}_{2}, \tilde{C}_{2}] = \int_{AdS_{5}} \left(\frac{b \ C}{\frac{n}{2\pi}} B_{2} \wedge dC_{2} + \frac{1}{\pi} B_{2} \wedge d\tilde{B}_{2} + \frac{1}{\pi} C_{2} \wedge d\tilde{C}_{2}}{\frac{c}{CS}} + \frac{1}{2\pi} B_{2} \wedge d\tilde{B}_{2} + \frac{1}{\pi} C_{2} \wedge d\tilde{C}_{2}}{\frac{c}{C_{2} \text{ kinetic}}} \right)$$

where $(\tilde{B}_{2}, \tilde{C}_{2}) = \left(\int_{\mathbb{R}^{P^{4}}} B_{6}, \int_{\mathbb{R}^{P^{4}}} C_{6} \right)$ and $(dB_{6}, dC_{6}) = (*dB_{2}, *dC_{2})$

• The canonical quantization yields the commutation relations

$$[c,\tilde{c}] = [b,\tilde{b}] = \pi i \mod 2\pi i , \qquad [\tilde{b},\tilde{c}] = \frac{n\pi i}{2} \mod 2\pi i$$

• The all admissible boundary conditions dual to these theories

mutual locality = mutually commuting pair

$$n_b b + n_c c + n_{\tilde{b}} \tilde{b} + n_{\tilde{c}} \tilde{c} = 0$$
$$n_b' b + n_c' c + n_{\tilde{b}}' \tilde{b} + n_{\tilde{c}}' \tilde{c} = 0$$

with $n_b n'_{\tilde{b}} + n_{\tilde{b}} n'_b + n_c n'_{\tilde{c}} + n_{\tilde{c}} n'_c + j(n_{\tilde{b}} n'_{\tilde{c}} + n_{\tilde{c}} n'_{\tilde{b}}) = 0 \mod 2$

Z_2

theory	boundary conditions				Z_2
Spin(8k+4j)	$\tilde{c} = 0$	77	~ 7	theory	boundary conditions
	b = 0	Z_4 or $Z_2 \times Z_2$			boundary conditions
$SO(8k+4j)_{\ell_V}$	b = 0	theory	BC's	Spin(2n+1)	$\tilde{c} = 0$
	$c + \ell_V \tilde{c} = 0$	$S_{min}(Ak + 2)$	$\tilde{c} = 0$	$SO(2n+1)_0$	c = 0
$Ss(8k+4j)_{\ell_S}$	$\tilde{c} = 0$	$\frac{Spin(4\kappa+2)}{GO(4k+2)}$	c = 0	$SO(2n+1)_1$	$c + \tilde{c} = 0$
	$\tilde{b} + ic + \ell_S b = 0$	$SO(4k+2)_0$	2b = 0, 2c = 0	$C_{m}(m)$	<u> </u>
$Sc(8k+4i)_{\ell}$	$\tilde{c} + b = 0$	$SO(4k+2)_1$	$\tilde{c} + 2b = 0$	Sp(n)	$b \equiv 0$
$\int \mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}(\mathcal{O}($	$\hat{a} + \hat{b} + i\hat{a} + \hat{\ell} \hat{a} = 0$	$(Spin(4k+2)/\mathbb{Z}_4)_{\ell}$	$\tilde{b} + \ell \tilde{c} = 0$	$(Sp(n)/\mathbb{Z}_2)_0$	b = 0
$(SO(8l_a + 4i)/7)$	$\frac{c+\theta+jc+c_{C}c=0}{\tilde{b}+(\ell+\ell)\tilde{a}+\ell-b=0}$		~	$(Sp(n)/\mathbb{Z}_2)_1$	$b + \tilde{b} = 0$
$\left(\frac{\mathcal{S}\mathcal{O}(\mathfrak{O}\kappa + 4J)}{\mathcal{L}_2} \right)_{\mathcal{L}_2 \mathcal{L}_S \mathcal{L}_{SC}}^{\ell_{SS} \ell_{SC}}$	$\begin{bmatrix} \upsilon + (\iota_{SS} + \iota_{SC})\upsilon + \iota_{SC}\upsilon = 0 \\ - \end{bmatrix}$	$b=2\tilde{c}$.	c = 2b	1	$\tilde{1}$ 1
	$c+b+(\ell_{CS}+\ell_{CC})\tilde{c}+\ell_{CC}b=0$	24		b, b absent	

Holographic description of higher group/category

Garcia Etxebarria, Apruzzi-Bah-Bonetti-Schafer-Nameki

• In addition to the $Z_2 \times Z_2$ 1-form symmetry, the so(4k) theories have a Z_2 0-form symmetry that exchanges S and C-spinors. These two together form a 2-category symmetry, in which the 0-form generator $G^{(0)}$ is noninvertible, with the following fusions:

$$G^{(0)}(M_3) \times G^{(0)}(M_3) = 1 + G^{(1)}(M_2)$$
$$G^{(0)}(M_3) \times G^{(1)}(M_2) = G^{(0)}(M_3)$$

where
$$G^{(0)}(M_3) = Z_{D3 DW \text{ on } RP^1}(F=0) + Z_{D3 DW \text{ on } RP^1}(F=1)$$
 and $G^{(1)}(M_2) = Z_{D1 \text{ surface}}$

Discussions

• An ensemble of $\mathcal{N} = 4$ SYM theories? Could there be the factorization problem in AdS_{d+1}/CFT_d with $d \ge 3$?

As an example, consider $\operatorname{CFT}_L[SU(N)/Z_N] \times \operatorname{CFT}_R[SU(N)/Z_N]$ and identify two magnetic flux vectors $m_L = m_R = m \in H^2(X, Z_2)$. The resulting theory is the self S-dual $(SU(N) \times SU(N))/Z_N$ theory with the S-duality invariant partition function

$$Z_{SU(N)\times SU(N)/Z_N} = \sum_{m \in H^2(X,Z_2)} Z_m(e^{2\pi i \tau_1}) Z_m(e^{2\pi i \tau_2})$$
 Vafa-Witten

which is not factorized.

This is different from the TFD state, so it is not quite the two-sided AdS Schwarzschild. Is there a dual geometry and is it a spacetime wormhole?

Thank you!

Back-up: diagonal line operators

• In the diagonal basis, the 1-form symmetry of the $[SU(N)/Z_k]_{\ell}$ theory

$$Z_{N/\text{gcd}(k,k',\ell)} \times Z_{\text{gcd}(k,k',\ell)}$$

under which the following line operators are charged:

$$W(L)^{pk+\ell}T(L)^{k'} \xrightarrow{Z_{N/\gcd(k,k',\ell)}} e^{\frac{2\pi i}{N/\gcd(k,k',\ell)}} (W(L)^{pk+\ell}T(L)^{k'})$$
Bergman-SH
$$W(L)^{\frac{\delta N}{\gcd(k,k',\ell)}}T(L)^{\frac{\gamma N}{\gcd(k,k',\ell)}} \xrightarrow{Z_{\gcd(k,k',\ell)}} e^{\frac{2\pi i}{\gcd(k,k',\ell)}} (W(L)^{\frac{\delta N}{\gcd(k,k',\ell)}}T(L)^{\frac{\gamma N}{\gcd(k,k',\ell)}})$$

where there always exists $\exists p \in Z$ such that $gcd(pk + \ell, k') = gcd(k, k', \ell)$

$$\delta \frac{k'}{\gcd(k,k',\ell)} - \gamma \frac{pk+\ell}{\gcd(k,k',\ell)} = 1$$

Back-up: SL(2,Z) duality

- The different $[SU(N)/Z_k]_{\ell}$ theories are connected by SL(2,Z).
- However, not all the $[SU(N)/Z_k]_{\ell}$ theories belong to a single SL(2,Z) orbit. There are "islands" of SL(2,Z) orbits distinguished by the 1-form symmetry:

$$Z_{N/\text{gcd}(k,k',\ell)} \times Z_{\text{gcd}(k,k',\ell)}$$

• This can be most manifestly understood from the SL(2,Z) transformations of the boundary conditions (in the diagonal basis of the 1-form symmetry):

$$\begin{array}{ll} Z_{N/gcd(k,k',\ell')}:\\ Z_{gcd(k,k',\ell')}:\end{array} & \begin{pmatrix} pk+\ell & k' \\ \frac{\delta N}{\gcd(k,k',\ell)} & \frac{\gamma N}{\gcd(k,k',\ell)} \end{pmatrix} \begin{pmatrix} b \\ c \end{pmatrix} \equiv M_D \begin{pmatrix} b \\ c \end{pmatrix} = 0 & T: \quad B \to B \ , \quad C \to C+B \\ S: \quad B \to -C \ , \quad C \to B \end{array}$$

• The duality orbit can be understood from the following relation:

$$M_{D} \underbrace{\begin{pmatrix} \frac{pk+\ell}{gcd(k,k',\ell')} & \frac{k'}{gcd(k,k',\ell')} \\ \delta & \gamma \end{pmatrix}}_{SL(2,Z) \text{ duality rotation}} = \underbrace{\begin{pmatrix} gcd(k,k',\ell') & 0 \\ 0 & N/gcd(k,k',\ell') \end{pmatrix}}_{[SU(N)/Z_{gcd(k,k',\ell')}]_{0} \text{ theory}}$$

Back-up: Mixed anomaly

There is a mixed 't Hooft anomaly by gauging the (electric) Z_{k'} subgroup of the 1-form symmetry in the presence of θ, which breaks CP at θ = π.
 For the SU(N) theory (k' = N)
 Gaiotto-Kapustin-Seiberg-Willett

$$Z[\theta + 2\pi] = Z[\theta] \exp\left[2\pi i \frac{N-1}{N} \int_{X} \frac{\mathscr{P}(\mathsf{B})}{2}\right]$$

where $B \in H^2(X, Z_N)$ the background 2-form gauge field, $\mathscr{P}(\cdot)$ the Pontryagin square operation; $\mathscr{P}(B)/N \simeq$ fractional instanton number by Z_N gauging.

• The anomaly action (to be reproduced by gravity dual)

$$S_{5d} = 2\pi i \frac{N-1}{N} \int \frac{d\theta}{2\pi} \frac{\mathscr{P}(\mathsf{B})}{2} \quad \xrightarrow{SU(N)/Z_k} \quad 2\pi i \frac{N(N-1)}{k^2} \int \frac{d\theta}{2\pi} \frac{\mathscr{P}(\mathsf{B})}{2}$$

where $B \in H^2(X, Z_{k'})$ for the latter

Back-up: Axionic Janus

• The relevant part of type IIB SUGRA is that of gravity $g_{\mu\nu}$ and axio-dilaton $\tau = C_0 + ie^{-\phi}$

The dilaton = YM coupling does not vary in the boundary, whereas the axion = θ angle jumps across the interface

Another illustration of a sadden jump of the axion across the interface in the boundary

####