
The holography of duality in  SYM theory𝒩 = 4

Shinji Hirano 


Huzhou University

&


YITP (CGPQI)


based on arXiv:2208.09396

in collaboration with  

 Oren Bergman (Technion) 
                          

1



2

An overview of this talk

 SYM𝒩 = 4 SU(N) Type IIB on AdS5 × S5

=
(gauge inv.) local operators

nonlocal operators 
(e.g. Wilson & ’t Hooft loops)

(generating function of) 
correlators 

massless & massive  
string excitation modes

branes 
(e.g. F & D-strings)

boundary deformed  
partition function via GKPW
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 SYMs 
with 

different 1-form symmetries  
&  

its associated line operator spectrum

𝒩 = 4 su(N) Type IIB on  
with 

all admissible boundary conditions 
on 

AdS5 × S5

(B2, C2)

=
(gauge inv.) local operators

*nonlocal operators* 
(e.g. Wilson & ’t Hooft loops)

(generating function of) 
correlators 

massless & massive  
string excitation modes

branes 
(e.g. F & D-strings)

boundary deformed  
partition function via GKPW
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 SYMs 
with 

different 1-form (and 0-form) symmetries  
&  

line (and point) operator spectrum

𝒩 = 4 so(N/2) & sp(N/2) Type IIB on  
with discrete  

all admissible boundary conditions  
on  & 

AdS5 × RP5

(θNS, θRR)

(b, c) (b′￼, c′￼)

=
(gauge inv.) local operators

*nonlocal operators* 
(e.g. Wilson & ’t Hooft loops)

(generating function of) 
correlators 

massless & massive  
string excitation modes

branes 
(e.g. F & D-strings 

wrapped NS5 & D5-branes)

boundary deformed  
partition function via GKPW



• Recently, nonlocal operators and higher form symmetries (under 
which they are charged) gained renewed interests in QFT.


• A new type of symmetry structure: higher group/category with 
non/invertible symmetry generators 


• New insights into the phase structure of QFT via mixed ’t Hooft 
anomaly involving higher form symmetries.  


• They can be used to reveal the intricate structure of the duality 
web.  
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Motivation

 Gaiotto-Kapustin-Komargodski-Seiberg…

Gaiotto-Kapustin-Seiberg-Willett, Cordova-Dumitrescu-Intriligator

Kaidi-Ohmori-Zheng, Choi-Cordova-Hsin-Lam-Shao…
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• Meanwhile, string theory naturally hosts the ingredients for these 
developments: 
                       (non)local operators = branes  
 its associated higher form gauge fields = RR and NSNS forms                  
 higher group or category = combining (bound states of) branes


• Via holography (AdS/CFT), we can thus expect to gain a more 
elementary and intuitive understanding of the recent developments 
in higher form symmetries.


• It is hoped that this line of study provides new perspectives both on 
QFT and string theory.

Albertini-Del Zotto-Garcia Etxebarria-Heidenreich-Hosseini-Regalado, Bah-Bonetti-Minasian 
Apruzzi-van Beest-Gould-Schafer-Nameki…

Aharony-Tachikawa, Bergman-Tachikawa-Zafrir
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 SYM theories𝒩 = 4 su(N)

1. Gauging center symmetry

• The  group has the  center symmetry. By gauging a subgroup of , 
we can construct new theories: 

SU(N) ZN ZN

𝒩 = 4 SU(N)/Zk SYM theories with   N = kk′￼

• This is not the end of the story and the life is more intricate:  
 
The  theory are further classified into sub-theories distinguished 
by the line operator spectrum           

SU(N)/Zk

 Aharony-Seiberg-Tachikawa

Note: The  theory is the S-dual of the  theorySU(N )/ZN SU(N )
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2. Line operator spectrum

• The line operators are Wilson, ’t Hooft, and dyonic lines  
(determined by the mutual locality condition ) zez′￼m − z′￼ezm = 0 mod N

where                                    with  ℓ = 0,1,⋯, k − 1 N = kk′￼

Lk,ℓ := {(ze, zm) = e(k,0) + m(ℓ, k′￼) mod N}

k Wilson lines k′￼ ′￼t Hooft lines + ℓ Witten effect

• The  theories (center symmetry gauging + line operator spectrum)su(N)

𝒩 = 4 [SU(N)/Zk]ℓ SYM theories
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3. 1-form symmetry

W(L) ZN e
2πi
N⏟

ZN charge

W(L)

W(L)k

Zk invariant

Zk′￼ e
2πik

N W(L)k = e
2πi
k′￼⏟

Zk′￼charge

W(L)k

• In fact, the  theory has  1-form symmetry: [SU(N)/Zk]0 Ze
k′￼

× Zm
k

T(L′￼)k′￼

Zk′￼invariant

Zk e
2πik′￼

N T(L′￼)k′￼ = e
2πi
k⏟

Zk charge

T(L′￼)k′￼

• The most basic  theory has an (electric)  1-form symmetry.SU(N) ZN
= gauging magnetic  symmetryZN

• The  theories has an (electric)  1-form symmetry: SU(N)/Zk Zk′￼
= gauging magnetic  symmetryZk′￼
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• The 1-form symmetry of the general  theory[SU(N)/Zk]ℓ

Lk,ℓ := {(ze, zm) = e(k,0) + m(ℓ, k′￼) mod N}

k Wilson lines k′￼ ′￼t Hooft lines + ℓ Witten effect

for the line operator spectrum

W(L)k

Zk′￼charged

, W(L)ℓT(L)k′￼

ZN/gcd(k′￼,ℓ) charged

w/ (W(L)k)ℓ = (W(L)ℓT(L)k′￼)k

Zk′￼/gcd(k′￼,ℓ) charged

( Zk′￼⏟
electric

× ZN/gcd(k′￼,ℓ)

dyonic

)/Zk′￼/gcd(k′￼,ℓ) = ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)

 Gaiotto-Kapustin-Seiberg-Willett
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• The line operator spectrum of all  theories and its center 
symmetry are encoded in the 5d topological theory (at low energies) 

[SU(N)/Zk]ℓ

Witten & Aharony-Witten

SCS = ∫AdS5×S5

B2 ∧ dC2 ∧ dC4 =
N
2π ∫AdS5

B2 ∧ dC2

•By canonical quantization,  are a canonical conjugate pair like (B2, C2) (x, p)

[b, c] =
2πi
N

with b = ∫S
B2 , c = ∫S′￼

C2 (S ⋅ S′￼≠ 0)

Holographic description for  SYM theories𝒩 = 4 su(N)

• (Global) 1-form symmetries (on the boundary)

B2 → B2 + dzλNS
1 , C2 → C2 + dzλRR

1 with dxλ1 = 0 & Nλ1 = 0
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1. Boundary conditions

• The simplest case dual to the  theorySU(N)

D1 surface = AdS3 × S1 D3 with F
Gukov-Witten, Drukker-Gomis-Matsuura

C6 (Dirichlet), B6 (Neumann)

( c = 0
⏟
Dirichlet

, b free
Neumann

)S-dual  theory                                 SU(N )/ZN

 Witten, Aharony-Tachikawa, Bergman-SH

r

WN

F1

a

r

D1

D1

TN

c

r

N F1

(WN)N

gluon

D5S5

b

b = 0 Nb = 0nc ≠ 0 (n = 0,1,⋯, N − 1)
Nc = 0

= 1

S′￼

line operator (Wilson line) surface operator

( b = 0
⏟
Dirichlet

, c free
Neumann

) analogous to fixed  and fluctuating  x p

equivalent to NeumannNc = 0
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 Bergman-SH

• The all admissible boundary conditions dual to the  theory[SU(N)/Zk]ℓ

ze b + zm c = 0 , z′￼e b + z′￼m c = 0 with zez′￼m − z′￼ezm = 0 mod N

two BCs commute mod N

equivalent to Dirac quantisation condition

mutual locality = mutually commuting pair

By an  rotation, the B.C.s can be brought into a canonical formSL(2,Z)

(ze zm

z′￼e z′￼m) ⟶ (k 0
ℓ k′￼) ⟹ kb = 0

k F1

, k′￼c + ℓb = 0
(ℓ,k′￼) string

where                                  ℓ = 0,1,⋯, k − 1
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r

a

x

k F1

r

b

n F1

n F1 r

xk0

gluon

D5S5

c

k0k F1

= 1

a

r (`/r, k0/r)

y

strings

b

yN/r

N (`/r, k0/r)

(`/r, k0/r)5S5

strings

c

kr (`/r, k0/r)

yk

x`

`k F1

strings

NS5S5

= 1

“Dirichlet” = line operator                              “Neumann” = surface operator                              

r = gcd(k′￼, ℓ)
n ≠ mk , N

x ↔ kb = 0
y ↔ k′￼c + ℓb = 0
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2.  duality orbitsSL(2,Z)  Bergman-SH

# of SL(2,Z ) orbits = # of k with k = gcd(k, N/k) = # of square divisors of N

 duality web of  SYM theories SL(2,Z) 𝒩 = 4 su(N )

gcd(k, k′￼, ℓ) = 1

gcd(k, k′￼, ℓ) = gcd(k1, k′￼1) = k′￼1

gcd(k, k′￼, ℓ) = gcd(kn−1, k′￼n−1) = k′￼n−1

[SU(N )/Zk1
]0

[SU(N )/Zk′￼1]0

S
T

[SU(N )/Zk1
]k′￼1

T

[SU(N )/Zk1
]mk1−k′￼1

SU(N )/ZN

SU(N )

S
T

[SU(N )/ZN]N−1

T

[SU(N )/ZN]1

T

SU(N )/Zkn−1
]0

[SU(N )/Zk ′￼n−1
]0

S
T

[SU(N )/Zkn−1
]k ′￼n−1

T

[SU(N )/Zkn−1
]mkn−1−k ′￼n−1

 Aharony-Seiberg-Tachikawa

The  rotates , and so the duality web of the  theories 
can be understood by analysing how diff. B.C.s are related by 

SL(2,Z) (b, c) su(N)
SL(2,Z)

Note:  is  invariantgcd(k, k′￼, ℓ) SL(2,Z )
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• There are two types of mixed anomalies in the  (S)YM theories:  
 
(1) The 1-form symmetries  are anomalous if we try to 
gauge both 1-form symmetries (or equivalently, in the presence of the background 
2-form gauge fields). 
  
(2) The electric  subgroup of the 1-form symmetries combined with the shift 

 is anomalous if we try to gauge the  1-form symmetry.

su(N)

ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)

Zk′￼

θ → θ + 2πk Zk′￼

 Gaiotto-Kapustin-Seiberg-Willett, Hsin-Lam

 Gaiotto-Kapustin-Kormagodski-Seiberg

• Both are accounted for, holographically, by the the same type IIB CS action

SCS = ∫AdS5×S5

B2 ∧ dC2 ∧ F5

former

= ∫AdS5×S5

B2 ∧ F̃3 ∧ F5 + ∫AdS5×S5

C0B2 ∧ dB2 ∧ F5

latter

(continuous version, to be precise)

3. Mixed ’t Hooft anomaly from type IIB SUGRA 
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To be more precise, the  term is missing and it agrees only on spin manifolds 𝒪(N2) X

(1) The mixed  anomaly between 1-form symmetries Zgcd(k,k′￼,ℓ) ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)

SCS =
N
2π ∫AdS5

B′￼2 ∧ dC′￼2 + ′￼′￼local counterterms′￼′￼ w/ ∫ B′￼2 ∈
ℤ
N

, ∫ dC′￼2 ∈
ℤ

gcd(k, k′￼, ℓ)

where  is an  rotation of  and diagonal w.r.t. the 1-form 
symmetries                              

(B′￼2, C′￼2) SL(2,Z ) (B2, C2)

(2) The mixed anomaly between 1-form symmetries  and the electric  
1-form symmetry

θ → θ + 2πk Zk′￼

SCS = −
N
4π ∫AdS5

dC0 ∧ B2 ∧ B2 w/ C0 = θ/2π & k′￼B2 = 𝖡FT ∈ H2(X, Zk′￼)



18

 D’Hoker-Estes-Gutperle  Bak-Gutperle-SH

ℝ3

θ = − kπ θ = + kπ

k D7 branes wrapping S5 = (2 + 1)d wall in ℝ3,1

Janus = deformed   
(in  slices) with two faces

AdS5
AdS4

C0 = − k /2 C0 = + k /2

• For pure  YM, the mixed ’t Hooft anomaly implies SSB CP at  (out of 
options, nontrivial gapless theory, gapped TFT, or SSB) and the existence of domain 
walls. Meanwhile,  SYM is conformal and a nontrivial gapless theory 
w/o SSB. No dynamical DW, but interfaces separating  exist. 

SU(N ) θ = π

𝒩 = 4 SU(N )
θ = ± π

SD7 = ∫R1,2×S5

C4 ∧ TrU(k)(F ∧ F ) = − N∫R1,2

TrU(k)(A ∧ F )

The interface theory =  CS theory on D7sU(k)−N

4. Axionic Janus as interfaces between different  angles θ
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Holographic description for  SYM theories𝒩 = 4 so(N/2)

where  is projected out under orientifold  except for  holonomies 

 and  that leave the wavefunction  invariant under                     

(B2, C2) Ω(−1)FL Z2

θRR = ∫ C2 θNS = ∫ B2 e2πiθ Ω(−1)FL

(2) The internal space:        (and     /2 )S5 ⟶ RP5 = S5/Z2 ∫S5

F5 = N ⟶ ∫RP5

F5 = N

• The basic differences from : 
 
(1)  D3s    even  D3s +  for  w/  
                                              +  for  w/  
                                              +  for  w/  

                                              +  for  w/ 

su(N)

N ⟶ N O3− so(2n) (θRR, θNS) = (0,0)
Õ3

−
so(2n + 1) (θRR, θNS) = (1/2,0)

O3+ sp(n) (θRR, θNS) = (0,1/2)
Õ3

+
s̃p(n) (θRR, θNS) = (1/2,1/2)

S
T
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• The groups for  and so(N/2) sp(N/2)

For odd n the center of Spin(2n) is Z4, with the di↵erent classes of representations

transforming under the generator as

I ! I , S ! iS , C ! �iC , V ! �V . (3.1)

In particular for odd n we have the relations S⇥S = C⇥C = V , S⇥C = I, S⇥V = C,

and C ⇥ V = S. The possible gauge groups are Spin(4k + 2), Spin(4k + 2)/Z2 =

SO(4k + 2), and Spin(4k + 2)/Z4. The line operator charges ze, zm take values in Z4,

with the generator corresponding to S. The Dirac pairing condition is given by

zez
0
m � zmz

0
e = 0 mod 4 . (3.2)

There are seven di↵erent maximal charge lattices satisfying this condition. The corre-

sponding theories and their one-form symmetries are shown in Table 1.11 Note that this

generalizes so(6) = su(4) from the previous section. The action of SL(2,Z) is shown
in Fig. 7. There are two orbits of theories for any k, one containing the six theories

with G(1) = Z4, and one with just the SO(4k + 2)0 theory which has G(1) = Z2 ⇥ Z2.

theory (ze, zm) G(1)

Spin(4k + 2) (S, I)n Z4

SO(4k + 2)0 (V n, V m) Z2 ⇥ Z2

SO(4k + 2)1 (S, V )n Z4

(Spin(4k + 2)/Z4)` (S`, S)n Z4

Table 1. The seven so(4k + 2) theories.

Spin(4k + 2) (Spin(4k + 2)/Z4)0

(Spin(4k + 2)/Z4)1

(Spin(4k + 2)/Z4)2

(Spin(4k + 2)/Z4)3

(SO(4k + 2))1
S SS

T T

TT
T T

(SO(4k + 2))0

S,T

Figure 7. The SL(2, Z) duality orbits for so(4k + 2), reproduced from [1].

11In [1] the additional parameter for SO(2n) was denoted as ±.
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For even n the center of Spin(2n) is ZS
2 ⇥ZC

2 , with the di↵erent classes transforming

as

I ! I , S ! �S , C ! C , V ! �V , (3.3)

under the generator of ZS
2 , and as

I ! I , S ! S , C ! �C , V ! �V , (3.4)

under the generator of ZC
2 . In this case the classes are related as S ⇥ C = V ,

S ⇥ S = C ⇥ C = I, S ⇥ V = C, and C ⇥ V = S. The possible gauge groups

are Spin(2n), Spin(2n)/ZV
2 = SO(2n) (where ZV

2 is the diagonal subgroup of ZS
2 ⇥

ZC
2 ), Spin(2n)/ZS

2 = Ss(2n), Spin(2n)/ZC
2 = Sc(2n), and Spin(2n)/(Z2 ⇥ Z2) =

SO(2n)/Z2. The line operator charges now take values in ZS
2 ⇥ ZC

2 , with the generator

of ZS
2 corresponding to the spinor class S, and the generator of ZC

2 corresponding to

the spinor class C. The mutual locality condition is now given by [1]

ze,Sz
0
m,S � zm,Sz

0
e,S + ze,Cz

0
m,C � zm,Cz

0
e,C = 0 mod 2 (2n = 8k + 4) (3.5)

ze,Sz
0
m,C � zm,Cz

0
e,S + ze,Cz

0
m,S � zm,Sz

0
e,C = 0 mod 2 (2n = 8k) . (3.6)

In either case there are fifteen maximal charge lattices, all two-dimensional, as sum-

marized in Table 2.12 The action of SL(2,Z) in the two cases is shown in Figs. 8 and

9.

theory (zeS , zeC , zmS , zmC ) G(1)

Spin(8k + 4j) (Sn, Cm, I, I) Z2 ⇥ Z2

SO(8k + 4j)`V (Sn+`V m, Cn, Sm, Cm) Z2 ⇥ Z2

Ss(8k + 4j)`S (Sn, C`Sm, S(j+1)m, Cjm) Z2 ⇥ Z2

Sc(8k + 4j)`C (S`Cm, Cn, Sjm, C(j+1)m) Z2 ⇥ Z2

(SO(8k + 4j)/Z2)`SS`SC
`CS`CC

(S`SSn+`CSm, C`SCn+`CCm, Sn, Cm) Z2 ⇥ Z2

Table 2. The fifteen so(8k+4j) theories. In the last class of theories mutual locality requires

`SS = `CC for j = 0, and `SC = `CS for j = 1.

3.2 Holography

The holographic dual of the so(2n) theories is AdS5 ⇥ RP 5, corresponding to the near

horizon background of n D3-branes on an orientifold 3-plane O3� [8]. The orientifold

12For a proof see Appendix B.
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can end on the boundary. The spectrum of line operators therefore consists of electric

and magnetic vectors, in agreement with the second line in both tables 1, 2.

Note that screening by another brane does not play a role here. There is no “baryon

vertex” in AdS5 ⇥ RP 5.

4 The so(2n+ 1) and sp(n) theories

4.1 One form symmetries and dualities

In either case the center is Z2 and so the line operator charges (ze, zm) take values in

Z2. For so(2n+1) the electric charge is carried by the spinor representation S and the

magnetic charge by the vector representation V of the GNO-dual sp(n) algebra, and

vice versa for the algebra sp(n). We note also that S ⇥ S = I and V ⇥ V = I. Electric

lines in the vector representation of so(2n + 1) are screened by the Pfa�an operator,

which carries one loose gauge index in this case. The Dirac pairing condition is given

by

zez
0
m � zmz

0
e = 0 mod 2 . (4.1)

There are three di↵erent theories in either case, see Table 5.

theory (ze, zm) G(1)

Spin(2n+ 1) (S, I)n Z2

SO(2n+ 1)0 (I, V )n Z2

SO(2n+ 1)1 (S, V )n Z2

Sp(n) (V, I)n Z2

(Sp(n)/Z2)0 (I, S)n Z2

(Sp(n)/Z2)1 (V, S)n Z2

Table 5. The so(2n + 1) and sp(n) theories.

The duality group in this case is not exactly SL(2,Z), but rather the subgroup

[�0(2) o Z4]/Z2 ⇢ SL(2,R) generated by [15, 16]

T 0 =

✓
1 1

0 1

◆
and S 0 =

✓
0 1/

p
2

�
p
2 0

◆
. (4.2)

This acts in the standard way on the properly normalized complexified coupling,

⌧ 0 !
a⌧ 0 + b

c⌧ 0 + d
, (4.3)

– 24 –

ℓ = 0,1,2,3

ℓ = 0,1 & j = 0,1

so(4k + 2)

so(4k)

so(2n + 1) & sp(n)

 = 1-form symmetriesG(1)
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1. Line operator spectrum & strings

For even n the center of Spin(2n) is ZS
2 ⇥ZC

2 , with the di↵erent classes transforming

as

I ! I , S ! �S , C ! C , V ! �V , (3.3)

under the generator of ZS
2 , and as

I ! I , S ! S , C ! �C , V ! �V , (3.4)

under the generator of ZC
2 . In this case the classes are related as S ⇥ C = V ,

S ⇥ S = C ⇥ C = I, S ⇥ V = C, and C ⇥ V = S. The possible gauge groups

are Spin(2n), Spin(2n)/ZV
2 = SO(2n) (where ZV

2 is the diagonal subgroup of ZS
2 ⇥

ZC
2 ), Spin(2n)/ZS

2 = Ss(2n), Spin(2n)/ZC
2 = Sc(2n), and Spin(2n)/(Z2 ⇥ Z2) =

SO(2n)/Z2. The line operator charges now take values in ZS
2 ⇥ ZC

2 , with the generator

of ZS
2 corresponding to the spinor class S, and the generator of ZC

2 corresponding to

the spinor class C. The mutual locality condition is now given by [1]

ze,Sz
0
m,S � zm,Sz

0
e,S + ze,Cz

0
m,C � zm,Cz

0
e,C = 0 mod 2 (2n = 8k + 4) (3.5)

ze,Sz
0
m,C � zm,Cz

0
e,S + ze,Cz

0
m,S � zm,Sz

0
e,C = 0 mod 2 (2n = 8k) . (3.6)

In either case there are fifteen maximal charge lattices, all two-dimensional, as sum-

marized in Table 2.12 The action of SL(2,Z) in the two cases is shown in Figs. 8 and

9.

theory (zeS , zeC , zmS , zmC ) G(1)

Spin(8k + 4j) (Sn, Cm, I, I) Z2 ⇥ Z2

SO(8k + 4j)`V (Sn+`V m, Cn, Sm, Cm) Z2 ⇥ Z2

Ss(8k + 4j)`S (Sn, C`Sm, S(j+1)m, Cjm) Z2 ⇥ Z2

Sc(8k + 4j)`C (S`Cm, Cn, Sjm, C(j+1)m) Z2 ⇥ Z2

(SO(8k + 4j)/Z2)`SS`SC
`CS`CC

(S`SSn+`CSm, C`SCn+`CCm, Sn, Cm) Z2 ⇥ Z2

Table 2. The fifteen so(8k+4j) theories. In the last class of theories mutual locality requires

`SS = `CC for j = 0, and `SC = `CS for j = 1.

3.2 Holography

The holographic dual of the so(2n) theories is AdS5 ⇥ RP 5, corresponding to the near

horizon background of n D3-branes on an orientifold 3-plane O3� [8]. The orientifold

12For a proof see Appendix B.
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so(4k) theories

(1) S  C =V vector (Wilson, ’t Hooft) lines = (F1, D1) 

(2) S-spinor (Wilson, ’t Hooft) lines = (D5 on , NS5 on ) 

(3) S  V = C-spinor (W, T) lines = (D5 on  + F1, NS5 on  + D1)

×

RP4 RP4

× RP4 RP4

3-5 F-string ground states = electric fermions all  charged: 2 (branes) = nothingZ2 ×

 = 1-form symmetriesG(1)
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Spin(4k + 2): The dual boundary condition fixes c̃, and therefore also b = 2c̃. This

means that only wrapped D5-branes and fundamental strings can end on the boundary

of AdS5, and two wrapped D5-branes are equivalent to one fundamental string. One

wrapped D5-brane corresponds to an electric line in the spinor representation S, two

wrapped D5-branes (or one string) to an electric line in the vector representation V ,

three wrapped D5-branes to an electric line in the spinor representation C, and four

correspond to a trivial line operator (see Fig. 10). This is precisely the spectrum shown

at the top of table 1.

(S, I)

D5RP 4

(S2
, I) = (V, I)

2 D5RP 4 = F1

(S3
, I) = (C, I)

3 D5RP 4 = D5RP 4 + F1

(S4
, I) = (I, I)

4 D5RP 4 = 0

Figure 10. Bulk description of the line operator spectrum of the Spin(4k + 2) theory.

Spin(4k): For even n the dual boundary conditions fix c̃ and b separately. So as in our

first example, both D5-branes and fundamental strings can end on the boundary, but

here there is no relation between them. In this case one wrapped D5-brane corresponds

to electric S-line and two are trivial, and one fundamental string corresponds to an

electric V -line and two are trivial. We can also consider a D5-F1 combination, which

corresponds to an electric C-line (see Fig. 11). This is precisely the spectrum shown at

the top of table 2.

(S, I)

D5RP 4

(V, I)

F1

(S ⇥ V, I) = (C, I)

D5RP 4 + F1

Figure 11. Bulk description of the line operator spectrum of the Spin(4k) theory.

SO(2n)0: The dual boundary conditions fix b and c. For n odd these are equivalent

to 2c̃ and 2b̃. This means that only the fundamental string (or equivalently pairs of

D5-branes for odd n) and the D-string (or equivalently pairs of NS5-branes for odd n)

– 23 –

(1) S  C =V vector (Wilson, ’t Hooft) lines = (F1, D1) 

(2) S-spinor (Wilson, ’t Hooft) lines = (D5 on , NS5 on ) 

(3) S  V = C-spinor (W, T) lines = (D5 on  + F1, NS5 on  + D1)

×

RP4 RP4

× RP4 RP4

3-5 F-string ground states = fermions all  charged: 2 (branes) = nothingZ2 ×
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2. Boundary conditions

SCS[B2, C2, B̃2, C̃2] = ∫AdS5

n
2π

B2 ∧ dC2

CS

+
1
π

B2 ∧ dB̃2

B2 kinetic

+
1
π

C2 ∧ dC̃2

C2 kinetic

• The line operator spectrum of all these theories and its center symmetry are 
encoded in the 5d topological theory (at low energies) 

Bergman-SH

where   and                  (B̃2, C̃2) = (∫ℝP4

B6, ∫ℝP4

C6) (dB6, dC6) = (*dB2, * dC2)

•The canonical quantization yields the commutation relations 

b c b̃ c̃

[c, c̃] = [b, b̃] = πi mod 2πi , [b̃, c̃] =
nπi
2

mod 2πi
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This reproduces the mutual locality conditions for the line operators in (3.5) once we

identify nc̃ = ze,S, nb̃ = zm,S, nb = ze,V = ze,S + ze,C , and nc = zm,V = zm,S + zm,C . The

assignment of boundary conditions to the so(8k+4j) theories is shown in Table 4. The

duality orbits of Figs. 8,9 are reproduced by the action of SL(2,Z) on (b, c) and (b̃, c̃).

theory boundary conditions

Spin(8k + 4j) c̃ = 0

b = 0

SO(8k + 4j)`V b = 0

c+ `V c̃ = 0

Ss(8k + 4j)`S c̃ = 0

b̃+ jc+ `Sb = 0

Sc(8k + 4j)`C c̃+ b = 0

c+ b̃+ jc+ `C c̃ = 0

(SO(8k + 4j)/Z2)`SS`SC
`CS`CC

b̃+ (`SS + `SC)c̃+ `SCb = 0

c+ b̃+ (`CS + `CC)c̃+ `CCb = 0

Table 4. The boundary conditions dual to the fifteen so(8k + 4j) theories. In the last class

of theories we require `SS = `CC for j = 0, and `SC = `CS for j = 1.

3.3 Branes and line operators

As before, the line operators in the 4d gauge theory correspond to the boundaries of

string worldsheets ending on the boundary of AdS5. Now we have both the 10d strings,

namely the fundamental strings, the D-strings, and more generally (p, q) strings, as

well as the various “fat strings” corresponding to 5-branes wrapping RP 4
⇢ RP 5.

The boundaries of the fat strings correspond to line operators in one of the spinor

representations of Spin(2n), which we will take to be S,14 and the boundaries of the

ten-dimensional strings correspond to line operators in the vector representation V .

More specifically, the fundamental string corresponds to an electric vector, the D-string

to a magnetic vector, the wrapped D5-brane to an electric spinor S, and the wrapped

NS5-brane to a magnetic spinor S. A line operator in the other spinor representation

C is described by a bound state of a wrapped 5-brane and the appropriate string.

The full spectrum of line operators depends on the boundary conditions on the fields

b, c, b̃, c̃, since these boundary conditions determine which strings are allowed to end on

the boundary of AdS5. Let us consider just a few examples.

14This follows from the fermionic zero modes on the 5-3 strings [8].
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Z2 × Z2

• The all admissible boundary conditions dual to these theories

mutual locality = mutually commuting pair

nbb + ncc + nb̃b̃ + nc̃c̃ = 0
n′￼bb + n′￼cc + n′￼b̃b̃ + n′￼c̃c̃ = 0

with nbn′￼b̃ + nb̃n′￼b + ncn′￼c̃ + nc̃n′￼c + j(nb̃n′￼c̃ + nc̃n′￼b̃) = 0 mod 2

All other commutators vanish mod 2⇡i. However due to the 5-brane annihilation

process described above, we have the following constraints relating the variables,

nb = 2c̃ , nc = 2b̃ . (3.12)

If n is odd, namely for so(4k + 2), the commutator in (3.11) implies that b̃ and c̃

take values in Z4. The constraints (3.12) imply that b = 2c̃ and c = 2b̃, namely that

b and c take values in Z2 ⇢ Z4. This is consistent with the commutators in (3.10).

The holonomy variables c̃, b̃ correspond to electric and magnetic spinors, respectively,

and b, c to electric and magnetic vectors, respectively. A maximal set of commuting

observables of the form nb̃b̃+ nc̃c̃ then corresponds to a maximal lattice satisfying the

condition

nc̃n
0
b̃
� nb̃n

0
c̃ = 0 mod 4 . (3.13)

So again we see that the condition of mutual commutativity of the boundary conditions

corresponds to the condition of mutual locality of the line operators. The resulting

assignment of boundary conditions to the so(4k+2) theories is shown in Table 3. The

action of SL(2,Z) on the 6-form gauge fields in Type IIB string theory gives

(b̃, c̃)
T

�! (b̃+ c̃, c̃) , (b̃, c̃)
S

�! (�c̃, b̃) . (3.14)

This reproduces the SL(2,Z) orbits of Fig. 7.

theory BC’s

Spin(4k + 2) c̃ = 0

SO(4k + 2)0 2b̃ = 0, 2c̃ = 0

SO(4k + 2)1 c̃+ 2b̃ = 0

(Spin(4k + 2)/Z4)` b̃+ `c̃ = 0

Table 3. The boundary conditions dual to the seven so(4k + 2) theories.

If n is even, namely for so(8k + 4j), the four holonomy variables b, c, b̃, c̃ are inde-

pendent, and all valued in Z2. The di↵erence between the j = 0 case and the j = 1

case is the b̃, c̃ commutator (3.11), which is trivial in the former case and non-trivial in

the latter case. Now we consider a set of observables of the form nbb+ ncc+ nb̃b̃+ nc̃c̃.

Mutual commutativity requires that for any pair of observables we have

nbn
0
b̃
+ nb̃n

0
b + ncn

0
c̃ + nc̃n

0
c + j(nb̃n

0
c̃ + nc̃n

0
b̃
) = 0 mod 2 . (3.15)
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Z4 or Z2 × Z2

b = 2c̃ , c = 2b̃

There are three allowed boundary conditions: b = 0 corresponding to Sp(n), b̃ =

0 corresponding to (Sp(n)/Z2)0, and b + b̃ = 0 corresponding to (Sp(n)/Z2)1. We

summarize this in Table 6.

theory boundary conditions

Spin(2n+ 1) c̃ = 0

SO(2n+ 1)0 c = 0

SO(2n+ 1)1 c+ c̃ = 0

Sp(n) b = 0

(Sp(n)/Z2)0 b̃ = 0

(Sp(n)/Z2)1 b+ b̃ = 0

Table 6. The boundary conditions dual to the so(2n + 1) and sp(n) theories. The boundary

conditions corresponding to the esp(n) theories are identical to those of the corresponding

sp(n) theories (and to those of the so(2n + 1) theories).

Next we consider the action of the field theory duality symmetry. As we showed

above the generator S 0 is equal to the Type IIB S transformation, S 0 = S. This

exchanges ✓RR and ✓NS, and so exchanges the algebras so(2n + 1) and sp(n). The

action on the holonomy variables is given by

S : (b, c) 7! (c,�b) and (b̃, c̃) 7! (�c̃, b̃) (4.18)

This reproduces all the S 0 maps in Figs. 12 and 13. The second generator of the field

theory duality group is given by T 0 = T 2. The fluxes ✓NS and ✓RR are invariant, so

each algebra maps to itself, and the action on the holonomy variables is given by

T 2 : (b, c) 7! (b, c+ 2b) and (b̃, c̃) 7! (b̃+ 2c̃, c̃) . (4.19)

This reproduces all the T 0 maps in Figs. 12 and 13. Note in particular the di↵erent

action of T 0 on (Sp(n)/Z2)0,1 for even n and odd n. This is due to the relations in

(3.12). The boundary condition dual to (Sp(n)/Z2)0 is b̃ = 0. Under T 0 this becomes

b̃+2c̃ = 0. Using (3.12) this becomes b̃ = 0 if n is even, and b̃+b = 0 if n is odd. In other

words (Sp(n)/Z2)0 maps to itself under T 0 if n is even (and similarly for (Sp(n)/Z2)1),

and to (Sp(n)/Z2)1 if n is odd.

4.3 Branes and line operators

The discussion here can be relatively brief, since the spectrum of strings here is the

same as in the previous section modulo the additional constraints that we discussed

– 28 –

Z2

b, b̃ absent
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Holographic description of higher group/category

Figure 6: The Hanany-Witten effect in the Z2 0-form action on spinor line operators. Indicated in

a thick red line is the D3-brane wrapped on an RP 1 = the generator for the Z2 0-form action that

exchanges S and C spinors for so(4k) theories and chiralities for so(4k+2) theories. As a D5-brane

wrapped on an RP 4 = S spinor or S+ spinor is moved across the D3-brane, an F-string is created

via the HW effect and it turns an S spinor into a C spinor or an S+ spinor into an S− spinor.

where the x5-direction becomes an RP 1 in the near-horizon limit. The direction [56] stands for

some linear combination ax5 + bx6 ≡ x[56] and the (x[56], x7, x8, x9)-directions correspond to an

RP 4.21 The x4-direction becomes the AdS radial direction. So there is a component b, the

projection of [56] to 6, in this brane configuration for which DN = 8. Thus as a D5-brane moves

across a D3-brane, an F1 is created via the HW effect.

2.1 Bulk TQFT

As discussed in Section 1.4.1, the TQFT action for a D3-particle wrapped on an RP 3 and a D3

3-surface wrapped on an RP 1 is given by

SD3 = −2
∫

AdS5

A1 ∧ dA′
3 = −2

∫

Rt

a ∧ dta
′ with A1 =

1

8κ210

∫

RP 3
C4 (2.7)

where a =
∫
Rr

A1 (0-form on the boundary) and a′ =
∫
M3

A′
3 (3-form on the boundary) for

Dirichlet A1, and a =
∫
LA1 (1-form on the boundary) and a′ =

∫
D3

A′
3 with D3 = Rr ×M2

(2-form on the boundary) for Neumann A1 corresponding to gauging the 0-form symmetry.

In the meantime, recall that for so(8k + 4n) (n = 0, 1) and so(4k + 2) theories, as discussed in

Section 1.4.5, the TQFT action for the strings (1-form symmetries) is given by22

Sstring = −
∫

Rt

[
N

2
b ∧ dtc+ 2b ∧ dtb

′ + 2c ∧ dtc
′
]

, (2.8)

where N is the rank of the so(N) theories.

21The RP 5 is defined by the curve X2
1 + · · · + X2

6 = 1 with antipodal identifications Xi ∼ −Xi. Without loss of

generality, an RP 4 submanifold can always be chosen to be X2
1 + · · · +X2

5 = 1. We then have choices for an RP 1:

it is either RP 1 ⊂ RP 4 or intersects with the RP 4. In the latter case, it is given by the curve X2
5 +X2

6 = 1 without

loss of generality.
22The overall normalization differs by a factor of 2π from that in our paper.
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3-surface wrapped on an RP 1 is given by

SD3 = −2
∫

AdS5

A1 ∧ dA′
3 = −2

∫

Rt

a ∧ dta
′ with A1 =

1

8κ210

∫

RP 3
C4 (2.7)

where a =
∫
Rr

A1 (0-form on the boundary) and a′ =
∫
M3

A′
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∫
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D3
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(2-form on the boundary) for Neumann A1 corresponding to gauging the 0-form symmetry.

In the meantime, recall that for so(8k + 4n) (n = 0, 1) and so(4k + 2) theories, as discussed in

Section 1.4.5, the TQFT action for the strings (1-form symmetries) is given by22

Sstring = −
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where N is the rank of the so(N) theories.

21The RP 5 is defined by the curve X2
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6 = 1 with antipodal identifications Xi ∼ −Xi. Without loss of

generality, an RP 4 submanifold can always be chosen to be X2
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5 = 1. We then have choices for an RP 1:

it is either RP 1 ⊂ RP 4 or intersects with the RP 4. In the latter case, it is given by the curve X2
5 +X2
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 0-form action = Hanany-Witten effectZ2

• In addition to the  1-form symmetry, the  theories have a  0-form 
symmetry that exchanges S and C-spinors. These two together form a 2-category 
symmetry, in which the 0-form generator  is noninvertible, with the following 
fusions:

Z2 × Z2 so(4k) Z2

G(0)

G(0)(M3) × G(0)(M3) = 1 + G(1)(M2)
G(0)(M3) × G(1)(M2) = G(0)(M3)

where  and                             G(0)(M3) = ZD3 DW on RP1(F = 0) + ZD3 DW on RP1(F = 1) G(1)(M2) = ZD1 surface

Garcia Etxebarria, Apruzzi-Bah-Bonetti-Schafer-Nameki
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Discussions

• An ensemble of  SYM theories? Could there be the factorization 
problem in  with ?  
 
As an example, consider  and identify 
two magnetic flux vectors . The resulting theory is 
the self S-dual  theory with the S-duality invariant 
partition function  
 
                   

which is not factorized. 
 
This is different from the TFD state, so it is not quite the two-sided AdS 
Schwarzschild. Is there a dual geometry and is it a spacetime wormhole? 

𝒩 = 4
AdSd+1/CFTd d ≥ 3

CFTL[SU(N)/ZN] × CFTR[SU(N)/ZN]
mL = mR = m ∈ H2(X, Z2)

(SU(N) × SU(N))/ZN

ZSU(N)×SU(N)/ZN
= ∑

m∈H2(X,Z2)

Zm(e2πiτ1)Zm(e2πiτ2) Vafa-Witten



Thank you!
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• In the diagonal basis, the 1-form symmetry of the  theory [SU(N)/Zk]ℓ

ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)

under which the following line operators are charged:

W(L)pk+ℓT(L)k′￼
ZN/gcd(k,k′￼,ℓ) e

2πi
N/gcd(k, k′￼, ℓ) (W(L)pk+ℓT(L)k′￼)

W(L)
δN

gcd(k, k′￼, ℓ)T(L)
γN

gcd(k, k′￼, ℓ)
Zgcd(k,k′￼,ℓ) e

2πi
gcd(k, k′￼, ℓ) (W(L)

δN
gcd(k, k′￼, ℓ)T(L)

γN
gcd(k, k′￼, ℓ) )

where there always exists  such that  ∃p ∈ Z gcd(pk + ℓ, k′￼) = gcd(k, k′￼, ℓ)

δ
k′￼

gcd(k, k′￼, ℓ)
− γ

pk + ℓ
gcd(k, k′￼, ℓ)

= 1

 Bergman-SH

Back-up: diagonal line operators
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• The different  theories are connected by .  [SU(N)/Zk]ℓ SL(2,Z)

• However, not all the  theories belong to a single  orbit. 
There are “islands” of  orbits distinguished by the 1-form symmetry:

[SU(N)/Zk]ℓ SL(2,Z)
SL(2,Z)

ZN/gcd(k,k′￼,ℓ) × Zgcd(k,k′￼,ℓ)

• This can be most manifestly understood from the  transformations 
of the boundary conditions (in the diagonal basis of the 1-form symmetry):

SL(2,Z)

T : B → B , C → C + B
S : B → − C , C → B

pk + ℓ k′￼

δN
gcd(k, k′￼, ℓ)

γN
gcd(k, k′￼, ℓ)

(b
c) ≡ MD (b

c) = 0
ZN/gcd(k,k′￼,ℓ) :

Zgcd(k,k′￼,ℓ) :

Back-up:  dualitySL(2,Z)

• The duality orbit can be understood from the following relation:  

MD

pk + ℓ
gcd(k, k′￼, ℓ)

k′￼
gcd(k, k′￼, ℓ)

δ γ

SL(2,Z) duality rotation

= (gcd(k, k′￼, ℓ) 0
0 N/gcd(k, k′￼, ℓ))
[SU(N)/Zgcd(k,k′￼,ℓ)]0 theory
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• There is a mixed ’t Hooft anomaly by gauging the (electric)  subgroup of 
the 1-form symmetry in the presence of , which breaks CP at .  
For the  theory ( )

Zk′￼

θ θ = π
SU(N) k′￼= N

Z[θ + 2π] = Z[θ]exp [2πi
N − 1

N ∫X

𝒫(𝖡)
2 ]

where  the background 2-form gauge field,  the Pontryagin 
square operation;   fractional instanton number by  gauging.

𝖡 ∈ H2(X, ZN) 𝒫( ⋅ )
𝒫(𝖡)/N ≃ ZN

 Gaiotto-Kapustin-Seiberg-Willett

• The anomaly action (to be reproduced by gravity dual) 

S5d = 2πi
N − 1

N ∫
dθ
2π

𝒫(𝖡)
2

SU(N)/Zk 2πi
N(N − 1)

k′￼2 ∫
dθ
2π

𝒫(𝖡)
2

where  for the latter𝖡 ∈ H2(X, Zk′￼)

Back-up: Mixed anomaly
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• The relevant part of type IIB SUGRA is that of gravity  and axio-dilaton gμν

τ = C0 + ie−ϕ

The dilaton = YM coupling does not vary in the boundary, 
whereas the axion =  angle jumps across the interfaceθ

Another illustration of a sadden jump of the axion 
across the interface in the boundary

Axio-dilaton Axion

Boundary

Boundary

Excursion in the bulk

Boundary Boundary

Back-up: Axionic Janus
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ds2 = h(μ)(dμ2 + ds2
AdS4) + dΩ2

5

F5 = 2h(μ)5/2dμ ∧ ωAdS4
+ 2ωS5

τ′￼′￼

τ′￼
+

3h′￼

2h
+ i

τ′￼

Im(τ)
= 0

Ansatz

h′￼2 − 4h3 + 4h2 =
c2

0

6h
|τ′￼|2 /(Im(τ))2 = c2

0 /h3

|τ(μ) |2 = r2 (r ∈ ℝ)

Solution


