Fluid model of black hole/string transition

Yoshinori Matsuo Kindai University

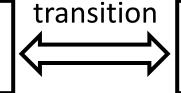
Based on arXiv:2205.15976

2022/7/6 @ Kyoto U.

How to obtain analytic solution of black hole/string transition

Black hole/string transition near string scale (Hagedorn temp.)

String bound state (self-gravitating string)



Black hole

Bound state of strings is described by Horowitz-Polchinski model

- How to solve EOM analytically?
- What is solution near black hole/string?

H-P model is solved only numerically even in linear gravity approx.

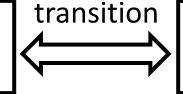
Some simplification is necessary

Strings in bound state can be approximated by perfect fluid

Black hole is fluid of strings

Black hole/string transition near string scale (Hagedorn temp.)

String bound state (self-gravitating string)



Black hole

Temperature of strings effectively exceeds Hagedorn temperature

Strings become fluid in the bound state

We derive geometry of string fluid

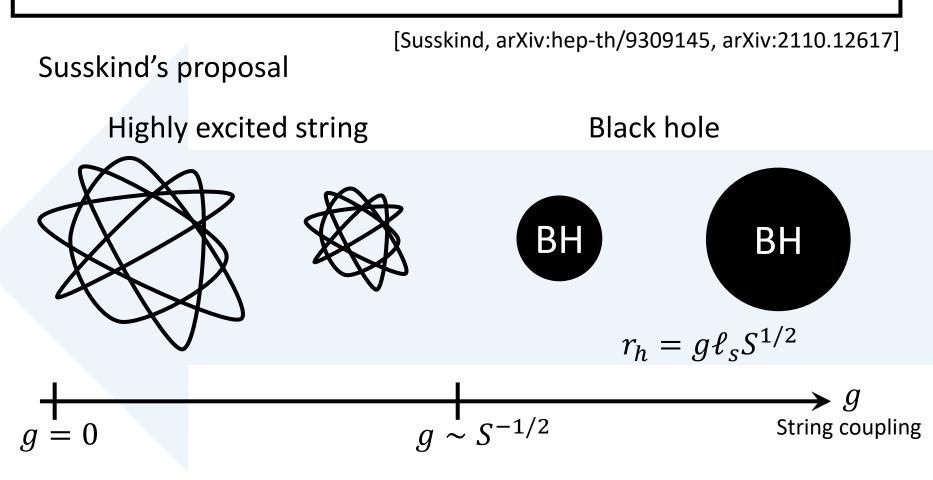
High temperature: bound state of strings

Low temperature: approximately black hole (horizonless)

Plan of Talk

- 1. Black hole/string transition
 - String becomes black hole by self-gravitation
 - Horowitz-Polchinski model: Self-gravitating winding string
 - Temperature effectively exceeds Hagedorn temperature
- 2. Fluid model of self-gravitating strings
- 3. Geometry of winding string fluid
- 4. Black hole/string transition

String become black hole by self-gravitation



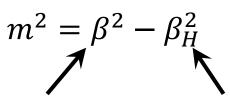
If string coupling is so weak, gravity cannot trap string inside horizon Similar phase structure can be found for temperature

Horowitz-Polchinski model: Self-gravitating winding strings

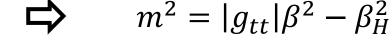
[Horowitz-Polchinski, Phys.Rev.D 57 (1998)]

 χ : winding string on Euclidean time circle

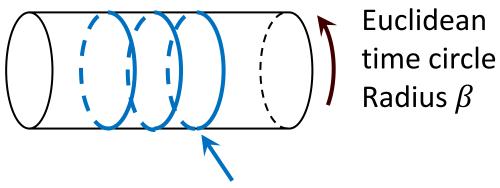
mass:



in gravitational potential



Mass from tension Tachyonic at ground state



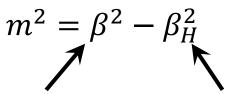
Wining strings wrapping on Euclidean time circle

Horowitz-Polchinski model: Self-gravitating winding strings

[Horowitz-Polchinski, Phys.Rev.D 57 (1998)]

 χ : winding string on Euclidean time circle

mass:



in gravitational potential

$$\Rightarrow \qquad m^2 = |g_{tt}|\beta^2 - \beta_H^2$$

Mass from tension Tachyonic at ground state

Assumptions:

- High temperature: $\beta \beta_H$ is small
- High temperature: φ is small, where $|g_{tt}| = e^{2\varphi}$

Spacetime is almost flat dilaton is negligible

Horowitz-Polchinski model: Self-gravitating winding strings

EOM for winding string χ and graviton φ

$$(\,g_{tt}=-e^{2\varphi}\,)$$

$$0 = \nabla^2 \chi - 2\varphi \beta^2 \chi - (\beta^2 - \beta_H^2) \chi$$
$$0 = \nabla^2 \mu \rho^2 \lambda - (\beta^2 - \beta_H^2) \chi$$

$$0 = \nabla \chi - 2\varphi \beta \chi - (\beta - \beta_H)\chi$$
$$0 = \nabla^2 \varphi - \beta^2 |\chi|^2$$

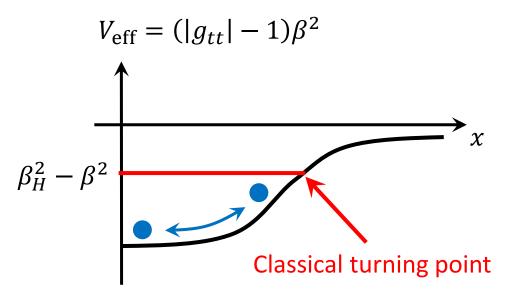
$$e^{2\varphi}\beta^2$$
 \Longrightarrow Potential $V(x)$ β_H^2 \Rightarrow Energy

Eigenvalue comes from normalization of χ

$$\begin{aligned} -\widehat{\nabla}^{2}\hat{\chi}(\hat{x}) + \widehat{V}(\hat{x})\hat{\chi}(\hat{x}) &= \zeta\hat{\chi}(\hat{x}) \\ \hat{x} &= \frac{x}{\ell\sqrt{\zeta}} \qquad \hat{\chi} = \ell^{2}\zeta\chi \qquad \qquad \text{Typical scale} \\ \ell &= (\beta - \beta_{H})^{-1/2} \end{aligned}$$

Temperature of winding strings effectively exceeds Hagedorn temperature

Classical turning point is at $|g_{tt}|\beta^2 - \beta_H^2 = 0$



Outside turning point:

$$T_p = |g_{tt}|^{-1/2}T < T_H$$

Inside turning point:

$$T_p = |g_{tt}|^{-1/2}T > T_H$$

Winding string is located where local temp. exceeds Hagedorn temp.

Winding condensate beyond Hagedorn temperature Strings will be fluid in the bound state by self-gravitation

Plan of Talk

- 1. Black hole/string transition
- 2. Fluid model of self-gravitating strings
 - Winding strings can be approximated by perfect fluid
 - Thermodynamic relation of winding string fluid

- 3. Geometry of winding string fluid
- 4. Black hole/string transition

Winding strings can be approximated by perfect fluid

Bound state of strings is ground state of Horowitz-Polchinski model

Naively, only mass of winding strings is important

$$m^2 = |g_{tt}|\beta^2 - \beta_H^2$$

Mass terms in energy-momentum tensor (ignoring kinetic terms)

$$T^{t}_{t} = -(3|g_{tt}|\beta^{2} - \beta_{H}^{2})|\chi|^{2} \qquad T^{i}_{i} = (\beta_{H}^{2} - |g_{tt}|\beta^{2})|\chi|^{2} = \rho$$

EM tensor of perfect fluid

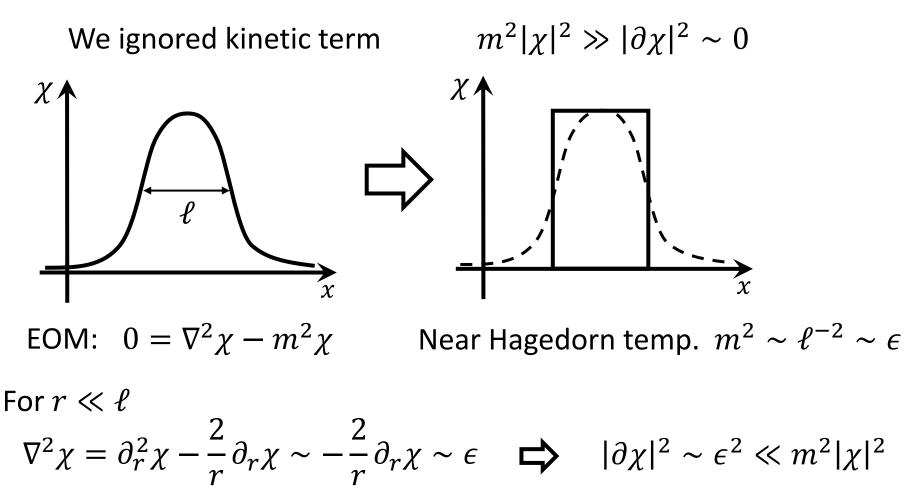
$$T^{t}_{t} = -\rho \qquad T^{i}_{i} = P$$

$$\rho: \text{ energy density} \quad P: \text{ pressure}$$

$$T^{i}_{i} = \frac{\beta_{H}^{2}}{2} = \frac{\beta_{$$

Winding strings can be approximated by perfect fluid

What is this approximation?



Thermodynamic relation of winding string fluid

r

Entropy from Free energy

$$s = e^{3\varphi}\beta^3|\chi|^2$$

C

$$\int s = (\beta \partial_{\beta} - 1)I$$

K Entropy density action

Entropy satisfies local thermodynamic relation

$$s = e^{\varphi} \beta(\rho + P) \qquad \qquad \rho = (3|g_{tt}|\beta^2 - \beta_H^2)|\chi|^2 P = (\beta_H^2 - |g_{tt}|\beta^2)|\chi|^2$$

ADM mass is different from energy density

$$M = \int (\rho + 3P) \qquad \qquad M = -\partial_{\beta}I$$

We can also calculate energy density and pressure from entropy and ADM mass

Plan of Talk

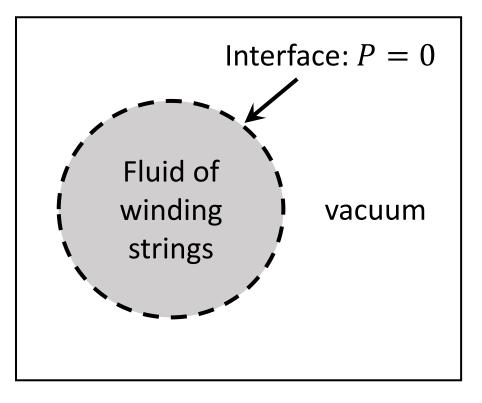
- 1. Black hole/string transition
- 2. Fluid model of self-gravitating strings
- 3. Geometry of winding string fluid
 - Geometry is junction of interior and exterior geometries
 - Interior is solution for winding string fluid
 - Exterior is Schwarzschild spacetime
 - Quantization condition

4. Black hole/string transition

Geometry is given by junction of interior and exterior geometries

We solve Einstein equation (for D = 4)

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$



Interior solution (winding strings)

$$T^{t}_{t} = -(3|g_{tt}|\beta^{2} - \beta_{H}^{2})|\chi|^{2}$$
$$T^{i}_{i} = (\beta_{H}^{2} - |g_{tt}|\beta^{2})|\chi|^{2}$$

Exterior solution (Schwarzschild)

$$T_{\mu\nu}=0$$

Fluid solution of Einstein equation

Einstein equation

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu}$$

EM tensor of perfect fluid

$$T^t{}_t = -\rho \qquad T^i{}_i = P$$

Einstein equation gives solution of metric

EM tensor should be given by other conditions

- Conservation law of EM tensor
- Equation of state of fluid (relation between ρ and P)

Interior solution of winding string fluid

Conservation law $rightarrow |\chi|^2 \equiv D_0 = \text{const.}$

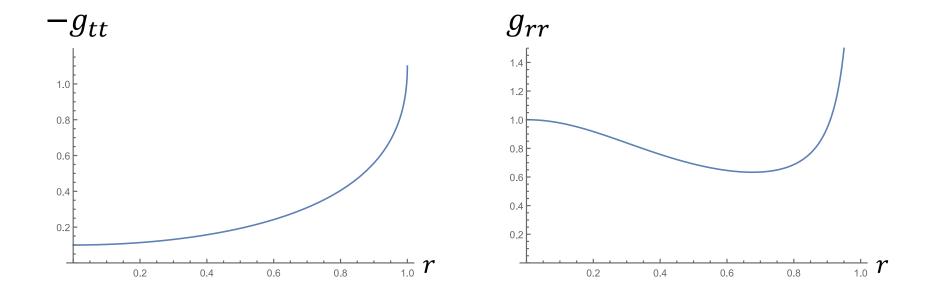
metric

$$ds^{2} = -f(r)dt^{2} + \frac{dr^{2}}{f(r)h(r)} + r^{2}d\Omega^{2}$$

Solution

This solution was first studied in [Wyman, Phys.Rev.75 (1949)]

Interior solution of winding string fluid



Exterior solution is Schwarzschild spacetime

Schwarzschild metric

$$ds^{2} = -\left(1 - \frac{r_{h}}{r}\right)dt^{2} + \frac{dr^{2}}{\left(1 - \frac{r_{h}}{r}\right)} + r^{2}d\Omega^{2}$$

1st junction cond.: induced metric on interface is identical 2nd junction cond.: extrinsic curvature is the same on both side Position of interface is determined by junction conditions

$$r = r_0 \equiv \frac{\beta^2 r_h}{\beta^2 - \beta_H^2}$$
 \Rightarrow approaches r_h in low temp.

Constants h_0 and D_0 are given as functions of β .

Quantization condition

Solution of fluid model has two parameters: β and r_h .

Horowitz-Polchinski model has one parameter: β .

⇒ Solution satisfies quantization condition

We need to impose quantization condition by hand

$$\oint p_r dr = \pi \qquad (n = 1 \text{ for ground state})$$

⇒

Quantization cond. gives relation between eta and r_h

Plan of Talk

- 1. Black hole/string transition
- 2. Fluid model of self-gravitating strings
- 3. Geometry of winding string fluid
- 4. Black hole/string transition
 - High temperature: bound state of strings, agrees with HP
 - Low temperature: approximately black hole but no horizon
 - Horizonless geometry is realized by negative energy of true vacuum

High temperature limit: bound state of strings Results consistent with Horowitz-Polchinski model

Near Hagedorn temperature: small $(\beta - \beta_H)$ expansion

$$f(r) \simeq 1$$

 $h(r) \simeq 1$

$$\Box$$

Spacetime is almost flat

Gravitation is weak

Higher order corrections: $f(r) \simeq 1 - \frac{3}{2}(\beta^2 - \beta_H^2) + \frac{1}{2}(\beta^2 - \beta_H^2)^3 \frac{r^2}{r_h^2} + \cdots$ Quantization condition gives $r_h \sim \sqrt{\beta^2 - \beta_h^2}$

Size of bound state:

$$r_0 = \frac{\beta^2 r_h}{\beta^2 - \beta_H^2} \quad \Longrightarrow \quad r_0 = (\beta^2 - \beta_H^2)^{-1/2}$$

ADM mass
$$M \sim \frac{1}{G_N} \sqrt{\beta^2 - \beta_H^2}$$
 Entropy $S \sim \frac{\beta_H}{G_N} \sqrt{\beta^2 - \beta_H^2}$

Low temperature limit: approximately black hole but geometry has no horizon

Low temperature: large β expansion ($\beta \gg \beta_H$)

Surface of star at $r = r_0$ (where $P \sim \beta_H^2 - f(r)\beta^2 = 0$) $\beta^2 f(r) = \beta_H^2 \implies f(r) \ll 1$ Almost frozen in star $r_0 = r_h \left(1 + \frac{\beta_H^2}{\beta^2}\right) \implies$ Surface is slightly outside the horizon

Quantization condition gives $r_h \sim \beta$

ADM mass
$$M \sim \frac{r_h}{G_N}$$
 Entropy $S \sim \frac{r_h^2}{G_N}$

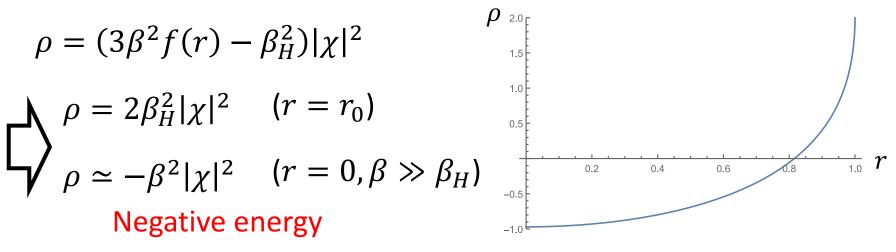
Solution has no horizon but size, temperature, ADM mass and entropy approximately agree with Schwarzschild BH Horizonless geometry is realized by negative energy in true vacuum

Buchdahl theorem: No static star has size of $r_0 \leq \frac{9}{8}r_h$

- Assumptions: Static Spherically symmetric
 - Pressure is isotropic (perfect fluid)
 - Energy density is non-increasing outwards

No negative energy is assumed

Energy density of winding string fluid



Horizonless geometry is realized by negative energy in true vacuum

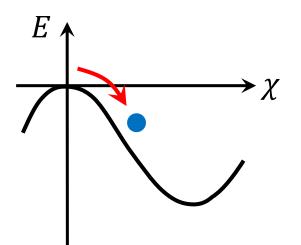
Energy density of winding string fluid

$$o = (3\beta^2 f(r) - \beta_H^2) |\chi|^2 = 2\beta^2 |\chi|^2 + m^2 |\chi|^2$$

$$\int \int \int dx \, dx$$
Thermal energy tachyonic mas

Thermal energy

tachyonic mass



Energy is renormalized as

E = 0 for $\chi = 0$ (in $r \to \infty$)

Temp. exceeds Hagedorn temp. by blue shift

Negative energy for true vacuum at Hagedorn temp.

Horizonless geometry is realized by stringy effect

Summary

Black hole is fluid of strings

Black hole/string transition near Planck scale

Temperature of strings effectively exceeds Hagedorn temperature

Strings become fluid in the bound state

We derive geometry of string fluid

High temperature: bound state of strings

Low temperature: approximately black hole (horizonless)

Thank you