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Introduction: Vacuum metastability and quantum tunneling

V(o)

»Vacuum decay is a quantum tunneling of scalar field

In quantum mechanics, tunneling probability is

Pp ~ exp|—J do\/2(V(p) — E)]
False Yacuum

In QFT, a bubble of true vacuum is nucleated and expand at the light speea. True Vacuum

»Rich phenomenology from bubble nucleation
* GW production from density perturbation by bubble collision
* PBH production

* Particle Creation of coupling fields to ¢




Introduction: Vacuum decay in our Universe
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A(u) is negative for large energy scale(¢p~1011GeV)

* Many unstable vacua in UV theory

many fields appear — complicated vacuum structure is expected

(Bézrukov et al.2014) |
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Introduction: Vacuum decay in Euclidean formalism

»Decay rate is estimated by the action of bounce (Callan, Coleman 1977) tE*Taginf}: time
I alse
Vacuum

Decay rate is defined as imaginary part of false vacuum energy E,.

Tt:ue X
e Eol = (fv|e_Tﬁ|fV> = f_§<tE<§;§<xi<§ D¢e—5Euclid[¢] ~ exp(Ke BT), Vac::Jum >
; l
with T — o, Bcoleman = Sel¢p]l,  ¢p: 0(4)bounce solution of i—f]f =0, K=13 \/%(dzzlﬁ(iljui];,,,,((ﬁs’;))z ' S,
K originates from integral of gaussian fluctuation 6¢ = c;f; around ¢, TN
However, the path integral diverges due to negative mode. | \ i
To avoid divergence, we adopt complex integration contour for c_, (o)
which gives Im E: c_

2 detr(—D+V"(¢C1)) _% . (/

det(—o+V''(0))

- . 1/B
FDecay = Im EO = Ae BColeman,WlthA — LBE(%)




Introduction: Vacuum decay in Euclidean formalism 2

In Lorentzian spacetime, it is supposed bubble with bounce radius is nucleated.

And Lorentzian evolution is obtained by analytic continuation tg — —it, as

bb ( té + XZ) = QProrentz(t, X) = ¢b(\/_t2 + x%) w /

1
Questions on Euclidean formalism: Imaginary ~\—\ />
fimeg Euclidean

Q. Euclidean formalism just gives decay rate of |fv). What is the final state after decay?
Q. How to calculate larger or smaller bubble nucleation probability?
Q. In curved space, how to define decay rate where notion of energy and vacuum is not unique!?

Q. With the (dynamical) gravity, energy E| is zero by Hamiltonian constraint. Is it consistent? (future work)

-

[ Directly evaluate transition amplitude (¢, pp1e|FV) in Lorentzian path integral ! ]




Model: Vacuum decay in de-Sitter Universe (Coleman de-Luccia 1980)

We consider vacuum decay in de-Sitter spacetime with radius lgg = /3/A = \/3/87TGV(¢fV):

dsis, = d&? + p(§)*dsgs, with p = ldssin%,dsczls3 = —dn? + cosh?ndQ?

In order to go to Euclidean spacetime, we perform analytic continuationn — —i (7715 — g)

V(o)

ds§, = d&* + p(§)*dss,  with Sy:n-sphere, ds§ = dng + sin?ngdQ?

Euclidean action and O(4) symmetric bounce solution is

Sp=Jd* XEV—9E< gy 0,$0,¢ + V(Cb)),

¢+3 d)_d_V 0, V(pg) =

¢ dé

with a boundary conditions:

¢(O)N¢tw ¢(nld5) ~ d)fv

We neglect contribution of E-H action, which is valid when A7V « 1 and week gravity.




Model: Vacuum decay in de-Sitter Universe 2 (Coleman de-Luccia 1980)

Let’s use thin-wall approximation. Action split into bulk and surface term:

b 3
B = S;[¢] = 2n20p; — fp dp prav , o= | dqb\/Z(V — V(gg)): wall tension

’ _p

V lCZlS

dB

Since ¢ is saddle solution, p, can be determined bya =0:
b
1

o
Pp = , with pg = W: bubble radius in Minkowski spacetime

\/p62+l£§ p=0

Then decay probability is

2n2op;

(1+ g—’(’))z. I

Pp ~ eXp(_BColeman) ,  Bcoleman =

This is the result of the Euclidean formalism in our model.




> Effective theory of a bubble in de-Sitter space (Basu+ 1991)
Sncl[XH] = aj d3x\[—det0aX“0qu — AV]d‘LX\/—g
0B B

Nambu-Goto action

2
withds? = fdT? + f~1dR? + R2dQZ, f=1-— I’Z—S x® = (1,6, ),
X¥(x): embedding in bulk spacetime, d,X*0,,X,,: induce metric

0(3) sym.
DOF :X*(x%) ={T,R,0,®} —— {T'(1),R(7), 6, ¢}

R3

Sng[R] = 4mo [ dT (-RZ\/f — -1 (Z_i)z + E) (gauge fixing: T = T)

Analytic continuation T — —iTg gives bounce equation:
2 d_R)Z _ _ - _ zp_g( _R_Z)
R (dTE 20U(R) = 0, with U(R) = 225 (1 -

2n%o p3
R = p,, B =S R| = b
bounce Pb> DColeman NG,E [ ] (1+py/po)?

Same result as field theory]

Model: Vacuum decay as bubble wall nucleation \
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Lorentzian path integral for bubble wall nucleation

» Quadratic action suitable for path integral quantization (Polyakov 1981)

1
SplX#,y®] = —o | d*xy=y5 [y X 0pX, — 1] + AV f d*%\—g
0B B

with y,p: metric on wall modified as quadratic in d, X*

on-shell equation 9% _ gives yqp =~ 0,XH0,X, and Sp[XH#,y? bl = Snc[XH].

6Yab

DOF {XH*(x%)}, {yab}u) {T(®),R(7),0,9}, Yopdx®dx? = —N(t)?dt + R(1)?d0?

[ nucleated bubble radius ]
(Arbitrary choice)

ST )= 0 e SR 7+ £42) <]+

» transition amplitude for bubble nucleation defined by the Lorentzian path mtegral

R(1)=R,
G(Ry;0) = j de DTDR exp(iSp[T, R, N]) (gauge fixing: N = 0)
R(0)=0

R is a nucleated bubble radius which is freely chosen.




Lorentzian path integral for bubble wall nucleation 2

Approximate transition amplitude as saddle solution for {T, R}, except for N,

because no classical solution connecting R(0) = 0 and R(1) = R; > 0 (see figure)

o) R(1)=R4
G(Ry;0) = j dN f DTDR exp(iSp[T, R, N])
0 R(0)=0

~ [, ANA(N)exp(iSe[N]), Seg(N) = Sp[T, R, N]
T,R is a saddle solution which obeys (integrated) equation of motion:
1 : :
—4na§R2[N‘2(fT2 —fR?)—1|=H
T f7R
4o R?f [N‘Z (——f )] =E=0
N Po

Where H(# 0) is an integration constant depending on R4, and E is a conjugate energy of T (which is zero since
we consider tunneling from vacuum) A(N) comes from fluctuation around saddle solution.

The Lorentzian path integral is reduced to single integral!
But difficult to evaluate due to the oscillatory behavior from Im|[iS.¢(N)]




Picard-Lefschetz theory applied to path integral

» The oscillatory integral converges with P-L theory (Feldbrugge-Lehners-Turok,2017)

Let’s consider deformation of contour C to sum of steepest decent contours of Re[iSes(N)], Cphew:

je AN expliSer(W)] > | dN expliSus(V)],

Cnew

with Ng:saddle point, J,: steepest decent contour of from N, Chew = 2 nes,

S
The weight of decent contours, ng, is given by
ng = (C,¥K;), K;:steepest acent contour from N, (:,-): geometrical intersection number(=0, +1)

This is because (Js, K47) = 85 ¢+ and intersection number is topological and conserved smooth deformation

C — Chew-
* On steepest contours Cpeyw, Im[iSeer(N)] is stationary, so integration over Cp ey is NOT oscillatory!

— saddle point approximation around. N = N is valid



Picard-Lefschetz theory applied to path integral 2

Ex.) Airy function:

3
Ai(x) = [ dN exp[iSesr(N)], Serr(N) = N? + xN

This integral is convergent but NOT absolutely convergent.
Saddle point: Ni = ti+/x.
Steepest ascent K, intersect R once:n, = (R, K,) = 1,

whereas K_ does NOT.:n_ = (R,K_) =0 Original: R

—_ =
Chew = J+ ~0.6664

. 1 2 3 Deformed: C
Ai(x) = 1 €EXP (_ gxz) , (N~Ny) — 213327
2\/Ttx%

Js

This is asymptotic expression of Airy function at x = +co.

| == descent
| — ascend
| = Original
| . relevant

1 . irrelevant

17¢_



Case 1:Transition amplitude for critical size bubble

» The transition amplitude is consistent with Euclidean decay rate

0Sp 5Sp - _
SR 8T 20 with R(7p) = 0,R(71) = Ry = pp
— R%(7) = Pol?:l)b csch?z sinh(zt){p,sinh(z7) + pysinh[z(2 — 1)]}, z = N/p,
Original: R
2m0p) [ NN Re[iS,is(N)] =
Sete(N) = SplT, R, N] = (1+Pb/Po)2[ coth Pb  Pb 4 . }gclis_:pipb |
* Transition amplitude for critical size bubble: ’ f |
2 2+ - ==m descent
saddle nlop; 18 | — ascend
G(pbr O) f dN eXp[lSeff(N)] exXp [_ (1+Pb/Pbo)2] ol O:’ | wmm original
= B /2, bounce action!! _;~ 5 . :::::;t
a4
[ Pp ~ |G (pp; 0)|* ~ exp(—Bcoleman) J e B
e D R S S S P

Deformed: Cp ey

Lorentzian path integral is consistent with Euclidean analysis!




Case 2: Large bubble nucleation

» Final state is a large bubble with radius R; (R; > pp)
6Sp _ OSp

SR 6T

O with E(To) — O,R(Tl) — Rl > Pbp

Sert(N) =

2nol} R? R? R? z

ds (1 ot pb) (cothz —z) — (—; — 1) p—bcoth z — 2| [cosh?z — <— — 1>p—0 — p—bArccoth csch z |cosh? z — (—; — 1) '02—0

Pb g Pp lgs o lGs  Po Pb las
,Z

* Transition amplitude:

G(Ry;0) ~ [, dN expliSes(N)]

2 .3
saddle n~0pp . 2mapgp; R{ <R1 ) 2 2 Pb Po
~ exp+ — +1i — 1 — — + arctanh + 2 arctanh
P (1 +Pb/,00)2 (pg )2 \/ pb (pO pb) (pO pb) PoPbp
=B / 2

= Syc[pp — R1] classical phase rotation

[ Pp ~ |G (1y; 0)|2 ~ exp(—Bcoleman) ]

Timelf 7
Critical size bubble is nucleated and classically expand to large bubble! b

Imaginary W

timet




Case 2: Large bubble nucleation

Re[iScer(N)]

Original: R<

B lis =3pp
I Ry =2p,

I | == original
2+ |
I Q / | === descent
0 4 \ | — descent
‘L“) — branch cut
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: ‘@ ;A
Al ‘V TN\ o irrelevant
! ‘3 \
- NO%
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Case 3: Small bubble nucleation

Original: R

The transition amplitude for small bubble nucleation (R; < pp) Re[iSes(N

G(Ry;0) ~ fooo dN expliSei(N)] ~ exp[—B/2 + (positive real)|
| wm original

== descent

— ascent

1 — branch cut

[ P ~ |G(Ry; 0)|? ~ exp[—B + (positive real)] J

relevant

o irrelevant
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—higher probablility to find small bubble!
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But the small bubble is not classical, since it breaks energy conservation. Deformed: Gy
V(R)

If there are additional energy sources(e.g. external field, False Vac
0

coupled particle), nucleation of small bubbles could be possible.




Case 1-3: Bubble nucleation probability

Summary of Case 1-3, nucleation probability: P ~ exp[—2L]

_____________________ coincides!
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Euclidean prediction ]:
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Summary

v"We formulate vacuum decay in Lorentzian path integral in de-Sitter space

with the direct interpretation as the nucleation of the bubble wall.
v"We find

(I)consistent probability for bubble nucleation with Euclidean analysis,

(2)large bubble nucleation is understood as bubble VR)

False Vac

nucleation + classical expansion, $

(3)higher probability to find small bubble.



Appendix: breaking degeneracy

In our model, saddle points and steepest contours are degenerate.

To break degeneracy, we can add small complex term as Sqr(N) = Segr(N) + iepiBColeman
— : ; b

Re[iSef[N]]

6

4

— original contour

(’?“

constant Im[iSgx[N]] path

—— steepest descent contour

Im[N] 0

— steepest ascent contour

. ¢ %
R
o ¢

— branch cut

|« relevant saddle point

e irrelevant saddle point




Appendix: Contour deformation

»Integration around infinity (=7) has no contribution

Original: R
Seff(N) = —kN + O(NO) Re[iSer(N)]; e 2 1
4 45
’ : | = original
e Jordan’s lemma 3 .
change variable: N = L ¢~'0 o 0 ::htt
i f |
L ‘zf |« relevant
‘f dN g(N)e'SeitlNl| < 2], sup{g(ﬂ)}f2 dfe™ ZRLQ/”zg i |+ insevan
E 7
< Zsup{g() il
Deformed: C Closed contour:

[ We can chance contour from R to C, as pre-factor g(N) — O]




Appendix: Off-shell contribution to effective action

Sp[T,R,N] = 47mj dt {%RZ[N‘l(—f(R)TZ + f(R)"1R?) — N| + R3T/p0}

T: free particle on time dependent background

e off-shell contribution of T

G(Ry;0) = [7dN [5 =R DRDT exp(iSp)

R(ty)=0

F2R [ dN exp(iSp[T, R, N1) [ DTDpy explif dr(prT — p3/2m[R])]

g 2
=TT, o~ € R

m

- fO AN 21N




