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“現実的”な系への応用?
AdS/QCD, AdS/CMP

本当に、ブラックホール描像を持つ
物質が存在するのか?



“ブラックホールらしさ”もしくは
“重力らしさ”を見出したい。

本当に、重力双対を持つ物質があったら?

その物質を使って重力特有の現象を
観測できるはず。

重力特有な現象？
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Clarifying conditions for the existence of a gravitational picture for a given quantum field theory
(QFT) is one of the fundamental problems in the AdS/CFT correspondence. We propose a direct
way to demonstrate the existence of the dual black holes: Imaging an Einstein ring. We consider a
response function of the thermal QFT on a two-dimensional sphere under a time-periodic localized
source. The dual gravity picture, if it exists, is a black hole in an asymptotic global AdS4 and a bulk
probe field with a localized source on the AdS boundary. The response function corresponds to the
asymptotic data of the bulk field propagating in the black hole spacetime. We find a formula which
converts the response function to the image of the dual black hole: The view of the sky of the AdS
bulk from a point on the boundary. Using the formula, we demonstrate that, for a thermal state dual
to the Schwarzschild-AdS4 spacetime, the Einstein ring is constructed from the response functionc.
The evaluated Einstein radius is found to be determined by the total energy of the dual QFT. Our
theoretical proposal opens a door to gravitational phenomena on strongly correlated materials.

Introduction.—One of the definite goals of the research
of the holographic principle, or the AdS/CFT correspon-
dence [1–3], is to find what class of quantum field theo-
ries (QFTs) or quantum materials possesses their gravity
dual. Is there any direct test for the existence of a gravity
dual for a given material?

Among various gravitational physics, one of the most
peculiar astrophysical objects is the black hole. Gravi-
tational lensing [4] is one of fundamental phenomena by
strong gravity. Let us consider that there is a light source
behind a gravitational body. When the light source, the
gravitational body, and observers are in alignment, the
observers will see a ring-like image of the light source, i.e.,
the so-called Einstein ring. If the gravitational body is a
black hole, some light rays are so strongly bent that they
can go around the black hole many times, and especially
infinite times on the photon sphere. As a result, multi-
ple Einstein rings corresponding to winding numbers of
the light ray orbits emerge and infinitely concentrate on
the photon sphere. Recently, Event Horizon Telescope
(EHT) [5], which is an observational project for imaging
black holes, has captured the first image of the super-
massive black hole in M87. (See the left panel of Fig. 1
[23] .) In this letter, we propose a direct method to check
the existence of a gravity dual from measurements in a
given thermal QFT — imaging the dual black hole as an
Einstein ring.

We demonstrate explicitly construction of holographic
“images” of the dual black hole from the response func-
tion of the boundary QFT with external sources, as fol-
lows. As the simplest example, we consider a (2 + 1)-
dimensional boundary conformal field theory on a 2-
sphere S2 at a finite temperature, and study a one-point
function of a scalar operator O with its conformal dimen-
sion ∆O = 3, under a time-dependent localized Gaussian
source JO with the frequency ω. We measure the local
response function e−iωt〈O("x)〉. This QFT set-up may al-

FIG. 1: (Left) Image of the black hole in M87 (This figure
is taken from Ref.[5].) (Right) Image of the AdS black hole
constructed from the response function.

AdS boundary

Black hole
Gaussian
source

Response

FIG. 2: Our setup for imaging a dual black hole, the
Schwarzschild-AdS4 spacetime. An oscillating Gaussian
source JO is applied at a point on the AdS boundary. Its
response 〈O(x)〉 is observed at another point on the bound-
ary.

low a gravity dual (see Fig. 2), which is a black hole in
the global AdS4 and a probe massless bulk scalar field
in the spacetime. The time-periodic source JO amounts
to a dynamical AdS boundary condition for the scalar
field, which injects a bulk scalar wave into the bulk from
the AdS boundary. The scalar wave propagates inside
the black hole spacetime and reaches other points on the
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Figure 1. Setup for viewing the Sch-AdS4. A oscillating Gaussian source is applied at a

point on the AdS boundary. Its response is observed at the other point on the boundary.

In the asymptotic expantion, two functions, Φ0 and Φ3, appear which depend on

boundary coordinates. In the AdS/CFT context, the leading term Φ0 corresponds

to the scalar source in the boundary CFT. On the other hand, the subleading term

Φ3 corresponds to its response (See appendix.A.) :

〈O(t, θ,ϕ)〉 = Φ3(t, θ,ϕ) . (1.6)

We consider the oscillating Gaussian source localized at the south pole of the bound-

ary S2:

Φ0(t, θ,ϕ) = e−iωtg(θ) , g(θ) =
1

2πσ2
exp

[
−(π − θ)2

2σ2

]
. (1.7)

Since we consider σ $ π, we do not care about the tiny value of the gaussian at the

north pole. In the bulk point of view, this source Φ0 is the boundary condition of

the scalar field at the AdS boundary. We also impose the ingoing boundary condtion

on the horizon of the Sch-AdS4. Schematic picture of our setup is shown in Fig.1.

The scalar wave generated at the south pole in AdS boundary propagates inside the

bulk black hole spacetime and reaches the other point at the AdS boudary. Thus,

the response (1.6) should have the information about the bulk filed propagating

in the black hole spacetime. Imposing these boundary conditions, we solve Eq.(1.4)

numerically and determine the solution of the scalar field in the bulk. We summarized

the detailed method to solve the Klein-Gordon equation in Appendix.B. We read off

the response from the coefficient of 1/r3 in Eq.(1.5). In Fig.4, we show the typical

profile of the response function. We can observe the interference pattern which is

originate from the diffraction of the scalar wave by the black hole.

1.3 Null geodesic

To help intuitive understanding of the image of the AdS black hole which will be

shown in following sections, we consider the null geodesic in Sch-AdS4. We assume
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AdS black holeの像

AdS時空中の“光”を使って、
AdS black holeの姿を見ることが出来る。

時間的測地線も考えられる?
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The scalar field obeys the Klein-Gordon equation !Φ =
µ2Φ. Under the Eikonal approximation, we can obtain
the timelike geodesic equation from the Klein-Gordin
equation. We assume that the typical frequency ω and
mass µ of the scalar field are sufficiently large and they
are same order, ω ∼ µ " 1. Substituting Φ(xµ) =
a(xµ)eiS(xµ) into the Klein-Gordin equation and assum-
ing ∂µS ∼ O(ω), we obtain

gµν∂µS∂νS = −µ2 (4)

as the leading order equation for ω. Introducing the 4-
velocity uµ = ∂µS/µ, we have uµuµ = −1. Differenciat-
ing this equation, we also obtain the geodesic equation
for the massive particle as 0 = ∇ρ(gµν∂µS∂νS)/µ2 =
2uµ∇µuρ. Thus, the relation between parameters of the
timelike geodesic and the massive scalar field is

ε = − 1

µ
∂tS , j =

1

µ
∂φS . (5)

The analysis of the Eikonal approximation indicates that
the massive particle should also be expressed as the local-
ized configuration of the massive scalar field. Our main
task is to find the approproiate boundary condition for
the scalar field at the AdS boundary and create the par-
ticle (or star) orbiting in AdS as shown in Fig.1.

Massive scalar field in asymptotically AdS spacetimes.—
Near the AdS boundary r = ∞, the scalar field behaves
as

Φ(t, r, θ,φ) & J (t, θ,φ) r−∆− + 〈O(t, θ,φ)〉 r−∆+ , (6)

where ∆± = 3/2 ± ν and ν =
√
9/4 + µ2. We will refer

J (t, θ,φ) and 〈O(t, θ,φ)〉 as the “source” and “response”.
We have to be carefull when we consider the “source”

for the massive scalar field. For µ2 > 0, the correspond-
ing operator O has the conformal weight ∆+ > 3 and
applying the source for such oparater corresponds to an
irrelevant deformation of the dual QFT. In the gravi-
tational point of view, if the non-normalizable mode is
present, the energy-momentum tensor of the scalar field
diverges near the AdS boundary and the probe approxi-
mation is not validated any more [15]. One way to avoid
this problem is to introduce an explicit cutoff at the finite
radius of the asymptotically AdS spacetime. The AdS
with the finite radial cutoff is considered as the gravita-
tional dual of the T T̄ -deformed theory [16]. The other
way is to introduce a renormalization group flow to a UV
fixed point where O is relevant. One of the simplest ex-
amples is adding the other scalar field ψ which controles
the mass for Φ:

L′ = −(∂Φ)2 − λ(ψ)2Φ2 − (∂ψ)2 + 2ψ2 , (7)

where λ(ψ) is now function of the dynamical scalar field
ψ. Since the mass square of ψ is −2, ψ behaves as
ψ ∼ 1/r, 1/r2 near the AdS boundary and both modes
are normalizable. When Φ = 0, we can obtain static and

spherically symmetric profile ψ = ψ(r) by only imposing
the regularity at the horizon or center of the global AdS.
(Then, both of 1/r and 1/r2 modes present at the AdS
boundary in general.) By carefully choosing the mass
function λ(ψ), for example λ(ψ) = µ tanh(ψ), the effec-
tive mass for Φ can be almost constant except for the
region near AdS boundary. Considering the infinitesimal
perturbation of Φ, we have the scalar field whose mass
vanished near the AdS boundary and its energy momen-
tum tensor is still finite. (The backreaction to ψ is second
order in Φ and is negligible) Let us take the cutoff r = Λ
so that

λ(ψ) =

{
µ (r " Λ)

0 (r # Λ)
, (8)

is satisfied. We will only consider the region of r " Λ
where the theory is described by Eq.(3). Then, the
“source” in Eq.(6) should be regarded as J & r∆−Φ|r=Λ.
Although this J is different from the “real” source de-
fined in the UV completed theory (7), JUV = Φ|r=∞,
we assume that they are qualitatively similar because
Φ(r = Λ) and Φ(r = ∞) are just relatetd by the r-
evolution of the equation of motion derived from Eq.(7).
In this letter, we will abusely call J as the source.

Massive scalar field localized on bounded orbit.— We
adopt the following form of the source function,

J (t, θ,φ) = J0 exp

[
− (t− T )2

2σ2
t

− (θ − π/2)2

2σ2
θ

− (φ− Ωt)2

2σ2
φ

− iωt+ imφ

]
. (9)

This function is localized in S2 at θ = π/2 and φ =
Ωt with widths σθ and σφ: The center of the localized
source rotates on the equator with the angular velocity
Ω. This has the wave number m along the φ-direction
and oscillate in time with the frequency ω. (See Fig.1 for
the schematic picture of the source.) The source is also
localized in time at t = T with the width σt. We take a
large σt so that the modes which has frequency ∼ ω are
sufficiently excited. We will take T < 0 and σt ) |T |
so that the application of the source has already been
terminated at t = 0. J0 is the amplitude of the source but
is not important in our analysis because of the linearity
of the scalar field.
There are some requirements on the parameters in

Eq.(9) to realize the localized star in the bulk. The
scalar field induced by the source (9) typically has the
frequency ω and the wave number m. Also its angular
size is determined by σθ and σφ. On the other hand, in
the momentum space, the scalar field is distributed with
the width ∼ 1/σφ, 1/σθ. Therefore, the condition that
the scalar field is localized both in real and momentum
spaces is given by

1

m
) σθ,σφ ) 1 . (10)
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問い

AdS/CFTのセットアップで、
ブラックホール周りを公転する時間的測地線
を作り、その運動を観測できないだろうか？

Creating stars orbiting in AdS
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We propose the way to a create star orbiting in the asymptotically AdS spacetime using the
method of the AdS/CFT correspondence. We demonstrate that, by applying an appropriate source
in the quantum field theory defined on 2-sphere, the localized star gradually appears in the dual
asymptotically AdS geometry. Once the star is created, we can observe its angular position from the
response function. The relation between parameters of the created star and those of the source is
studied. We show that information about the bulk geometry can be extracted from the observation
of the steller motion in the bulk geometry.

Introduction.— Steler motion around Sagittarius A∗ has
been observed for decades and its observation gave a
strong evidence for existence of the black hole at the
center of our galaxy [1]. It also gave us important in-
formation about the curved spacetime around the black
hole. In this letter, we propose the way to create a star
orbiting in the asymptotically AdS spacetime by using
the method of the AdS/CFT correspondence [2–4]. We
also disscuss how we can read out information about the
bulk geometry from the steller motion. Our main target
is the AdS/CFT in the “bottom-up approach” such as
the correspondence between condensed matter systems
and gravitational systems [5–9]. In many cases, there
is no conclete guiding principle to construct dual gravi-
tational theories for condensed matters. Our proposition
gives a direct way to extract some information about dual
geometries of condensed matters by experiments.

Fig.1 shows the schematic picture of our setup. We
will consider the pure global AdS and Schwarzschild-
AdS4 (Sch-AdS4) spacetime with the spherical horizon as
background spacetimes. They correspond to the (2 + 1)-
dimensional quantum field theory (QFT) on S2. We put
the bulk scalar field as the probe which corresponds to a
scalar operator O in the dual QFT. We apply the source
of the operator O. The source is localized in S2 and its
packet is rotating with the angular velocity Ω. It also
has frequency ω and wave number m. We will demon-
strate that, by tuning parameters (ω,m,Ω), the bulk star
is created.

As previous works, it has been proposed that the grav-
itational lensing can be used for the test of the existence
of a given QFT [10–12]. The Einstein ring formed by the
gravitational lensing gives us information about the pho-
ton sphere of the null geodesic in the dual geometry. In
this letter, we propose the other way to probe the dual ge-
ometry by using the timelike geodesic. In Refs.[13, 14],
dual operators corresponding to localized states in the
AdS bulk has been investigated. Our work would give
an explicit source function for creating similar states by
time evolution.

Eikonal approximation for the massive scalar field.—

We consider the Sch-AdS4 with the spherical horizon

Angular
velocity

Wave 
number

Frequency

Black hole

Localized
scalar �eld

AdS boundary

Source

FIG. 1. Schematic picture of our setup.

as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2θ dφ2

)
, (1)

where f(r) = 1 + r2 − rh(1 + r2h)/r in the unit of AdS
radius, lAdS = 1. For rh = 0, this spacetime discribes
the pure global AdS. Let us consider the circular orbit
of the massive particle in this spacetime. The specific
energy and angular momentum of the particle are given
by ε ≡ −ut and j ≡ uφ where uµ is the 4-velocity. The
angular velocity of the revolution is Ω ≡ dφ/dt = uφ/ut.
For the circular orbit at the radius r = R, parameters
of the timelike geodesic (ε, j, Ω) are given by the one
parameter family of R (for fiexd rh) as

ε2 =
2(R− rh)2(R2 + rhR+ r2h + 1)2

R{2R− 3rh(1 + r2h))}
,

j2 =
R2(2R3 + r3h + rh)

2R− 3rh(1 + r2h)
, Ω2 =

2R3 + r3h + rh
2R3

.

(2)

We will consider creation of the massive particle (or star)
as the coherent excitation of the bulk field.
We will deal with the massive scalar field in a fixed

background whose Lagrangian is given by

L = −(∂Φ)2 − µ2Φ2 . (3)

計量の情報の抽出
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測地線方程式

Sch-AdS4 : 

<latexit sha1_base64="eiDmjMNSFC3O7orO1yaJF9gKNcc="></latexit>

ṙ2 + V (r) = E2

時間的測地線方程式

<latexit sha1_base64="4iOdm/4OVlX8a3kxrxbQMZpg9hs="></latexit>

V (r) = f(r)

✓
1 +

L2

r2

◆

<latexit sha1_base64="kcwXiMwVJw1px5fNUkuLwTHIj4s="></latexit>

ds2 = �f(r)dt2 +
dr2

f(r)
+ r2d⌦2

2

<latexit sha1_base64="3xfcChT8hwv7Bhkrig/wT/DRUDQ="></latexit>

f(r) = 1 + r2 � rh(1 + r2h)/r

AdS半径=1



有効ポテンシャル
<latexit sha1_base64="4iOdm/4OVlX8a3kxrxbQMZpg9hs="></latexit>

V (r) = f(r)

✓
1 +

L2

r2

◆

<latexit sha1_base64="fOVPAq5BKU/1FUNLRflpG9hta3I="></latexit>

V (r)

<latexit sha1_base64="Pn9JsnQP+5S4TkM0YkKY8WzW/R8="></latexit>r

ここにとどまる粒子
を作りたい。

しかし、
無限遠から粒子を入れると、
必ずBHに落ちてしまう。

場の波動効果を使って、
”じわじわ”と、
局在した場の配位を作る。

「場」の配位で、
粒子を実現しよう。



場で測地線を表せるか?
<latexit sha1_base64="3GePGhD7Hz1eqoiMlDqRhKsAeG4="></latexit>

⇤� = µ2�
<latexit sha1_base64="GccNArvb+7XUxSDeBE64wF+3XYU="></latexit>

� = a(x) exp(iS(x))

を短波長近似で考えよう。

<latexit sha1_base64="noNlFklwpl1kbKT6cSd8hy1paFw=">AAACgnicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIBmtUaCrEFGfmKujG5OempicqlChoKwC5MQUZmfECygZ6BmCggMkwhDKUGaAgIF9gOUMMQwpDPkMyQylDLkMqQx5DCZCdw5DIUAyE0QyGDAYMBUCxWIZqoFgRkJUJlk9lqGXgAuotBapKBapIBIpmA8l0IC8aKpoH5IPMLAbrTgbakgPERUCdCgyqBlcNVhp8NjhhsNrgpcEfnGZVg80AuaUSSCdB9KYWxPN3SQR/J6grF0iXMGQgdOF1cwlDGoMF2K2ZQLcXgEVAvkiG6C+rmv452CpItVrNYJHBa6D7FxrcNDgM9EFe2ZfkpYGpQbMZuIARYIge3JiMMCM9Q1M9g0ATZQcnaFRwMEgzKDFoAMPbnMGBwYMhgCEUaG8zw0qGTQybmViYtJgMmYwhSpkYoXqEGVAAkw0ASruS8w==</latexit>

S(x) ⇠ �!t+ im�

<latexit sha1_base64="/UrcMphzYUDG188Qv0Y0j57pMow="></latexit>

�a(rS)2 + 2ira ·rS +⇤a = µ2a

<latexit sha1_base64="Klthsv1l80e2FmmE+8+UYcoyB9I="></latexit>

@µS@
µS = �µ2

<latexit sha1_base64="VGliNo0tCLo8hChc3/WFNF++AgM=">AAACiHichVFNSxtBGH7ctjaNrUnrRfCyGCw9lPBuUdL2JHrxqMao4EqY3Y7bwf1idxJIgz9A/4AHTxZKEQ9e9ezFP9BDfoJ4jODFQ99sFkorbd9hZp555n3eeWbGiX2VaqLeiPHo8ZPRp4VnxbHnL8ZL5Zev1tOolbiy4UZ+lGw6IpW+CmVDK+3LzTiRInB8ueHsLg72N9oySVUUrulOLLcD4YVqR7lCM9UsV+xYJFoJv2kHLbNu2qkKTDsKpCfemow8z7Q4i6qUhfkQWDmoII/lqPwdNj4hgosWAkiE0Ix9CKTctmCBEDO3jS5zCSOV7UvsocjaFmdJzhDM7vLo8WorZ0NeD2qmmdrlU3zuCStNzNAPOqE+XdEpXdP9X2t1sxoDLx2enaFWxs3SwWT97r+qgGeNz79U//SssYP3mVfF3uOMGdzCHerbXw779Y+rM93X9JVu2P8x9eiSbxC2b91vK3L1CEX+AOvP534I1t9VrbkqrcxW5hfyryhgCtN4w+9dwzyWsIwGn7uPM5zjwigaZNSMD8NUYyTXTOC3MBZ+Ai9vlgE=</latexit>

@µS ⇠ !,m � 1

位相が早く振動するとする。



Klein-Gordon → 測地線
<latexit sha1_base64="dVqRmT56yEsn/oSCFpkc1byCQi0="></latexit>

uµ ⌘ @µS/µ とおけば
<latexit sha1_base64="7AOhPfKcY/pio5aLFK5hrCVqpYg="></latexit>

uµu
µ = �1

<latexit sha1_base64="7BOYz7nEb3g0A0JM6wjweYh9fj4="></latexit>

0 = r⌫(@µS@
µS) = 2@µSr⌫(@µS)

<latexit sha1_base64="MkTLr7Ri53f/cm33cy9MxtLR8m8="></latexit>

= 2@µSrµ(@⌫S) = 2uµrµu⌫

<latexit sha1_base64="Klthsv1l80e2FmmE+8+UYcoyB9I="></latexit>

@µS@
µS = �µ2

4元速度

<latexit sha1_base64="Klthsv1l80e2FmmE+8+UYcoyB9I="></latexit>

@µS@
µS = �µ2

を微分

短波長近似では、Klein-Gordon方程式から、
測地線方程式が得られる。



測地線と場のパラメータの
対応関係

単位質量あたりのエネルギー : 

単位質量あたりの角運動量 : 

<latexit sha1_base64="v9z3lLaJmR5xRxzuku2LpHXPbPs="></latexit>✏ = �ut
<latexit sha1_base64="BpbNupY00eUBdBH486RapLuIPOw="></latexit>

j = u�

2

The scalar field obeys the Klein-Gordon equation ⇤� =
µ2�. Using the Eikonal approximation, we can obtain
the timelike geodesic equation from the Klein-Gordon
equation. We assume that the typical frequency ! and
mass µ of the scalar field are su�ciently large, and that
they are of the same order, ! ⇠ µ � 1. Substituting
�(xµ) = a(xµ)eiS(xµ) into the Klein-Gordon equation
and assuming @µS ⇠ O(!), we obtain

gµ⌫@µS@⌫S = �µ2 (4)

as the leading-order equation for !. Introducing the 4-
velocity uµ = @µS/µ, we have uµuµ = �1. Di↵eren-
tiating this equation, we also obtain the geodesic equa-
tion for a massive particle as 0 = r⇢(gµ⌫@µS@⌫S)/µ2 =
2uµ

rµu⇢. Thus, the relationship between the parame-
ters of the timelike geodesic and the massive scalar field
is

✏ = �
1

µ
@tS , j =

1

µ
@�S . (5)

Analysis of the Eikonal approximation indicates that
massive particles should also be expressed as the local-
ized configuration of the massive scalar field. Our main
task is to determine the appropriate boundary condition
for the scalar field at the AdS boundary and create a
particle (or star) orbiting in AdS, as shown in Fig.1.

Massive scalar field in asymptotically AdS spacetimes—
Near the AdS boundary r = 1, the scalar field behaves
as

�(t, r, ✓,�) ' J (t, ✓,�) r��� + hO(t, ✓,�)i r��+ , (6)

where �± = 3/2 ± ⌫ and ⌫ =
p
9/4 + µ2. We refer to

J (t, ✓,�) and hO(t, ✓,�)i as the “source” and “response”,
respectively.

Caution is needed when considering the “source” for
the massive scalar field. For µ2 > 0, the corresponding
operator O has a conformal weight �+ > 3, and applying
the source to such an operator corresponds to an irrele-
vant deformation of the dual QFT. From a gravitational
point of view, if a non-asymptotically mode is present,
the energy-momentum tensor of the scalar field diverges
near the AdS boundary and the probe approximation is
no longer valid [16]. One way to avoid this problem
is to introduce an explicit cuto↵ at the finite radius of
asymptotically AdS spacetime. The AdS with a finite
radial cuto↵ is considered the gravitational dual of the
T T̄ -deformed theory [17]. The other way is to introduce
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theory is described by Eq.(3). Subsequently, the “source”
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motion derived from Eq.(7). In this letter, we refer to J

as the source.

Massive scalar field localized in bounded orbit.— We
adopt the following form of the source function:
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This function is localized in S2 at ✓ = ⇡/2 and � =
⌦t, with widths �✓ and ��, respectively. (We take the
domain of the coordinate � as �⇡ < � � ⌦t  ⇡.) The
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(See Fig.1 for the schematic picture of the source.) The
source is also localized in time at t = T with width �t.
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terminated at t = 0. J0 is the amplitude of the source;
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There are some requirements for the parameters in

Eq.(9) to realise a localized star in the bulk. The scalar
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We propose the way to a create star orbiting in the asymptotically AdS spacetime using the
method of the AdS/CFT correspondence. We demonstrate that, by applying an appropriate source
in the quantum field theory defined on 2-sphere, the localized star gradually appears in the dual
asymptotically AdS geometry. Once the star is created, we can observe its angular position from the
response function. The relation between parameters of the created star and those of the source is
studied. We show that information about the bulk geometry can be extracted from the observation
of the steller motion in the bulk geometry.

Introduction.— Steler motion around Sagittarius A∗ has
been observed for decades and its observation gave a
strong evidence for existence of the black hole at the
center of our galaxy [1]. It also gave us important in-
formation about the curved spacetime around the black
hole. In this letter, we propose the way to create a star
orbiting in the asymptotically AdS spacetime by using
the method of the AdS/CFT correspondence [2–4]. We
also disscuss how we can read out information about the
bulk geometry from the steller motion. Our main target
is the AdS/CFT in the “bottom-up approach” such as
the correspondence between condensed matter systems
and gravitational systems [5–9]. In many cases, there
is no conclete guiding principle to construct dual gravi-
tational theories for condensed matters. Our proposition
gives a direct way to extract some information about dual
geometries of condensed matters by experiments.

Fig.1 shows the schematic picture of our setup. We
will consider the pure global AdS and Schwarzschild-
AdS4 (Sch-AdS4) spacetime with the spherical horizon as
background spacetimes. They correspond to the (2 + 1)-
dimensional quantum field theory (QFT) on S2. We put
the bulk scalar field as the probe which corresponds to a
scalar operator O in the dual QFT. We apply the source
of the operator O. The source is localized in S2 and its
packet is rotating with the angular velocity Ω. It also
has frequency ω and wave number m. We will demon-
strate that, by tuning parameters (ω,m,Ω), the bulk star
is created.

As previous works, it has been proposed that the grav-
itational lensing can be used for the test of the existence
of a given QFT [10–12]. The Einstein ring formed by the
gravitational lensing gives us information about the pho-
ton sphere of the null geodesic in the dual geometry. In
this letter, we propose the other way to probe the dual ge-
ometry by using the timelike geodesic. In Refs.[13, 14],
dual operators corresponding to localized states in the
AdS bulk has been investigated. Our work would give
an explicit source function for creating similar states by
time evolution.

Eikonal approximation for the massive scalar field.—

We consider the Sch-AdS4 with the spherical horizon

FIG. 1. Schematic picture of our setup.

as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2θ dφ2

)
, (1)

where f(r) = 1 + r2 − rh(1 + r2h)/r in the unit of AdS
radius, lAdS = 1. For rh = 0, this spacetime discribes
the pure global AdS. Let us consider the circular orbit
of the massive particle in this spacetime. The specific
energy and angular momentum of the particle are given
by ε ≡ −ut and j ≡ uφ where uµ is the 4-velocity. The
angular velocity of the revolution is Ω ≡ dφ/dt = uφ/ut.
For the circular orbit at the radius r = R, parameters
of the timelike geodesic (ε, j, Ω) are given by the one
parameter family of R (for fiexd rh) as

ε2 =
2(R− rh)2(R2 + rhR+ r2h + 1)2

R{2R− 3rh(1 + r2h))}
,

j2 =
R2(2R3 + r3h + rh)

2R− 3rh(1 + r2h)
, Ω2 =

2R3 + r3h + rh
2R3

.

(2)

We will consider creation of the massive particle (or star)
as the coherent excitation of the bulk field.
We will deal with the massive scalar field in a fixed

background whose Lagrangian is given by

L = −(∂Φ)2 − µ2Φ2 . (3)
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Source and response

2

The scalar field obeys the Klein-Gordon equation !Φ =
µ2Φ. Under the Eikonal approximation, we can obtain
the timelike geodesic equation from the Klein-Gordin
equation. We assume that the typical frequency ω and
mass µ of the scalar field are sufficiently large and they
are same order, ω ∼ µ " 1. Substituting Φ(xµ) =
a(xµ)eiS(xµ) into the Klein-Gordin equation and assum-
ing ∂µS ∼ O(ω), we obtain

gµν∂µS∂νS = −µ2 (4)

as the leading order equation for ω. Introducing the 4-
velocity uµ = ∂µS/µ, we have uµuµ = −1. Differenciat-
ing this equation, we also obtain the geodesic equation
for the massive particle as 0 = ∇ρ(gµν∂µS∂νS)/µ2 =
2uµ∇µuρ. Thus, the relation between parameters of the
timelike geodesic and the massive scalar field is

ε = − 1

µ
∂tS , j =

1

µ
∂φS . (5)

The analysis of the Eikonal approximation indicates that
the massive particle should also be expressed as the local-
ized configuration of the massive scalar field. Our main
task is to find the approproiate boundary condition for
the scalar field at the AdS boundary and create the par-
ticle (or star) orbiting in AdS as shown in Fig.1.

Massive scalar field in asymptotically AdS spacetimes.—
Near the AdS boundary r = ∞, the scalar field behaves
as

Φ(t, r, θ,φ) & J (t, θ,φ) r−∆− + 〈O(t, θ,φ)〉 r−∆+ , (6)

where ∆± = 3/2 ± ν and ν =
√
9/4 + µ2. We will refer

J (t, θ,φ) and 〈O(t, θ,φ)〉 as the “source” and “response”.
We have to be carefull when we consider the “source”

for the massive scalar field. For µ2 > 0, the correspond-
ing operator O has the conformal weight ∆+ > 3 and
applying the source for such oparater corresponds to an
irrelevant deformation of the dual QFT. In the gravi-
tational point of view, if the non-normalizable mode is
present, the energy-momentum tensor of the scalar field
diverges near the AdS boundary and the probe approxi-
mation is not validated any more [15]. One way to avoid
this problem is to introduce an explicit cutoff at the finite
radius of the asymptotically AdS spacetime. The AdS
with the finite radial cutoff is considered as the gravita-
tional dual of the T T̄ -deformed theory [16]. The other
way is to introduce a renormalization group flow to a UV
fixed point where O is relevant. One of the simplest ex-
amples is adding the other scalar field ψ which controles
the mass for Φ:

L′ = −(∂Φ)2 − λ(ψ)2Φ2 − (∂ψ)2 + 2ψ2 , (7)

where λ(ψ) is now function of the dynamical scalar field
ψ. Since the mass square of ψ is −2, ψ behaves as
ψ ∼ 1/r, 1/r2 near the AdS boundary and both modes
are normalizable. When Φ = 0, we can obtain static and

spherically symmetric profile ψ = ψ(r) by only imposing
the regularity at the horizon or center of the global AdS.
(Then, both of 1/r and 1/r2 modes present at the AdS
boundary in general.) By carefully choosing the mass
function λ(ψ), for example λ(ψ) = µ tanh(ψ), the effec-
tive mass for Φ can be almost constant except for the
region near AdS boundary. Considering the infinitesimal
perturbation of Φ, we have the scalar field whose mass
vanished near the AdS boundary and its energy momen-
tum tensor is still finite. (The backreaction to ψ is second
order in Φ and is negligible) Let us take the cutoff r = Λ
so that

λ(ψ) =

{
µ (r " Λ)

0 (r # Λ)
, (8)

is satisfied. We will only consider the region of r " Λ
where the theory is described by Eq.(3). Then, the
“source” in Eq.(6) should be regarded as J & r∆−Φ|r=Λ.
Although this J is different from the “real” source de-
fined in the UV completed theory (7), JUV = Φ|r=∞,
we assume that they are qualitatively similar because
Φ(r = Λ) and Φ(r = ∞) are just relatetd by the r-
evolution of the equation of motion derived from Eq.(7).
In this letter, we will abusely call J as the source.

Massive scalar field localized on bounded orbit.— We
adopt the following form of the source function,

J (t, θ,φ) = J0 exp

[
− (t− T )2

2σ2
t

− (θ − π/2)2

2σ2
θ

− (φ− Ωt)2

2σ2
φ

− iωt+ imφ

]
. (9)

This function is localized in S2 at θ = π/2 and φ =
Ωt with widths σθ and σφ: The center of the localized
source rotates on the equator with the angular velocity
Ω. This has the wave number m along the φ-direction
and oscillate in time with the frequency ω. (See Fig.1 for
the schematic picture of the source.) The source is also
localized in time at t = T with the width σt. We take a
large σt so that the modes which has frequency ∼ ω are
sufficiently excited. We will take T < 0 and σt ) |T |
so that the application of the source has already been
terminated at t = 0. J0 is the amplitude of the source but
is not important in our analysis because of the linearity
of the scalar field.
There are some requirements on the parameters in

Eq.(9) to realize the localized star in the bulk. The
scalar field induced by the source (9) typically has the
frequency ω and the wave number m. Also its angular
size is determined by σθ and σφ. On the other hand, in
the momentum space, the scalar field is distributed with
the width ∼ 1/σφ, 1/σθ. Therefore, the condition that
the scalar field is localized both in real and momentum
spaces is given by

1

m
) σθ,σφ ) 1 . (10)
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where the theory is described by Eq.(3). Then, the
“source” in Eq.(6) should be regarded as J & r∆−Φ|r=Λ.
Although this J is different from the “real” source de-
fined in the UV completed theory (7), JUV = Φ|r=∞,
we assume that they are qualitatively similar because
Φ(r = Λ) and Φ(r = ∞) are just relatetd by the r-
evolution of the equation of motion derived from Eq.(7).
In this letter, we will abusely call J as the source.

Massive scalar field localized on bounded orbit.— We
adopt the following form of the source function,

J (t, θ,φ) = J0 exp

[
− (t− T )2

2σ2
t

− (θ − π/2)2

2σ2
θ

− (φ− Ωt)2

2σ2
φ

− iωt+ imφ

]
. (9)

This function is localized in S2 at θ = π/2 and φ =
Ωt with widths σθ and σφ: The center of the localized
source rotates on the equator with the angular velocity
Ω. This has the wave number m along the φ-direction
and oscillate in time with the frequency ω. (See Fig.1 for
the schematic picture of the source.) The source is also
localized in time at t = T with the width σt. We take a
large σt so that the modes which has frequency ∼ ω are
sufficiently excited. We will take T < 0 and σt ) |T |
so that the application of the source has already been
terminated at t = 0. J0 is the amplitude of the source but
is not important in our analysis because of the linearity
of the scalar field.
There are some requirements on the parameters in

Eq.(9) to realize the localized star in the bulk. The
scalar field induced by the source (9) typically has the
frequency ω and the wave number m. Also its angular
size is determined by σθ and σφ. On the other hand, in
the momentum space, the scalar field is distributed with
the width ∼ 1/σφ, 1/σθ. Therefore, the condition that
the scalar field is localized both in real and momentum
spaces is given by

1

m
) σθ,σφ ) 1 . (10)

AdS boundary 近傍で

:外場
:その応答

どのような外場をQFT側に与えたらバルクに公
転する「星」を作れるか？(逆問題)
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Creating stars orbiting in AdS
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We propose the way to a create star orbiting in the asymptotically AdS spacetime using the
method of the AdS/CFT correspondence. We demonstrate that, by applying an appropriate source
in the quantum field theory defined on 2-sphere, the localized star gradually appears in the dual
asymptotically AdS geometry. Once the star is created, we can observe its angular position from the
response function. The relation between parameters of the created star and those of the source is
studied. We show that information about the bulk geometry can be extracted from the observation
of the steller motion in the bulk geometry.

Introduction.— Steler motion around Sagittarius A∗ has
been observed for decades and its observation gave a
strong evidence for existence of the black hole at the
center of our galaxy [1]. It also gave us important in-
formation about the curved spacetime around the black
hole. In this letter, we propose the way to create a star
orbiting in the asymptotically AdS spacetime by using
the method of the AdS/CFT correspondence [2–4]. We
also disscuss how we can read out information about the
bulk geometry from the steller motion. Our main target
is the AdS/CFT in the “bottom-up approach” such as
the correspondence between condensed matter systems
and gravitational systems [5–9]. In many cases, there
is no conclete guiding principle to construct dual gravi-
tational theories for condensed matters. Our proposition
gives a direct way to extract some information about dual
geometries of condensed matters by experiments.

Fig.1 shows the schematic picture of our setup. We
will consider the pure global AdS and Schwarzschild-
AdS4 (Sch-AdS4) spacetime with the spherical horizon as
background spacetimes. They correspond to the (2 + 1)-
dimensional quantum field theory (QFT) on S2. We put
the bulk scalar field as the probe which corresponds to a
scalar operator O in the dual QFT. We apply the source
of the operator O. The source is localized in S2 and its
packet is rotating with the angular velocity Ω. It also
has frequency ω and wave number m. We will demon-
strate that, by tuning parameters (ω,m,Ω), the bulk star
is created.

As previous works, it has been proposed that the grav-
itational lensing can be used for the test of the existence
of a given QFT [10–12]. The Einstein ring formed by the
gravitational lensing gives us information about the pho-
ton sphere of the null geodesic in the dual geometry. In
this letter, we propose the other way to probe the dual ge-
ometry by using the timelike geodesic. In Refs.[13, 14],
dual operators corresponding to localized states in the
AdS bulk has been investigated. Our work would give
an explicit source function for creating similar states by
time evolution.

Eikonal approximation for the massive scalar field.—

We consider the Sch-AdS4 with the spherical horizon

Angular
velocity

Wave 
number

Frequency

Black hole

Localized
scalar �eld

AdS boundary

Source

FIG. 1. Schematic picture of our setup.

as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2θ dφ2

)
, (1)

where f(r) = 1 + r2 − rh(1 + r2h)/r in the unit of AdS
radius, lAdS = 1. For rh = 0, this spacetime discribes
the pure global AdS. Let us consider the circular orbit
of the massive particle in this spacetime. The specific
energy and angular momentum of the particle are given
by ε ≡ −ut and j ≡ uφ where uµ is the 4-velocity. The
angular velocity of the revolution is Ω ≡ dφ/dt = uφ/ut.
For the circular orbit at the radius r = R, parameters
of the timelike geodesic (ε, j, Ω) are given by the one
parameter family of R (for fiexd rh) as

ε2 =
2(R− rh)2(R2 + rhR+ r2h + 1)2

R{2R− 3rh(1 + r2h))}
,

j2 =
R2(2R3 + r3h + rh)

2R− 3rh(1 + r2h)
, Ω2 =

2R3 + r3h + rh
2R3

.

(2)

We will consider creation of the massive particle (or star)
as the coherent excitation of the bulk field.
We will deal with the massive scalar field in a fixed

background whose Lagrangian is given by

L = −(∂Φ)2 − µ2Φ2 . (3)



のスカラー場に外場を入
れるときの注意
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The scalar field obeys the Klein-Gordon equation !Φ =
µ2Φ. Under the Eikonal approximation, we can obtain
the timelike geodesic equation from the Klein-Gordin
equation. We assume that the typical frequency ω and
mass µ of the scalar field are sufficiently large and they
are same order, ω ∼ µ " 1. Substituting Φ(xµ) =
a(xµ)eiS(xµ) into the Klein-Gordin equation and assum-
ing ∂µS ∼ O(ω), we obtain

gµν∂µS∂νS = −µ2 (4)

as the leading order equation for ω. Introducing the 4-
velocity uµ = ∂µS/µ, we have uµuµ = −1. Differenciat-
ing this equation, we also obtain the geodesic equation
for the massive particle as 0 = ∇ρ(gµν∂µS∂νS)/µ2 =
2uµ∇µuρ. Thus, the relation between parameters of the
timelike geodesic and the massive scalar field is

ε = − 1

µ
∂tS , j =

1

µ
∂φS . (5)

The analysis of the Eikonal approximation indicates that
the massive particle should also be expressed as the local-
ized configuration of the massive scalar field. Our main
task is to find the approproiate boundary condition for
the scalar field at the AdS boundary and create the par-
ticle (or star) orbiting in AdS as shown in Fig.1.

Massive scalar field in asymptotically AdS spacetimes.—
Near the AdS boundary r = ∞, the scalar field behaves
as

Φ(t, r, θ,φ) & J (t, θ,φ) r−∆− + 〈O(t, θ,φ)〉 r−∆+ , (6)

where ∆± = 3/2 ± ν and ν =
√
9/4 + µ2. We will refer

J (t, θ,φ) and 〈O(t, θ,φ)〉 as the “source” and “response”.
We have to be carefull when we consider the “source”

for the massive scalar field. For µ2 > 0, the correspond-
ing operator O has the conformal weight ∆+ > 3 and
applying the source for such oparater corresponds to an
irrelevant deformation of the dual QFT. In the gravi-
tational point of view, if the non-normalizable mode is
present, the energy-momentum tensor of the scalar field
diverges near the AdS boundary and the probe approxi-
mation is not validated any more [15]. One way to avoid
this problem is to introduce an explicit cutoff at the finite
radius of the asymptotically AdS spacetime. The AdS
with the finite radial cutoff is considered as the gravita-
tional dual of the T T̄ -deformed theory [16]. The other
way is to introduce a renormalization group flow to a UV
fixed point where O is relevant. One of the simplest ex-
amples is adding the other scalar field ψ which controles
the mass for Φ:

L′ = −(∂Φ)2 − λ(ψ)2Φ2 − (∂ψ)2 + 2ψ2 , (7)

where λ(ψ) is now function of the dynamical scalar field
ψ. Since the mass square of ψ is −2, ψ behaves as
ψ ∼ 1/r, 1/r2 near the AdS boundary and both modes
are normalizable. When Φ = 0, we can obtain static and

spherically symmetric profile ψ = ψ(r) by only imposing
the regularity at the horizon or center of the global AdS.
(Then, both of 1/r and 1/r2 modes present at the AdS
boundary in general.) By carefully choosing the mass
function λ(ψ), for example λ(ψ) = µ tanh(ψ), the effec-
tive mass for Φ can be almost constant except for the
region near AdS boundary. Considering the infinitesimal
perturbation of Φ, we have the scalar field whose mass
vanished near the AdS boundary and its energy momen-
tum tensor is still finite. (The backreaction to ψ is second
order in Φ and is negligible) Let us take the cutoff r = Λ
so that

λ(ψ) =

{
µ (r " Λ)

0 (r # Λ)
, (8)

is satisfied. We will only consider the region of r " Λ
where the theory is described by Eq.(3). Then, the
“source” in Eq.(6) should be regarded as J & r∆−Φ|r=Λ.
Although this J is different from the “real” source de-
fined in the UV completed theory (7), JUV = Φ|r=∞,
we assume that they are qualitatively similar because
Φ(r = Λ) and Φ(r = ∞) are just relatetd by the r-
evolution of the equation of motion derived from Eq.(7).
In this letter, we will abusely call J as the source.

Massive scalar field localized on bounded orbit.— We
adopt the following form of the source function,

J (t, θ,φ) = J0 exp

[
− (t− T )2

2σ2
t

− (θ − π/2)2

2σ2
θ

− (φ− Ωt)2

2σ2
φ

− iωt+ imφ

]
. (9)

This function is localized in S2 at θ = π/2 and φ =
Ωt with widths σθ and σφ: The center of the localized
source rotates on the equator with the angular velocity
Ω. This has the wave number m along the φ-direction
and oscillate in time with the frequency ω. (See Fig.1 for
the schematic picture of the source.) The source is also
localized in time at t = T with the width σt. We take a
large σt so that the modes which has frequency ∼ ω are
sufficiently excited. We will take T < 0 and σt ) |T |
so that the application of the source has already been
terminated at t = 0. J0 is the amplitude of the source but
is not important in our analysis because of the linearity
of the scalar field.
There are some requirements on the parameters in

Eq.(9) to realize the localized star in the bulk. The
scalar field induced by the source (9) typically has the
frequency ω and the wave number m. Also its angular
size is determined by σθ and σφ. On the other hand, in
the momentum space, the scalar field is distributed with
the width ∼ 1/σφ, 1/σθ. Therefore, the condition that
the scalar field is localized both in real and momentum
spaces is given by

1

m
) σθ,σφ ) 1 . (10)

<latexit sha1_base64="hfZ0UB0+MZ2stCOmAAl4+hG3cEc="></latexit>

µ2 > 0

EM tensor→∞. J≠0だと、Φ→∞. 

Backreactionが無視できない。

r=Λでcutoffを入れてその内側のダイナミクスを考える。

カットオフの外側では、理論が変更されて、
うまく正則化されてると考える。
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We also have to require the ω and µ are sufficiently large
compareing to the curvature scale of the bulk geometry
so that the Eikonal approximation is validated. The con-
dition is written as

ω, µ ! 1

lAdS
,

1

rh
, (11)

where lAdS = 1 is the AdS radius.
Eq.(9) is regarded as the boundary condition of the

scalar field near the AdS boundary. In the following, we
explain how we impose this boundary condition and solve
the equation of motion of the scalar field. If we decom-
pose Φ as Φ = r−1

∑
ω′m′l′ e

−iω′tΨω′l′m′(x)Yl′m′(θ,φ),
where Yl′m′ is the spherical harmonics, Ψωl′m′(x) obeys
the equation in the Schrödinger form:

[
− d2

dx2
+ V (x)

]
Ψω′l′m′(x) = ω′2Ψω′l′m′(x), (12)

V (x) = f(r)

(
l′(l′ + 1)

r2
+ µ2 +

1

r

df

dr

)
, (13)

where x =
∫
dr/f(r) is the tortoise coordinate. We can

also decompose the source (9) as

J (t, θ,φ) =
∑

ω′l′m′

Jω′l′m′ e−iω′tYl′m′(θ,φ) . (14)

The cofficient Jω′l′m′ gives the boundary condition
for Ψω′l′m′(x) at the AdS boudary: Ψω′l′m′(x) →
Jω′l′m′r−∆−+1. For rh > 0, we impose ingoing wave
boundary condition at the horizon: Ψω′l′m′(x) ∼ e−iω′x.
For rh = 0, we impose the regularity at the center of the
AdS: Ψω′l′m′(x) ∼ rl

′
. Under those boundary conditions,

we solve Eq.(12) numerically. Superposing the numeri-
cally obtained solutions, we obtain the scalar field in the
real space Φ(t, r, θ,φ). (See the supplementally material
for the detail.)

For the source (9), typical frequency and wave number
of the bulk scalar field should be given by ω and m. From
Eq.(5), the specific energy and angular momentum of the
created star is given by

ε =
ω

µ
, j =

m

µ
. (15)

We can expect that the angular velocity of the revolu-
tion of the star is determined by Ω in Eq.(9). This is,
in fact, checked by our numerical result. The rest mass
is the energy measured by the observer accompanying
the star: ∼

∫
dΣTµνuµuν where Tµν is the energy mo-

mentum tensor of the scalar field and
∫
dΣ denotes the

integral on t =const surface. This is proportional to |J0|2
when we fix other parameters. The relation between pa-
rameters of the created star and those of the external
source is summarized in Table I. Since the scalar field
is localized at the local minimum of the effective poten-
tial V (x). The radual size is determined by its curvature
σx = (V,xx|local min)−1/2.

Note that Table I does not mean that the star is created
for any values of ω, m and Ω. As in Eq.(2), ε, j and Ω

TABLE I. Relation between parameters of the created star
and those of the external sorce J (t, θ,φ).

Physical quantities of star Parameters of source
Specific energy ω/µ
Specific angular momentum m/µ
Rest mass ∝ |J0|2
Angular velocity of revolution Ω
Size σθ,σφ,σx = (V,xx|local min)

−1/2

are given by the one parameter family of the radius of
the circular orbit R. Hence, if we would like to create
the star at r = R, we need to tune ω, m and Ω to values
obtained by these equations and Table.I.

Results.—
In Fig. 2, we depicted the time evolution of the scalar

field orbiting on the equatorial plane θ = π/2. Parame-
ters used in our numerical caluculation is summarized in
Table II. Besides we set σθ = σφ = 0.2, T = −20,σt = 5.

TABLE II. Parameters for numerical calculations where ν2 ≡
µ2 + 9/4.

rh ν ω m Ω ε = ω/µ j = m/µ
0 50 101.5 50 1 2.0309 1.0005
0.3 20.5 230.78 210 1.00312 11.288 10.271
1 5.5 215.19 210 1.00727 40.667 10.271

The black disks are the event horizon, and each embed-
ded figure on the top left shows the source (9) at θ = π/2
with respect to φ. The scalar field is accumulated at the
local minimum of the potential (13) and forms a localized
wave packet revolving anti-clockwise. Using Table I, we
can estimate the specific energy ω/µ and anguar momen-
tum m/µ of the corresponding timelike geodesic. From
Eq.(5), radii of the revolution are R % 1.015, 3.07, 5.02
for rh = 0, 0.3, 1, respectively. This is consistent with
Fig. 2 and indicates that the motion of the created star
obeys the timelike geodesic equation.
Generally, in Sch-AdS4 spacetime, the amplitude of

the scalar field decays in time because of the tunnelling
towards the horizon. Its decay rate is characterized by
the imaginary part of the quasi-normal mode frequency
ωqnm. For rh = 0.3, the potential barrier is high enough
and the decay rate is extremely suppressed. For rh = 1.0,
on the other hand, we have ωqnm % 215 − 0.0932i for
l′ = 210 and the time scale of the decay is τdecay = 10.7.
This is the reason why the scalar field decays at the late
time in the bottom line of Fig. 2. Although we took
modest values for ω,m and µ because of the limitation
of the computational power, in principle, we can realize
long lived localized scalar field by taking larger values
for ω,m and µ for fixed ω/µ and m/µ. Then, the higher
potential barrier is realized and we have small decay rate.
Once we ontain the star orbitng in asymptotically AdS

spacetime, we can compute the responce function from
Eq.(6). In Fig. 3, we depicted the response on θ = π/2 for
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x =

Z
dr

f(r)

rh=0.3, l=210, nu=20.5

x

V

r=∞

ここに局在する解を
ダイナミカルに作る。

まず、radial方向に局在する解を作ることを考えよう。
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Quasi normal mode
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実際上の方程式を解くと、

ωに関する固有値問題

一般にはωは複素数. quasi normal mode 
(QNM)



Radially localized solution

ホライズンへの、
散逸は無視出来る。

のx=0 (r=∞)での境界条件をうまく選んで、
この解をダイナミカルに作ろう。
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Toy example:
ひもの端点を揺らして、
固有振動を作るには？
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The scalar field obeys the Klein-Gordon equation !Φ =
µ2Φ. Under the Eikonal approximation, we can obtain
the timelike geodesic equation from the Klein-Gordin
equation. We assume that the typical frequency ω and
mass µ of the scalar field are sufficiently large and they
are same order, ω ∼ µ " 1. Substituting Φ(xµ) =
a(xµ)eiS(xµ) into the Klein-Gordin equation and assum-
ing ∂µS ∼ O(ω), we obtain

gµν∂µS∂νS = −µ2 (4)

as the leading order equation for ω. Introducing the 4-
velocity uµ = ∂µS/µ, we have uµuµ = −1. Differenciat-
ing this equation, we also obtain the geodesic equation
for the massive particle as 0 = ∇ρ(gµν∂µS∂νS)/µ2 =
2uµ∇µuρ. Thus, the relation between parameters of the
timelike geodesic and the massive scalar field is

ε = − 1

µ
∂tS , j =

1

µ
∂φS . (5)

The analysis of the Eikonal approximation indicates that
the massive particle should also be expressed as the local-
ized configuration of the massive scalar field. Our main
task is to find the approproiate boundary condition for
the scalar field at the AdS boundary and create the par-
ticle (or star) orbiting in AdS as shown in Fig.1.

Massive scalar field in asymptotically AdS spacetimes.—
Near the AdS boundary r = ∞, the scalar field behaves
as

Φ(t, r, θ,φ) & J (t, θ,φ) r−∆− + 〈O(t, θ,φ)〉 r−∆+ , (6)

where ∆± = 3/2 ± ν and ν =
√
9/4 + µ2. We will refer

J (t, θ,φ) and 〈O(t, θ,φ)〉 as the “source” and “response”.
We have to be carefull when we consider the “source”

for the massive scalar field. For µ2 > 0, the correspond-
ing operator O has the conformal weight ∆+ > 3 and
applying the source for such oparater corresponds to an
irrelevant deformation of the dual QFT. In the gravi-
tational point of view, if the non-normalizable mode is
present, the energy-momentum tensor of the scalar field
diverges near the AdS boundary and the probe approxi-
mation is not validated any more [15]. One way to avoid
this problem is to introduce an explicit cutoff at the finite
radius of the asymptotically AdS spacetime. The AdS
with the finite radial cutoff is considered as the gravita-
tional dual of the T T̄ -deformed theory [16]. The other
way is to introduce a renormalization group flow to a UV
fixed point where O is relevant. One of the simplest ex-
amples is adding the other scalar field ψ which controles
the mass for Φ:

L′ = −(∂Φ)2 − λ(ψ)2Φ2 − (∂ψ)2 + 2ψ2 , (7)

where λ(ψ) is now function of the dynamical scalar field
ψ. Since the mass square of ψ is −2, ψ behaves as
ψ ∼ 1/r, 1/r2 near the AdS boundary and both modes
are normalizable. When Φ = 0, we can obtain static and

spherically symmetric profile ψ = ψ(r) by only imposing
the regularity at the horizon or center of the global AdS.
(Then, both of 1/r and 1/r2 modes present at the AdS
boundary in general.) By carefully choosing the mass
function λ(ψ), for example λ(ψ) = µ tanh(ψ), the effec-
tive mass for Φ can be almost constant except for the
region near AdS boundary. Considering the infinitesimal
perturbation of Φ, we have the scalar field whose mass
vanished near the AdS boundary and its energy momen-
tum tensor is still finite. (The backreaction to ψ is second
order in Φ and is negligible) Let us take the cutoff r = Λ
so that

λ(ψ) =

{
µ (r " Λ)

0 (r # Λ)
, (8)

is satisfied. We will only consider the region of r " Λ
where the theory is described by Eq.(3). Then, the
“source” in Eq.(6) should be regarded as J & r∆−Φ|r=Λ.
Although this J is different from the “real” source de-
fined in the UV completed theory (7), JUV = Φ|r=∞,
we assume that they are qualitatively similar because
Φ(r = Λ) and Φ(r = ∞) are just relatetd by the r-
evolution of the equation of motion derived from Eq.(7).
In this letter, we will abusely call J as the source.

Massive scalar field localized on bounded orbit.— We
adopt the following form of the source function,

J (t, θ,φ) = J0 exp

[
− (t− T )2

2σ2
t

− (θ − π/2)2

2σ2
θ

− (φ− Ωt)2

2σ2
φ

− iωt+ imφ

]
. (9)

This function is localized in S2 at θ = π/2 and φ =
Ωt with widths σθ and σφ: The center of the localized
source rotates on the equator with the angular velocity
Ω. This has the wave number m along the φ-direction
and oscillate in time with the frequency ω. (See Fig.1 for
the schematic picture of the source.) The source is also
localized in time at t = T with the width σt. We take a
large σt so that the modes which has frequency ∼ ω are
sufficiently excited. We will take T < 0 and σt ) |T |
so that the application of the source has already been
terminated at t = 0. J0 is the amplitude of the source but
is not important in our analysis because of the linearity
of the scalar field.
There are some requirements on the parameters in

Eq.(9) to realize the localized star in the bulk. The
scalar field induced by the source (9) typically has the
frequency ω and the wave number m. Also its angular
size is determined by σθ and σφ. On the other hand, in
the momentum space, the scalar field is distributed with
the width ∼ 1/σφ, 1/σθ. Therefore, the condition that
the scalar field is localized both in real and momentum
spaces is given by

1

m
) σθ,σφ ) 1 . (10)

与えた外場の応答を見れば、
星の位置が観測できる。
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Ω. This has the wave number m along the φ-direction
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large σt so that the modes which has frequency ∼ ω are
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We propose the way to a create star orbiting in the asymptotically AdS spacetime using the
method of the AdS/CFT correspondence. We demonstrate that, by applying an appropriate source
in the quantum field theory defined on 2-sphere, the localized star gradually appears in the dual
asymptotically AdS geometry. Once the star is created, we can observe its angular position from the
response function. The relation between parameters of the created star and those of the source is
studied. We show that information about the bulk geometry can be extracted from the observation
of the steller motion in the bulk geometry.

Introduction.— Steler motion around Sagittarius A∗ has
been observed for decades and its observation gave a
strong evidence for existence of the black hole at the
center of our galaxy [1]. It also gave us important in-
formation about the curved spacetime around the black
hole. In this letter, we propose the way to create a star
orbiting in the asymptotically AdS spacetime by using
the method of the AdS/CFT correspondence [2–4]. We
also disscuss how we can read out information about the
bulk geometry from the steller motion. Our main target
is the AdS/CFT in the “bottom-up approach” such as
the correspondence between condensed matter systems
and gravitational systems [5–9]. In many cases, there
is no conclete guiding principle to construct dual gravi-
tational theories for condensed matters. Our proposition
gives a direct way to extract some information about dual
geometries of condensed matters by experiments.

Fig.1 shows the schematic picture of our setup. We
will consider the pure global AdS and Schwarzschild-
AdS4 (Sch-AdS4) spacetime with the spherical horizon as
background spacetimes. They correspond to the (2 + 1)-
dimensional quantum field theory (QFT) on S2. We put
the bulk scalar field as the probe which corresponds to a
scalar operator O in the dual QFT. We apply the source
of the operator O. The source is localized in S2 and its
packet is rotating with the angular velocity Ω. It also
has frequency ω and wave number m. We will demon-
strate that, by tuning parameters (ω,m,Ω), the bulk star
is created.

As previous works, it has been proposed that the grav-
itational lensing can be used for the test of the existence
of a given QFT [10–12]. The Einstein ring formed by the
gravitational lensing gives us information about the pho-
ton sphere of the null geodesic in the dual geometry. In
this letter, we propose the other way to probe the dual ge-
ometry by using the timelike geodesic. In Refs.[13, 14],
dual operators corresponding to localized states in the
AdS bulk has been investigated. Our work would give
an explicit source function for creating similar states by
time evolution.

Eikonal approximation for the massive scalar field.—

We consider the Sch-AdS4 with the spherical horizon

Angular
velocity

Wave 
number

Frequency

Black hole

Localized
scalar �eld

AdS boundary

Source

FIG. 1. Schematic picture of our setup.

as

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2θ dφ2

)
, (1)

where f(r) = 1 + r2 − rh(1 + r2h)/r in the unit of AdS
radius, lAdS = 1. For rh = 0, this spacetime discribes
the pure global AdS. Let us consider the circular orbit
of the massive particle in this spacetime. The specific
energy and angular momentum of the particle are given
by ε ≡ −ut and j ≡ uφ where uµ is the 4-velocity. The
angular velocity of the revolution is Ω ≡ dφ/dt = uφ/ut.
For the circular orbit at the radius r = R, parameters
of the timelike geodesic (ε, j, Ω) are given by the one
parameter family of R (for fiexd rh) as

ε2 =
2(R− rh)2(R2 + rhR+ r2h + 1)2

R{2R− 3rh(1 + r2h))}
,

j2 =
R2(2R3 + r3h + rh)

2R− 3rh(1 + r2h)
, Ω2 =

2R3 + r3h + rh
2R3

.

(2)

We will consider creation of the massive particle (or star)
as the coherent excitation of the bulk field.
We will deal with the massive scalar field in a fixed

background whose Lagrangian is given by

L = −(∂Φ)2 − µ2Φ2 . (3)

2

The scalar field obeys the Klein-Gordon equation ⇤� =
µ2�. Using the Eikonal approximation, we can obtain
the timelike geodesic equation from the Klein-Gordon
equation. We assume that the typical frequency ! and
mass µ of the scalar field are su�ciently large, and that
they are of the same order, ! ⇠ µ � 1. Substituting
�(xµ) = a(xµ)eiS(xµ) into the Klein-Gordon equation
and assuming @µS ⇠ O(!), we obtain

gµ⌫@µS@⌫S = �µ2 (4)

as the leading-order equation for !. Introducing the 4-
velocity uµ = @µS/µ, we have uµuµ = �1. Di↵eren-
tiating this equation, we also obtain the geodesic equa-
tion for a massive particle as 0 = r⇢(gµ⌫@µS@⌫S)/µ2 =
2uµ

rµu⇢. Thus, the relationship between the parame-
ters of the timelike geodesic and the massive scalar field
is

✏ = �
1

µ
@tS , j =

1

µ
@�S . (5)

Analysis of the Eikonal approximation indicates that
massive particles should also be expressed as the local-
ized configuration of the massive scalar field. Our main
task is to determine the appropriate boundary condition
for the scalar field at the AdS boundary and create a
particle (or star) orbiting in AdS, as shown in Fig.1.

Massive scalar field in asymptotically AdS spacetimes—
Near the AdS boundary r = 1, the scalar field behaves
as

�(t, r, ✓,�) ' J (t, ✓,�) r��� + hO(t, ✓,�)i r��+ , (6)

where �± = 3/2 ± ⌫ and ⌫ =
p
9/4 + µ2. We refer to

J (t, ✓,�) and hO(t, ✓,�)i as the “source” and “response”,
respectively.

Caution is needed when considering the “source” for
the massive scalar field. For µ2 > 0, the corresponding
operator O has a conformal weight �+ > 3, and applying
the source to such an operator corresponds to an irrele-
vant deformation of the dual QFT. From a gravitational
point of view, if a non-asymptotically mode is present,
the energy-momentum tensor of the scalar field diverges
near the AdS boundary and the probe approximation is
no longer valid [16]. One way to avoid this problem
is to introduce an explicit cuto↵ at the finite radius of
asymptotically AdS spacetime. The AdS with a finite
radial cuto↵ is considered the gravitational dual of the
T T̄ -deformed theory [17]. The other way is to introduce
a renormalization group flow to a UV fixed point where
O is relevant. One of the simplest examples is the ad-
dition of another scalar field  , which controls the mass
for �:

L
0 = �(@�)2 � �( )2�2

� (@ )2 + 2 2 , (7)

where �( ) is now a function of the dynamic scalar field
 . Because the mass square of  is �2,  behaves as

 ⇠ 1/r, 1/r2 near the AdS boundary, and both modes
are normalizable. When � = 0, we can obtain a static
and spherically symmetric profile  =  (r) by imposing
only the regularity at the horizon or centre of the global
AdS. (Then, both the 1/r and 1/r2 modes are present
at the AdS boundary in general.) By carefully choosing
the mass function �( ), for example, �( ) = µ tanh( ),
the e↵ective mass for � can be almost constant, except
for the region near the AdS boundary. Considering the
infinitesimal perturbation of �, we have a scalar field
whose mass vanishes near the AdS boundary and whose
energy-momentum tensor is still finite. (The backreac-
tion to  is second-order in � and negligible.) Let us
take the cuto↵ r = ⇤ so that

�( ) =

(
µ (r . ⇤)

0 (r & ⇤)
, (8)

is satisfied. We consider only the region r . ⇤, where the
theory is described by Eq.(3). Subsequently, the “source”
in Eq.(6) can be regarded as J ' r���|r=⇤. Although
this J is di↵erent from the “real” source defined in UV-
complete theory (7), JUV = �|r=1, we assume that they
are qualitatively similar because �(r = ⇤) and �(r = 1)
are only related to the r evolution of the equation of
motion derived from Eq.(7). In this letter, we refer to J

as the source.

Massive scalar field localized in bounded orbit.— We
adopt the following form of the source function:

J (t, ✓,�) = J0 exp


�

(t� T )2

2�2
t

�
(✓ � ⇡/2)2

2�2
✓

�
(�� ⌦t)2

2�2
�

� i!t+ im�

�
. (9)

This function is localized in S2 at ✓ = ⇡/2 and � =
⌦t, with widths �✓ and ��, respectively. (We take the
domain of the coordinate � as �⇡ < � � ⌦t  ⇡.) The
centre of the localized source rotates on the equator with
angular velocity ⌦. This has a wavenumber m along the
�-direction and oscillates over time with frequency !.
(See Fig.1 for the schematic picture of the source.) The
source is also localized in time at t = T with width �t.
We take a large �t such that the modes with frequency
⇠ ! are su�ciently excited. We take T < 0 and �t ⌧ |T |
such that the application of the source has already been
terminated at t = 0. J0 is the amplitude of the source;
however, it is not important in our analysis because of
the linearity of the scalar field.
There are some requirements for the parameters in

Eq.(9) to realise a localized star in the bulk. The scalar
field induced by the source (9) typically has a frequency
! and wavenumber m. In addition, its angular size is de-
termined by �✓ and ��. Conversely, in momentum space,
the scalar field is distributed with a width ⇠ 1/��, 1/�✓.
Therefore, the condition that the scalar field is localized
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in both the real and momentum spaces is given by:

1

m
⌧ �✓,�� ⌧ 1 . (10)

It is also necessary that ! and µ be su�ciently large
compared with the curvature scale of the bulk geometry,
so that the Eikonal approximation is valid.

Eq.(9) is regarded as the boundary condition of the
scalar field near the AdS boundary. We now explain how
this boundary condition is imposed and the equation of
motion for the scalar field is solved. If we decompose
� as � = r�1

P
!0m0l0 e

�i!0t !0l0m0(x)Yl0m0(✓,�), where
Yl0m0 is the spherical harmonics, then  !l0m0(x) obeys
the equation in the Schrödinger form:


�

d2

dx2
+ V (x)

�
 !0l0m0(x) = !02 !0l0m0(x), (11)

V (x) = f(r)

✓
l0(l0 + 1)

r2
+ µ2 +

1

r

df

dr

◆
, (12)

where x =
R
dr/f(r) is the tortoise coordinate. We can

also decompose the source (9) as

J (t, ✓,�) =
X

!0l0m0

J!0l0m0 e�i!0tYl0m0(✓,�) . (13)

The coe�cient J!0l0m0 provides the boundary condition
for  !0l0m0(x) at the AdS boundary:  !0l0m0(x) !

J!0l0m0r���+1. For rh > 0, we impose the ingoing
wave boundary condition at horizon  !0l0m0(x) ⇠ e�i!0x.
For rh = 0, we impose regularity at the centre of the
AdS,  !0l0m0(x) ⇠ rl

0
. Under these boundary conditions,

Eq.(11), and superposing the numerically obtained solu-
tions, we obtain the scalar field in real space �(t, r, ✓,�).
(See the supplementary material for details).

For source (9), the typical frequency and wavenumber
of the bulk scalar field are given by ! andm, respectively.
From Eq.(5), the specific energy and angular momentum
of the created star are given by

✏ =
!

µ
, j =

m

µ
. (14)

We can expect the angular velocity of the revolution of
the star to be determined by ⌦ in Eq.(9). This is veri-
fied by our numerical results. The rest mass is the en-
ergy measured by the observer accompanying the star:
⇠

R
d⌃Tµ⌫uµu⌫ , where Tµ⌫ is the energy-momentum ten-

sor of the scalar field and
R
d⌃ denotes the integral on

the t =const surface. This is proportional to |J0|2 with
other parameters fixed. The relationships between the
parameters of the created star and those of the exter-
nal source are summarized in Table I. The scalar field
is localized at the local minimum of the e↵ective poten-
tial V (x). The radial size is determined by its curvature
�x = (V,xx|local min)�1/2.

Note that Table I does not mean that a star is created
for any value of !, m, and ⌦. As in Eq.(2), ✏, j, and
⌦ are given by the one-parameter family of the radius

TABLE I. Relationship between parameters of the created
star and those of the external source J (t, ✓,�).

Physical quantities of star Parameters of source
Specific energy !/µ
Specific angular momentum m/µ
Rest mass / |J0|2
Angular velocity of revolution ⌦
Size �✓,��,�x = (V,xx|local min)

�1/2

of circular orbit R. Hence, if we want to create a star
at r = R, we need to tune !, m, and ⌦ to the values
obtained by these equations and Table I.

Results.— In Fig. 2, we depict the time evolution of the
scalar field orbiting in the equatorial plane ✓ = ⇡/2.
The parameters used in our numerical calculation are
summarized in Table II. In addition, we set �✓ = �� =

TABLE II. Parameters for numerical calculations, where ⌫2 ⌘
µ2 + 9/4.

rh ⌫ ! m ⌦ ✏ = !/µ j = m/µ
0 50 101.5 50 1 2.0309 1.0005
0.3 20.5 230.78 210 1.00312 11.288 10.271
1 5.5 215.19 210 1.00727 40.667 10.271

0.2, T = �20,�t = 5. The black disks are the event hori-
zons, and each embedded figure on the top left shows the
source (9) at ✓ = ⇡/2 with respect to �. The scalar field
accumulates at the local minimum of the potential (12)
and forms a localized wave packet revolving anticlock-
wise. Using Table I, we can estimate the specific energy
!/µ and angular momentum m/µ of the corresponding
timelike geodesic. From Eq.(5), the radii of revolution
are R ' 1.015, 3.07, 5.02 for rh = 0, 0.3, 1, respectively.
This was consistent with the results shown in Fig. 2 and
indicates that the motion of the created star obeys the
timelike geodesic equation.
Generally, in Sch-AdS4 spacetime, the amplitude of

the scalar field decays in time because of tunnelling to-
wards the horizon. The decay rate is characterised by
the imaginary part of the quasi-normal mode frequency
!qnm. For rh = 0.3, the potential barrier is high and
the decay rate is extremely suppressed. Conversely, for
rh = 1.0, we have !qnm ' 215 � 0.0932i for l0 = 210,
and the time scale of the decay is ⌧decay = 10.7. This is
why the scalar field decays at a later time in the bottom
line of Fig. 2]. Although we employed modest values for
!,m and µ because of the limitations of computational
power, in principle, we can realise a long-lived localized
scalar field by using larger values for !,m and µ for fixed
!/µ and m/µ. Thus, a higher potential barrier is real-
ized, and we have a small decay rate. Once we obtain the
star orbiting in an asymptotically AdS spacetime, we can
compute the response function from Eq.(6). In Fig. 3, we
depict the response of ✓ = ⇡/2 for rh = 0.3 after the star
is created t & 0. The response circulates on the equator,
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Implication to gauge/gravity

円軌道の測地線は、1-parameter ファミリー, 
つまり、軌道半径を決めると、
エネルギー・角運動量・公転角速度がすべて決まるからである。

これは、任意のエネルギー・角運動量・公転角速度を持つ星を作れると
言っているわけではない。

4

FIG. 2. Time evolution of the creation of the scalar field orbiting in AdS4 and Sch-AdS4. (Animated gifs are available in
ancillary files of arXiv.)

following the orbiting scalar field. This indicates that
the angular position of the star can be observed using
the response function.

FIG. 3. Response in Sch-AdS4 (rh = 0.3, ⌫ = 20.5,M =
210,�✓ = �� = 0.2, T = �20,� = 5)

Discussion.– We demonstrated that a star orbiting in the
asymptotically AdS spacetime can be created by applying
the appropriate source (9) in the dual QFT. The param-
eters in the source should be tuned to create the localized
star. If the dual geometry is known, we can determine
the parameters by studying the timelike geodesic, as in
Eq.(5). However, for a real material, in general, we do
not know the dual geometry explicitly. Thus, in a real
experiment, we must tune the parameters !, m, and ⌦

by trial and error. The creation of a star in the bulk
is verified by the response function, as shown in Fig.3.
Once we can create a star in the bulk, we obtain the re-
lationship between ✏, m, and ⌦: j = j(✏) and ⌦ = ⌦(✏).
This provides information regarding the geometry of the
AdS bulk.
In this letter, only a circular orbit was considered: the

scalar field was radially localised at the local minimum of
the potential (12). The non-circular orbit is the coherent
excitation around the local minimum. Such a bulk co-
herent state can be realized by varying J0 in time in the
source (9). Observing the star in the non-circular orbit
through the response function, we can obtain information
about a wider region of the bulk geometry.
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計量が分からなくても、実際に実験で星が作れれば
円軌道する粒子のエネルギー・角運動量・公転角速度
の関係がわかる。

計量の情報



まとめ

重力双対を持つQFTに、
外場をうまく印加することにより、
bulkに公転する星をつくることができる。

AdS時空に公転する星を作れば、
bulk geometryの情報を直接抜き出すことが可能。



Future prospect
場の理論の外場をうまく選べば、重力系を操作出来る。
何を作れば面白いだろうか？

●null測地線
外場を与えてから,その応答が現れ
るまでに時間差があるはず。

AdS boundary

Null orbit

(a) Nw = 0 (b) Nw = 1 (c) Nw = 2

Figure 6. Null geodesics between ϕ = 0 and π for winding number Nw = 0, 1, 2. The

horizon radius of the Sch-AdS4 is fixed as rh = 0.3. ϑi denotes the angle of incidence to

the AdS boundary.

We can naturally define the angle of incidence of the null geodesic to the AdS
boundary by cosϑi ≡ gijuinj/(|u||n|)|r=∞, where ui is the spatial component of the

4-velocity of the geodesic, ni is the normal vector to the AdS boundary and gij is
the induced metric on the t = const. surface. (|u| and |n| are the norms of ui and ni

with respect to gij.) Using Eqs. (4.1) and (4.2), we can explicitly calculate the angle
of incidence as

sin ϑi =
"

ω
. (4.5)

Combining Eqs. (4.4) and (4.5), we can determine the angle of incidence of the

null geodesic from the photon sphere as a function of the horizon radius rh. In
the geometrical optics, this angle ϑi gives the angular distance of the image of the

incident ray from the zenith if an observer on the AdS boundary looks up into the
AdS bulk. If two end points of the geodesic and the center of the black hole are in
alignment, the observer see a ring image with a radius corresponding to the incident

angle ϑi because of axisymmetry.

5 Imaging AdS black holes

Figure 7 shows our procedure to obtain the image of AdS black hole. The sphere of

the AdS boundary is depicted at the left side of the figure. We show the absolute
square of the response function 〈O(θ)〉 on the sphere as the color map. The brightest

point is the north pole, i.e. the antipodal point of the Gaussian source. The response
function has the interference pattern caused by the diffraction of the wave by the

black hole. We now define an “observation point” at (θ,ϕ) = (θobs, 0) on the AdS
boundary, where an observer looks up into the AdS bulk.

To make an optical system, we virtually consider the flat 3-dimensional space

(x, y, z) as shown in the right side of Fig. 7. We set the convex lens on the (x, y)-
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●非円軌道
“楕円”軌道・ブラックホールへ落下する軌道など。
角運動量=0の軌道→ BHがあるかないかの判定



Future prospect

Kirscha&Vaman, 05

●D-brane 
D3-D7解は重力解として存在する。
pure AdSに外場をかけて、D3/D7系
を作れるか？

SYMに外場をかけるとQCDになる?

●宇宙論
膨張宇宙をAdS内部に作れるか？

●天文学?


