Tensor renormalization group and the volume independence in 2D U(N) and SU(N) gauge theories

<u>Atis Yosprakob</u>¹, Akira Matsumoto¹, Mitsuaki Hirasawa³, Jun Nishimura^{1,2} Based on J. High Energy. Phys. 2021, 11 (2021)

The Graduate University for Advanced Studies (SOKENDAI)
 High Energy Accelerator Research Organization (KEK)
 INFN (Milano-Bicocca section)

@ Kyoto (15/12/2021)

Tensor renormalization group (TRG)

• Rewriting the partition function as a network of tensors [Levin & Nave,'07]

$$Z = \sum_{\{\text{indices}\}} T_{abcd} T_{defg} \cdots$$

- Non-stochastic = no sign problem!
- Can access large volumes with logarithmic cost
- Can handle Grassmann fields directly

Application of TRG in gauge theories

- There were works on U(1), SU(2), and SU(3) gauge theories in 2d [Bazavov et al.,'19; Kuramashi & Yoshimura,'20; Fukuma et al.,'21]
- Our interest: higher rank gauge group in 2d (character expansion)
- Questions to be answered:
 - 1. How to impose the cutoff on representations?
 - 2. Interesting large-N behaviors?

Outline

- $\circ \ \ \text{Introduction}$
- $\circ~$ TRG for 2d gauge theories
 - Efficient cut-off condition for irreps
- \circ Singular value analysis
 - SV vs couplings
 - Large-N expressions of SVs
- \circ Numerical results
 - GWW transition and parity SSB at $\theta = \pi$
 - Eguchi-Kawai reduction
 - New volume reduction at strong coupling
- Summary and discussion

TRG for 2d gauge theories

Brief review of 2d TRG

- 1. Write the partition function as a network of tensor
- 2. Decompose the tensor with SVD
- 3. Recombine the tensors into the coarse-grained network (keep the tensor rank fixed to D_{cut})
- 4. Repeat at step 2

2d gauge theories with a theta term

$$\begin{cases}
P_n = U_{n,1}U_{n+\hat{1},2}U_{n+\hat{2},1}^{\dagger}U_{n,2}^{\dagger} \\
\lambda = 2Na^2g^2
\end{cases}$$

Action:
$$S = \frac{1}{4g^2} \int d^2 x \operatorname{tr} F_{\mu\nu}^2 - i\theta Q \implies -\frac{N}{\lambda} \sum_n \operatorname{tr}(P_n + P_n^{\dagger}) - i\theta Q$$

Topological charge:
$$Q = \frac{1}{4\pi} \int d^2 x \epsilon_{\mu\nu} \text{tr} F_{\mu\nu} \implies \frac{1}{2\pi i} \sum_n \log \det P_n$$

The model can be exactly solved via character expansion.

$$e^{\beta \operatorname{tr}(P+P^{\dagger})+i\gamma \operatorname{tr}\log P} = \sum_{r=\operatorname{irrep}} f_r \operatorname{tr}_r P$$

2d gauge theories with a theta term

$$Z = \int d^n U \sum_{\{r\}} \prod_{\text{sites}} f_r \operatorname{tr}_r (UUU^{\dagger}U^{\dagger}) = \sum_{\{r\}} \prod_{\text{sites}} T$$

original lattice integrate over group manifold

dual lattice sum over group representations

Representations of U(N) and SU(N)

SU(N):
$$r^{(SU)} = \{l_1, l_2, .., l_N\}$$
 $l_N = 0$ for SU(N)
 $l_1 \ge l_2 \ge \cdots \ge l_N$

U(N):
$$r^{(U)} = (r^{(SU)}, q) = \{l_1 + q, l_2 + q, ..., l_N + q\}$$

Dimensionality
(matrix size):
$$d_r = \prod_{1 \le i < j \le N} \left(1 + \frac{l_i - l_j}{j - i} \right)$$

Tensor construction

Because the tensor is *diagonal*, singular values have a simple scaling behavior:

$$\sigma_r \stackrel{
m coarse-grain}{\longrightarrow} \sigma_r^2$$

The partition function can be exactly evaluated

$$Z = \sum_{r} \sigma_r(\theta)^V$$

Tensor construction

Because the tensor is *diagonal*, singular values have a simple scaling behavior:

$$\sigma_r \stackrel{ ext{coarse-grain}}{\longrightarrow} \sigma_r^2$$

The partition function can be exactly evaluated

$$Z = \sum_{r} \sigma_r(\theta)^V$$

There are infinitely many irreps! \rightarrow need a cut-off

Examples

- U(1): cut-off on the charge $|q| < q_{\max}$
- SU(2): cut-off on the spin
- $l < l_{\max}$

Cut-off becomes nontrivial!

Our general strategy :

1. Calculate SVs of all irreps that is within the cut-off condition This number is usually larger than $D_{cut} \longrightarrow Larger$ number = less efficiency

2. Keep only D_{cut} irreps in the calculation

- 3. Extend the cut-off until the calculation is unchanged (D_{cut} kept fixed)
- 4. The U(1) charge' for U(N) can be cut off independently and straightforwardly

Question: what is the most efficient cut-off condition?

Example 1: using l_1 as the cut-off condition

$$\left\{ \begin{array}{l} r^{(\mathrm{SU})} = \{l_1, l_2, .., l_N\} \\ l_1 \ge l_2 \ge \cdots \ge l_N = 0 \end{array} \right\} \quad l_1 \le \Lambda$$

Problem: the number of irreps grows like Λ^{N-1} (for fixed N)

Too large too quickly for large N !

Example 2: using dimensionality as the cut-off condition

$$d_r \le \Delta_\Lambda$$

$$\Delta_{\Lambda} = \frac{(\Lambda + N - 1)!}{\Lambda!(N - 1)!}$$

= smallest dim. of irreps with $l_1=\Lambda$

For each $\Lambda\,$, consider only those with $\,d_r \leq \Delta_{\Lambda}\,$

Question: what is the most efficient cut-off condition?

cutting by dimensionality is the most efficient condition so far

Singular value analysis

Singular values vs 't Hooft couplings

SV decays faster for larger 't Hooft couplings

This is true for both U(N) and SU(N)

Singular value profile at large N

Questions:

- Does large N pose any problem for TRG calculation?
- Any dominant representation?
- Is there a definite profile?

Singular value profile at large N

- U(N) and SU(N) have the same profile for $\lambda > 2$ (strong coupling)
- But they have different profiles for λ < 2 (weak coupling)

Large - *N* expansions

$$\mathsf{SU}(N): \quad \log \sigma_r = C^{(0)}N^2 + C_r^{(1)} + \mathcal{O}(N^{-2})$$

$$U(N) \ \lambda < 2: \ \log \sigma_{r,q} = C^{(0)} N^2 + C^{(1)}_{r,q} + \mathcal{O}(N^{-1})$$

$$J(N) \ \lambda > 2: \ \log \sigma_{r,q} \neq C^{(0)}N^2 - a_qN + b_q\chi_N + C^{(1)}_{r,q} + \mathcal{O}(N^{-1}) \quad \left(\chi_N \sim \frac{1}{2\pi^2} \log N\right)$$

this term suppresses contributions from most of the charges (only one *q* survives at large *N*)

U(1) d.o.f. is 'trivialized' $\longrightarrow U(N) \sim SU(N)$

Singular values with nonzero θ

- U(1) charge is related to the theta term! $\sigma_{(r,q+1)}(\theta) = \sigma_{(r,q)}(\theta + 2\pi)$
- Large N expansion $\log \sigma_{(r,q_0)}(\theta) = C^{(0)}N^2 + \chi_N f(\theta) + C_r^{(1)} + \mathcal{O}(1/N)$

q₀: U(1) charge that gives the largest SV

Only $q = q_0$ survives at large N

Numerical results

Basic results

Gross-Witten-Wadia 3rd-order transition

$$C = \frac{\partial}{\partial \lambda} \left(\lambda^2 \frac{\partial F}{\partial \lambda} \right) \Rightarrow \begin{cases} \frac{1}{2} & ; \lambda < 2, \\\\ \frac{2}{\lambda^2} & ; \lambda \ge 2 \end{cases}$$

The transition starts to appear at N = 10

Basic results

1st-order transition at $\theta = \text{odd} \times \pi$

*very difficult in Monte Carlo simulations

Alternative interpretation for Eguchi-Kawai reduction

EK-reduction: certain properties of large-N theories are independent of volume *if center sym. is unbroken

Original proof: demonstrating the equivalence of S-D equations for Wilson loops [Eguchi&Kawai,'92]

Alternative interpretation for Eguchi-Kawai reduction

$$F \equiv \frac{1}{N^2 V} \log Z = \frac{1}{N^2 V} \log \sum_r \sigma_r^V = C^{(0)} + \frac{1}{V N^2} \log(\cdots)$$

volume-independent at large N

TRG's perspective: the theory is **volume-independent** when the SVs have a **scaling behavior**.

$$\sigma_r \stackrel{\text{coarse-grain}}{\longrightarrow} \sigma_r^2$$

Large N and nonzero θ

Recall: parity spontaneously broken at $\theta = \text{odd} \times \pi$ at large volume

calculation at small volume (V=2x2)

• parity remains unbroken at large N

- parity becomes broken even at small vol
- small vol ~ large vol at large N ?? ²⁹

Summary and Discussions

- We consider using TRG based on character expansion to study 2d non-abelian gauge theories.
- For that, we propose an efficient way to cut-off the irreps: that is based on dimensionality.
- Various known results are reproduced: GWW transition and parity SSB at $\theta = \pi$
- By looking at the behavior of singular values, Eguchi-Kawai reduction can be explained.
 A new kind of volume independent at strong coupling is also observed.

Summary and Discussions

- We expect that our method to cut-off the irreps can be useful for more general non-Abelian theories (d>2, or with matter fields, etc.)
- Since Large-N reduction at $\theta \neq 0$ persists even at volume as small as 2x2 where the notion of topology is ambiguous, how is the topological information stored in the large-N matrix?

Thank you!