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Tensor renormalization group (TRG)

Rewriting the partition function as a network of tensors [Levin & Nave, 07]

4 = Z Tabchdefg T
{indices}

Tabcd -\

Non-stochastic = no sign problem! :

e (Can access large volumes with logarithmic cost

Can handle Grassmann fields directly




Application of TRG in gauge theories

* There were works on U(1), SU(2), and SU(3) gauge theories in 2d
[Bazavov et al.,'19; Kuramashi & Yoshimura,'20; Fukuma et al.,"21]

* OQur interest: higher rank gauge group in 2d (character expansion)

* Questions to be answered:
1. How to impose the cutoff on representations?

2. Interesting large-N behaviors?
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TRG for 2d gauge theories



Brief review of 2d TRG

1. Write the partition function as a network of tensor

2. Decompose the tensor with SVD r 2 p &
3. Recombine the tensors into the coarse-grained network s
(keep the tensor rank fixed to O, ) Trars

4. Repeat at step 2




2d gauge theories with a theta term

1 N
Action: S = o) / CatrFy, —i0Q = —— Y tr(P, + P}

1
Topological charge: Q= ppm /d2$€uytrFu,, — —Zlog det P,

The model can be exactly solved via character expansion.
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2d gauge theories with a theta term
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Representations of U(/A ) and SU(NV)

SU(N):

T(SU) — {lla 127 JZN}

INn =0

for SU(N )

h=>ly>--- 2N

r) = (O )=l +q,ls +q,...Ix +q}

Dimensionality

(matrix size):  d, = H




Tensor construction

singular value O'R(Q)

+7 d
Mrg(0)y = [ 52 coslty+i =3+ a+ £)ohexp(3 coso)

Because the tensor is diagonal, singular values have a simple scaling behavior:

coarse-grain 9
Oy i o) r

» The partition function can be exactly evaluated Z = Z O'T(Q)V
T
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Tensor construction

SU(N) :
1 det M, ,
/\_/ T?“.smn — Z d 5frsmn
® * ® q r
)| )\ )\ singular :fralue Or.q
74

_ . 27

Because the tensor is diagonal, singular values have a simple scaling behavior:

coarse-grain 9
Oy i o) r

» The partition function can be exactly evaluated Z = Z O'T(Q)V
T

Ml = [ 52 cos{(ly +i— 5 +a)} exp(R cos)
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Representation cut-off

There are infinitely many irreps! = need a cut-off

Examples
* U(1): cut-off on the charge 9] < Gmax

* SU(2): cut-off on the spin [ < lmax

* SU@3)7 | ]
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Cut-off becomes nontrivial!
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Representation cut-off

Our general strategy :

1. Calculate SVs of all irreps that is within the cut-off condition

This number is usually larger than D_, » Larger number
= less efficiency

2. Keep only D_, irreps in the calculation

3. Extend the cut-off until the calculation is unchanged (D

cut

kept fixed)

4. The “U(1) charge’ for U(N ) can be cut off independently and straightforwardly

Question: what is the most efficient cut-off condition?



Representation cut-off

Example 1: using [, as the cut-off condition

SU(3): )

1 \

=

(0,00) (1,1,0) (22.0) '\(3.3.0)

\
AN=2

Problem: the number of irreps grows like AN~1!

1 (for fixed N )

Too large too quickly for large N |
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Representation cut-off

Example 2: using dimensionality as the cut-off condition d, < Ap
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Representation cut-off

Example 2: using dimensionality as the cut-off condition d, < Ap
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Representation cut-off

Question: what is the most efficient cut-off condition?

200 — 77— T T 1T T T ]
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cutting by dimensionality is the most efficient condition so far



Singular value analysis



Singular values vs 't Hooft couplings
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SV decays faster for larger 't Hooft couplings

This is true for both U(/N) and SU(N)
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Singular value profile at large NV

Questions:

* Does large N pose any problem for TRG calculation?
* Any dominant representation?

* |s there a definite profile?
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Singular value profile at large NV

0l ©
SU(N) * U(N) and SU(N ) have the same
=3 profile for A > 2 (strong coupling)

* But they have different profiles
for A < 2 (weak coupling)
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Large -/V/ expansions

SU(N); log o, —|— C'?(}) + O(N—z)
U(N) A < 2: logo,, + cl) +OoN

UN) A > 2 logo,, — an+quN+C’£B +O(Nh [X

1
Vg 108

§

/

this term suppresses contributions
from most of the charges
(only one g survives at large N)

U(1) d.o.f. is ‘trivialized” =—» U(N ) ~ SU(N )
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Singular values with nonzero 6

* U(1) charge is related to the theta term! 0y 4+1)(0) = 0(r 4)(0 + 27)

do: U(1) charge that

+ Large -N expansion  1og (s 4)(0) = CON? +- xn f(6) + CIV + O(1/N) | ives the largest SV

Only g = q, survives at large N
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Numerical results



Basic results

Gross-Witten-Wadia 3r9-order transition
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The transition starts to appear at /=10
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Basic results

1st-order transition at 8 = odd x

U(3)
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parity spontaneously broken at large volume

*very difficult in Monte Carlo simulations
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Alternative interpretation for Eguchi-Kawai reduction

EK-reduction: certain properties of large-N theories are independent of volume

*if center sym. is unbroken

| G D W W
—+4 4 1|

[T T T ] ey |
—e ¢+ 4 4 reduced model
— 4+ |

original model

Original proof: demonstrating the equivalence of S-D equations for Wilson loops
[Eguchi&Kawai, 92]



Alternative interpretation for Eguchi-Kawai reduction
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volume-independent at large N

TRG's perspective: the theory is volume-independent
when the SVs have a scaling behavior.

coarse-grain 2
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Large N and nonzero 6

Recall: parity spontaneously broken at 6 = odd x m at large volume

calculation at small volume (V=2x2)
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e parity remains unbroken at large N * parity becomes broken even at small vol

* small vol ~ large vol at large N 77 %



qo goxl q*+2 g=£3

T D,

New volume reduction P~ l

Recall: only g = q, survives at large N and strong coupling
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sub-leading volume independence;
can be observed via
topological charge density

A new kind of volume
O(1/N) independence different from EK
reduction
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Summary and Discussions

We consider using TRG based on character expansion to study 2d non-abelian gauge theories.

For that, we propose an efficient way to cut-off the irreps:
that is based on dimensionality.

Various known results are reproduced: GWW transition and parity SSBat 8 =«

By looking at the behavior of singular values, Eguchi-Kawai reduction can be explained.
A new kind of volume independent at strong coupling is also observed.
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Summary and Discussions

* We expect that our method to cut-off the irreps can be useful for more general non-Abelian
theories (d>2, or with matter fields, etc.)

* Since Large-N reduction at 8 # 0 persists even at volume as small as 2x2 where the notion
of topology is ambiguous, how is the topological information stored in the large-N matrix?



Thank youl



