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Tensor renormalization group (TRG) 

• Rewriting the partition function as a network of tensors [Levin & Nave,’07]

• Non-stochastic = no sign problem!

• Can access large volumes with logarithmic cost

• Can handle Grassmann fields directly
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Application of TRG in gauge theories

• There were works on U(1), SU(2), and SU(3) gauge theories in 2d
[Bazavov et al.,’19;  Kuramashi & Yoshimura,’20;  Fukuma et al.,‘21]

• Our interest: higher rank gauge group in 2d (character expansion)

• Questions to be answered:

1. How to impose the cutoff on representations?

2. Interesting large-N behaviors?
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TRG for 2d gauge theories



(1) (2) (3)

Brief review of 2d TRG
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1. Write the partition function as a network of tensor

2. Decompose the tensor with SVD

3. Recombine the tensors into the coarse-grained network
(keep the tensor rank fixed to Dcut)

4. Repeat at step 2



2d gauge theories with a theta term

Action:

Topological charge:

The model can be exactly solved via character expansion.
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2d gauge theories with a theta term

original lattice
integrate over group manifold
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dual lattice
sum over group representations



Representations of U(N ) and SU(N )

for  SU(N )

Dimensionality 
(matrix size):
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SU(N ):

U(N ):



Tensor construction

Because the tensor is diagonal, singular values have a simple scaling behavior:
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The partition function can be exactly evaluated

U(N ) :



Tensor construction

Because the tensor is diagonal, singular values have a simple scaling behavior:
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The partition function can be exactly evaluated

SU(N ) :



Representation cut-off

There are infinitely many irreps! → need a cut-off

Examples

• U(1): cut-off on the charge 

• SU(2): cut-off on the spin

• SU(3) ?
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Cut-off becomes nontrivial!
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Representation cut-off

Our general strategy :

1. Calculate SVs of all irreps that is within the cut-off condition
This number is usually larger than Dcut

2. Keep only Dcut irreps in the calculation

3. Extend the cut-off until the calculation is unchanged (Dcut kept fixed)

4. The `U(1) charge’ for U(N ) can be cut off independently and straightforwardly

Larger number
= less efficiency
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Question: what is the most efficient cut-off condition?



Representation cut-off

Example 1: using      as the cut-off condition
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1

(0,0,0)

(1,0,0)

(2,0,0)

(1,1,0)

(2,1,0)

(2,2,0)

(3,1,0)

(3,2,0)

(3,3,0)

SU(3):

Problem: the number of irreps grows like

(for fixed N )

Too large too quickly for large N !



Representation cut-off

Example 2: using dimensionality as the cut-off condition

For each     , consider only 
those with

= smallest dim. of irreps with



Representation cut-off

Example 2: using dimensionality as the cut-off condition

Irrelevant representations!



Representation cut-off

Question: what is the most efficient cut-off condition?

number of irreps
within the cut-off
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cutting by dimensionality is the most efficient condition so far



Singular value analysis



Singular values vs ’t Hooft couplings

SU(3)

SV decays faster for larger ’t Hooft couplings

This is true for both U(N) and SU(N)
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SU(3)

free energy vs DcutSV profile



Singular value profile at large N
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SU(N )
λ = 3

Questions:
• Does large N pose any problem for TRG calculation?
• Any dominant representation?
• Is there a definite profile?



Singular value profile at large N
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• U(N ) and SU(N ) have the same 
profile for λ > 2 (strong coupling)

• But they have different profiles
for λ < 2 (weak coupling)

SU(N )
λ = 3



Large -N expansions

SU(N):

U(N) λ < 2:

U(N) λ > 2:
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this term suppresses contributions 
from most of the charges
(only one q survives at large N)

U(1) d.o.f. is ‘trivialized’             U(N ) ~ SU(N )



• U(1) charge is related to the theta term!

• Large -N expansion

Singular values with nonzero θ
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weak strong

Only q = q0 survives at large N

q0: U(1) charge that 
gives the largest SV



Numerical results



Basic results
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SU(10)

weak 
coupling
phase

strong 
coupling
phase

Gross-Witten-Wadia 3rd-order transition

The transition starts to appear at N = 10
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1st-order transition at θ = odd x π

U(3)

*very difficult in Monte Carlo simulations

parity spontaneously broken at large volume

Basic results



Alternative interpretation for Eguchi-Kawai reduction

EK-reduction: certain properties of large-N theories are independent of volume 

*if center sym. is unbroken

Original proof: demonstrating the equivalence of S-D equations for Wilson loops

original model

reduced model
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[Eguchi&Kawai,’92]



Alternative interpretation for Eguchi-Kawai reduction

TRG’s perspective: the theory is volume-independent
when the SVs have a scaling behavior.

volume-independent at large N
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Large N and nonzero θ

weak strong
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• parity becomes broken even at small vol 

• small vol ~ large vol at large N ?? 

calculation at small volume (V=2x2)

• parity remains unbroken at large N

Large N

Large N

Recall: parity spontaneously broken at θ = odd x π at large volume



New volume reduction

A new kind of volume 
independence different from EK 
reduction
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Recall: only q = q0 survives at large N and strong coupling

can be pulled out

sub-leading volume independence;
can be observed via

topological charge density



Summary and Discussions

• We consider using TRG based on character expansion to study 2d non-abelian gauge theories.

• For that, we propose an efficient way to cut-off the irreps:
that is based on dimensionality.

• Various known results are reproduced: GWW transition and parity SSB at θ = π

• By looking at the behavior of singular values, Eguchi-Kawai reduction can be explained.
A new kind of volume independent at strong coupling is also observed.
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Summary and Discussions

• We expect that our method to cut-off the irreps can be useful for more general non-Abelian 
theories (d>2, or with matter fields, etc.)

• Since Large-N reduction at θ ≠ 0 persists even at volume as small as 2x2 where the notion 
of topology is ambiguous, how is the topological information stored in the large-N matrix?
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Thank you!
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