Quantum phase transition and Resurgence: Lessons from 3d N=4 SQED

Takuya Yoda Department of Physics, Kyoto University

[arXiv: 2103.13654]

Collaborators: Toshiaki Fujimori^{A,D}, Masazumi Honda^B, Syo Kamata^C, Takahiro Misumi^{D,E}, Norisuke Sakai^D Hiyoshi Phys. Keio U.^A, YITP^B, NCBJ^C, RECNS Keio^D, Akita->Kindai U.^E

Jun./16/2021 Seminar @Kyoto U. Particle Physics Group

Resurgence theory

• One of the approaches to non-perturbative physics

[J. Ecalle, 81]

Lectures and reviews, e.g. [M. Marino, 12] [D. Dorigoni, 19] [I. Aniceto, G. Basar, R. Schiappa, 19]

• Decodes *non-perturbative information* from *perturbation theory*

Phase transitions and resurgence

Common story:

1st order phase transition = Change of dominant saddles

This is also within the scope of resurgence theory

Recent works:

- O-dim Gross-Neveu, Nambu-Jona-Lasinio like model
 [T. Kanazawa, Y. Tanizaki, 15]
- 2dim Yang-Mills on lattice (reduced to Gross-Witten-Wadia) [G. Dunne et al., 16, 17, 18] etc.

Is resurgence theory applicable to 2nd order phase transitions or more realistic QFTs?

Brief summary

Model

[Russo, Tierz, 17]

- $3\dim \mathcal{N} = 4 U(1)$ SUSY gauge theory + $2N_f$ hypermultiplets with charge 1
- Fayet-Illiopoulos parameter η , flavor mass m

→ 2nd order quantum phase transition at the large-flavor limit

Result: resurgence is applicable!

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

2nd order phase transition = Simultaneous Stokes and Anti-Stokes phenomena

Change of the form of asymptotic expansion and change of dominant saddles

- The order of the phase transition is determined by the collision angle of saddles
- Such information is encoded in a perturbative series

Contents

 Motivations and Brief summary 	(3)
• 2 nd order phase transition in SQED3 (review)	(4)
 Lefschetz thimble analysis 	(9)
 Borel resummation 	(11)
 Lessons from SQED3 	(3)
 Conclusion and future works 	(1)
	Total: 31

Contents

Asymptotic series and resurgence structure

Resurgence theory:

the perturbative part knows the non-perturbative parts

Example: Odim Sine-Gordon model

Partition function:

$$Z(g) \coloneqq \sqrt{\frac{\pi}{2g}} e^{-1/4g} I_0(1/4g) = \frac{1}{\sqrt{2\pi g}} \int_{-\pi/2}^{\pi/2} \mathrm{d}\varphi \, e^{-\frac{1}{2g} \sin^2 \varphi} \left(\frac{-\pi}{2} < \pm \arg(1/4g) < \frac{3\pi}{2} \right)$$
$$= \sum_{n=0}^{\infty} \frac{(+2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1} \pm i e^{-1/2g} \sum_{n=0}^{\infty} \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

Perturbative part

Non-perturbative part

Observation 1

$$Z(g) = \frac{1}{\sqrt{2\pi g}} \int_{-\pi/2}^{\pi/2} \mathrm{d}\varphi \ e^{-\frac{1}{2g}\sin^2\varphi} = \sum_{n=0}^{\infty} c_n^{(0)} g^{n+1} \pm i e^{-1/2g} \sum_{n=0}^{\infty} c_n^{(1)} g^{n+1}$$

Observation 2

$$\sum_{n=0}^{\infty} c_n^{(0)} g^{n+1} \rightarrow \int_0^{\infty} \mathrm{d}t \ e^{-t/g} \sum_{n=0}^{\infty} \frac{c_n^{(0)}}{\Gamma(n+1)} t^n \quad \text{Borel resummation}$$

$$= \int_0^{\infty} \mathrm{d}t \ e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; 2t\right)$$
"Ambiguity" $\sim ie^{-1/2g}$
Recall
Recall

$$\sum_{n=0}^{\infty} \frac{(+2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1} \pm i e^{-1/2g} \sum_{n=0}^{\infty} \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

Observation 3

$$c_n^{(0)} = \frac{(+2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)}$$

$$\sim \frac{2^n \Gamma(n)}{\Gamma(1/2)^2} \left[1 + \frac{-1/4}{n-1} + \frac{9/32}{(n-1)(n-2)} + \frac{-75/128}{(n-1)(n-2)(n-3)} + \cdots \right]$$

$$\begin{aligned} \underline{c_n^{(1)}} &= \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} \\ c_0^{(1)} &= 1 \ c_1^{(1)} = 2^1 \left(\frac{-1}{4}\right), \ c_2^{(1)} = 2^2 \left(\frac{9}{32}\right), \ c_3^{(1)} = 2^3 \left(\frac{-75}{128}\right) \end{aligned}$$

Resurgence theory

• One of the approaches to non-perturbative physics

[J. Ecalle, 81]

Lectures and reviews, e.g. [M. Marino, 12] [D. Dorigoni, 19] [I. Aniceto, G. Basar, R. Schiappa, 19]

• Decodes *non-perturbative information* from *perturbation theory*

Contents

 Motivations and Brief summary 	(3)
• 2 nd order phase transition in SQED3 (review)	(4)
 Lefschetz thimble analysis 	(9)
 Borel resummation 	(11)
 Lessons from SQED3 	(3)
 Conclusion and future works 	(1)
	Total: 31

SQED3

Model:

 $3 \dim \mathcal{N} = 4 U(1)$ SUSY gauge theory with

- $2N_f$ hypermultiplets (charge 1)
- Fayet-Illiopoulos parameter η
- flavor masses $\pm m$

Partition function:

Exactly computed on S^3 by SUSY localization technique

[Pestun, 12] [A. Kapustin, B. Willett, I. Yaakov, 10] [N. Hama, K. Hosomichi, S. Lee, 11] [D. L. Jafferis, 12]

$$Z = \int_{-\infty}^{\infty} d\sigma \frac{e^{i\eta\sigma}}{\left[2\cosh\frac{\sigma+m}{2} \cdot 2\cosh\frac{\sigma-m}{2}\right]^{N_f}}$$

 σ : Coulomb branch parameter

i.e. constant configuration of the scalar belonging to the vector multiplet in $\mathcal{N}=2$ Language

't Hooft like limit:

[Russo, Tierz, 17]

$$N_f \to \infty, \quad \lambda \equiv \frac{\eta}{N_f} = \text{fixed.}$$

"Action":

$$S(\sigma) = N_f \Big[-i\lambda\sigma + \ln(\cosh\sigma + \cosh m) \Big]$$

Saddles:

$$\sigma_n^{\pm} = \log\left(\frac{-\lambda \cosh m \pm i\Delta(\lambda, m)}{i + \lambda}\right) + 2\pi i n \quad (n \in \mathbb{Z}),$$

$$\Delta(\lambda, m) = \sqrt{1 - \lambda^2 \sinh^2 m}.$$

$$Something must happen at \\\lambda_c \equiv \frac{1}{\sinh m}$$

[Russo, Tierz, 17]

[Russo, Tierz, 17]

[Russo, Tierz, 17]

2nd order phase transition

If the saddles of smallest real part contribute,

[Russo, Tierz, 17]

$$\frac{d^2 F}{d\lambda^2} = \begin{cases} \frac{N_f}{1+\lambda^2} \left(1 + \frac{\cosh m}{\sqrt{1-\lambda^2 \sinh^2 m}} \right) & \lambda < \lambda_c \\ \frac{N_f}{1+\lambda^2} & \lambda \ge \lambda_c \end{cases}$$

→ 2nd order phase transition

Questions:

- Smallest real part does not necessarily mean that such saddles contribute to the path integral. Can we *justify it in more precise way*?
- Can we interpret the 2nd order phase transition *from the viewpoint of resurgence*, and *draw lessons* for generic QFTs?

We will answer to these questions, Yes!

Contents

V Mativations and Brief summary	(3)
✓ 2^{nd} order phase transition in SOED3 (review)	(4)
 Lefschetz thimble analysis 	(9)
 Borel resummation 	(11)
 Conclusion and future works 	(3)
	(1)
	Total: 31

Lefschetz thimbles and dual-thimbles

Stokes and anti-Stokes phenomena

Stokes phenomenon

: Change of an intersection number, which occurs at $\mathrm{Im}[S[\varphi_i]] = \mathrm{Im}[S[\varphi_j]]$

Anti-Stokes phenomenon: Change of dominant saddles, which occurs at ${
m Re}[S[arphi_i]] = {
m Re}[S[arphi_j]]$

← → 1st order phase transition

What we do

Recall our goal:

- Smallest real part does not necessarily mean that such saddles contribute to the path integral. Can we *justify it in more precise way*?
- Can we interpret the 2nd order phase transition *from the viewpoint of resurgence*, and *draw lessons* for generic QFTs?

Sub-questions in this part:

- Is the 2nd order phase transition justified by *thimble decomposition*?
- Is the 2nd order phase transition interpreted as *(anti-)Stokes phenomena*?

Application to the "path integral"

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

Partition function:

$$Z = \int_{-\infty}^{\infty} \mathrm{d}\sigma \ e^{-S(\sigma)} \qquad S(\sigma) = N_f \Big[-i\lambda\sigma + \ln(\cosh\sigma + \cosh m) \Big]$$

Thimble/dual-thimble equations:

$$\mathcal{J}_n^{\pm}: \ \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} = +\frac{\overline{\mathrm{d}S(\sigma)}}{\mathrm{d}\sigma}, \quad \sigma(-\infty) = \sigma_n^{\pm}$$
$$\mathcal{K}_n^{\pm}: \ \frac{\mathrm{d}\sigma(t)}{\mathrm{d}t} = -\frac{\overline{\mathrm{d}S(\sigma)}}{\mathrm{d}\sigma}, \quad \sigma(-\infty) = \sigma_n^{\pm}$$

Lefschetz thimble structure

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

 $\arg N = -0.025$

 $\arg N = -0.025$

 $\arg N = -0.025$

Lefschetz thimble structure (subcritical)

 $\arg N = -0.025$

- No Stokes phenomenon
- Only the trivial saddle σ_0^+ contributes to the path integral

 $\operatorname{Im} \sigma$ 15 σ_2^+ σ_2 σ_1 σ $\sigma_0^ \sigma_0^+$ Re σ 1.0 -1.0 ~0.5 0.5

Im σ σ_2 σ_2^+ σ_1 σ_1^+ σ_1 $\sigma_0^ \sigma_0^ \sigma_0^+$ Re σ -1.0 -0.5 0.5 1.0 -1.0

 $\arg N = -0.015$

 $\arg N = +0.015$

Im σ

σ₁ σ₀ -1.0 -0.5 0.5 1.0

Re σ

Im σ 15 $\sigma_2^ \sigma_2^+$ $\sigma_1^ \sigma_1^+$ $\sigma_0^ \sigma_0^+$ Re σ -1.0 0.5 -1.0-0.5 1.0

 $\arg N = -0.015$

- Infinite number of Stokes phenomena occur around $\arg N_f = 0$
- Infinite number of saddles σ_n^{\pm} contribute to the path integral

Stokes and anti-Stokes pheno. at the critical pt.

 $\lambda \geq \lambda_c$

Stokes and anti-Stokes pheno. at the critical pt.

At the critical point,

- we have seen a Stokes phenomenon $\sigma_0^+ \rightarrow \sigma_n^\pm$
- anti-Stokes phenomenon occurs at the same time
Phase transition and Lefschetz thimble structure

Summary

 $\lambda < \lambda_c$

- No Stokes phenomenon

$$\lambda \geq \lambda_c$$

- Infinite number of Stokes phenomena
- Only the trivial saddle σ_0^+ contributes Infinite number of saddles σ_n^\pm contribute

(Two of which σ_0^+, σ_0^- survive the large-flavor limit)

- Stokes and anti-Stokes phenomena occur at the same time
- The phase transition is interpreted from the view point of thimbles

Contents

 Motivations and Brief summary 	(3)
✓ 2 nd order phase transition in SQED3 (review)	(4)
 Lefschetz thimble analysis 	(9)
 Borel resummation 	(11)
Lessons from SQED3	(3)
 Conclusion and future works 	(1)
	Total: 31

Asymptotic series and resurgence structure

Resurgence theory:

the perturbative part knows the non-perturbative parts

Borel resummation

Resuming a asymptotic series

$$Z(g) = \sum_{n=0}^{\infty} c_n g^{n+r}, \quad c_n \sim n!$$

 $SZ(g) = \int_C \mathrm{d}t \ e^{-t/g} \mathcal{B}Z(t)$

Asymptotic series

[J. Ecalle, 81] Lectures and reviews, e.g.

[M. Marino, 12] [D. Dorigoni, 19] [I. Aniceto, G. Basar, R. Schiappa, 19]

$$\mathcal{B}Z(t) = \sum_{n=0}^{\infty} \frac{c_n}{\Gamma(n+r)} t^{n+r-1}$$

Borel resummation

Borel transformation

Borel transformation may have Borel singularities

 \underbrace{t}^{C} Borel singularities mean non-perturbative corrections!

Non-trivial saddle and Borel singularities

$$Z(g) = \int \mathcal{D}\varphi \ e^{-S[\varphi]/g} \sim \sum_{n=0}^{\infty} c_n g^n$$

$$c_n = \frac{1}{2\pi i} \oint \frac{\mathrm{d}g}{g^{n+1}} \int \mathcal{D}\varphi \ e^{-S[\varphi]/g}$$

$$\sim e^{-S[\varphi_*]/g_* - (n+1)\ln g_*}$$

$$\sim \frac{n!}{(S[\varphi_*])^{n+1}}$$

$$\mathcal{B}Z(t) \sim \sum_{n=0}^{\infty} \left(\frac{t}{S[\varphi_i]}\right)^n = \frac{1}{1 - \frac{t}{S[\varphi_i]}}$$

$$[Lipatov, 77]$$

$$\Box$$

Non-trivial saddles are encoded in an asymptotic series

What we do

Large-flavor expansion around the trivial saddle:

Borel resummation:

$$\mathcal{S}Z(\lambda;N) = \frac{1}{2^N} \sqrt{\frac{2\pi}{NS''(\lambda;\sigma_0^+)}} e^{-NS(\lambda;\sigma_0^+)} \cdot N \int_C \mathrm{d}t \ e^{-Nt} \sum_{l=0}^\infty \frac{a_l(\lambda)}{\Gamma(l+1)} t^l$$

Sub-questions in this part:

- Is the Borel plane structure *consistent with the Lefschetz thimble structure*?
- Can we *decode the phase transition* from the perturbative series?

But please wait (1/2): Borel-Padé approximation

Exact quantities:

$$F\left(\frac{1}{N_f}\right) = \sum_{\ell=0}^{\infty} \frac{a_l}{N_f^{\ell}}$$
$$\mathcal{B}F(t) = \sum_{l=0}^{\infty} \frac{a_\ell}{\Gamma(\ell+1)} t^{\ell}$$

asymptotic series

Borel transformation

Approximate these from finite number of inputs

$$\mathcal{P}_{m,n}(t) = \frac{P_m(t)}{Q_n(t)}$$

Borel-Padé approximation

But please wait (2/2): Larger $\theta = \arg N_f$

Stokes phenomena occur on different Riemann sheets

But please wait (2/2): Larger $\theta = \arg N_f$

Stokes phenomena occur on different Riemann sheets

Borel plane structure

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

Poles of the Padé approximant are consumed for branch cuts...

Improvement: Padé-Uniformized approximation

[Costin, Dunne, 20]

Uniformize the Borel *t*-plane by a map:

$$t \mapsto u(t) = -\ln\left(1 - \frac{t}{s}\right)$$

Branch cut singularity at t = s is eliminated

Perform the standard Padé approximation on the *u*-plane

$$\widetilde{\mathcal{B}F}(t) \simeq \mathcal{P}_{m,n}(u(t))$$

Borel plane structure (improved)

Borel plane structure (improved)

• The Stokes phenomena are encoded as Borel non-summability

Borel plane structure (improved)

- The collision of saddles are encoded as collision of Borel singularities
- The anti-Stokes phenomenon is encoded as Borel singularities along the vertical axis

Analytical study for large λ [T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

Lading contribution for large λ

$$F(N_f;\lambda) = \int_{-\infty}^{\infty} d\delta\sigma \ e^{-N_f(i\lambda\delta\sigma + \log(1-i\lambda\delta\sigma))}$$
$$= \frac{1}{i\lambda} \int dt \ e^{-N_f t} \frac{W(-e^{t-1})}{1+W(-e^{t-1})}$$

 σ -plane and Borel *t*-plane are directly related via $\delta \sigma = \frac{1}{i\lambda} \left(1 + W(-e^{t-1}) \right)$

Contents

 Motivations and Brief summary 	(3)
✓ 2^{nd} order phase transition in SQED3 (review)	(4)
✓ Lefschetz thimble analysis	(9)
✓ Borel resummation	(11)
Lessons from SQED3	(3)
 Conclusion and future works 	(1)
	Total: 31

Collision of saddles

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

Consider

$$e^{-NF(\lambda)} = \int \mathrm{d}\sigma \ e^{-N\tilde{S}(\lambda;\sigma)}$$

If the "action" is holomorphic, and n saddles collide as

Then, the "action" value at *m*-th saddle is $\tilde{S}_m \simeq c_0 + T_m (\delta \lambda)^{(n+1)\beta}$

→ Phase transition is of order $\lceil (n+1)\beta \rceil$

$$n=2, \beta\pi=\pi/2$$

→ Phase transition is of order $\lceil (2+1)/2 \rceil = 2$

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

i. Contributing saddles jump as $\sigma_0^+ \to \sigma_0^+, \sigma_0^-$

Stokes and anti-Stokes phenomena at the same time

ccur

- ii. Two saddles collide with an angle $\pi/2$
- iii. Infinite number of Stokes phenomena associated with σ_{nn}^{\pm}

Borel resummation:

- I. Two Borel singularities collide and line up along the vertical axis
- II. Two Borel singularities collide with an angle $\pi/2$
- III. Large-flavor expansion becomes Borel non-summable

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- Contributing saddles jump as $\sigma_0^+ \to \sigma_0^+, \sigma_2^-$ Two saddles collide with an angle $\pi/2$ Ì.
- ii.
- Infinite number of Stokes phenomena associa iii.

The order of phase transition is decoded from "scattering angle"

Borel resummation:

- Two Borel singularities collide and line up along the vertic axis
- Two Borel singularities collide with an angle $\pi/2$ Π.
- Large-flavor expansion becomes Borel non-summable

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- i. Contributing saddles jump as $\sigma_0^+ \to \sigma_0^+, \sigma_0^-$
- ii. Two saddles collide with an angle $\pi/2$
- iii. Infinite number of Stokes phenomena associated with $\sigma_{n>0}^{\pm}$ occur

Borel resummation:

- I. Two Borel singularities collide and line up alor
- II. Two Borel singularities collide with an angle π
- III. Large-flavor expansion becomes Borel non-summable

$$Z = \int_{-\infty}^{\infty} d\sigma \frac{e^{i\eta\sigma}}{\left[2\cosh\frac{\sigma+m}{2} \cdot 2\cosh\frac{\sigma-m}{2}\right]^{N_j}}$$

Due to SUSY

The 2nd order phase transition corresponds to followings

Lefschetz thimble analysis:

- i. Contributing saddles jump as $\sigma_0^+ \rightarrow \sigma_0^+, \sigma_0^-$
- ii. Two saddles collide with an angle $\pi/2$
- iii. Infinite number of Stokes phenomena associated with $\sigma_{n>0}^{\pm}$ occur

Borel resummation:

- I. Two Borel singularities collide and line up along the vertical axis
- II. Two Borel singularities collide with an angle $\pi/2$
- III. Large-flavor expansion becomes Borel non-summable

They can be generalized as long as
$$e^{-NF(\lambda)} = \int d\sigma \ e^{-N\tilde{S}(\lambda;\sigma)}$$

Contents

 Motivations and Brief summary 	(3)
✓ 2 nd order phase transition in SQED3 (review)	(4)
✓ Lefschetz thimble analysis	(9)
✓ Borel resummation	(11)
✓ Lessons from SQED3	(3)
 Conclusion and future works 	(1)
	Total: 31

Conclusion and future works

Question:

Is resurgence applicable to 2nd order phase transitions or more realistic QFTs?

Answer: resurgence is applicable!

2nd order phase transition = simultaneous Stokes and anti-Stokes phenomenon

- The order of phase transition is determined by a collision of saddles
- It is decoded from a perturbative series
 - Generalized to other systems

Future works:

- Relation to Lee-Yang zeros ?
- Expansion with respect to other parameters?
- Physical meaning of the phase transition?

Backups

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin

The order of the phase transition

2nd order phase transition corresponds to collision of two saddles with the reflection angle $\pi/2$

Lefschetz thimble analysis

Odim Sine-Gordon model

$$Z(g) = \frac{1}{(2\pi g)^{1/2}} \int_{-\pi/2}^{\pi/2} \mathrm{d}\phi \ e^{-S(\phi)/g}, \quad S(\phi) = \frac{1}{2}\sin^2\phi$$

Saddles and Lefschetz thimbles

$$0 = \frac{\mathrm{d}S(\phi)}{\mathrm{d}\phi} \Rightarrow \phi = 0, \pm \frac{\pi}{2}$$

Trivial saddle and non-trivial saddles

$$\mathcal{J}_{i}: \frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = \overline{\frac{\mathrm{d}S}{\mathrm{d}\phi}}, \quad \phi(-\infty) = \phi_{i} \quad \mathrm{Im}\,S(\phi(t)) = \mathrm{const.}, \quad \mathrm{Re}\,S(\phi_{i}) \leq \mathrm{Re}\,S(\phi(t))$$
$$\mathcal{K}_{i}: \frac{\mathrm{d}\phi(t)}{\mathrm{d}t} = -\overline{\frac{\mathrm{d}S}{\mathrm{d}\phi}}, \quad \phi(-\infty) = \phi_{i} \quad \mathrm{Im}\,S(\phi(t)) = \mathrm{const.}, \quad \mathrm{Re}\,S(\phi_{i}) \geq \mathrm{Re}\,S(\phi(t))$$

[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

Lefschetz thimble analysis

NO Stokes phenomenon associated with the non-trivial saddles

Borel resummation

[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

Perturbation theory around the trivial saddle diverges

$$Z(g) = \frac{1}{(2\pi g)^{1/2}} \int_{-\pi/2}^{\pi/2} \mathrm{d}\phi \ e^{-\frac{1}{2g}\sin^2\phi}$$

$$\stackrel{\text{around } \phi=0}{=} e^{-S(0)/g} \cdot \frac{1}{g} \sum_{n=0}^{\infty} \frac{(-2)^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

There is a Borel singularity (and a branch cut) around $\arg g = 0$

$$\begin{split} \mathcal{S}Z(g) &= \int_C \mathrm{d}t \ e^{-t/g} \mathcal{B}Z(t) \\ &= e^{-S(0)/g} \cdot \frac{1}{g} \int_C \mathrm{d}t \ e^{-t/g} \sum_{n=0} \frac{2^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)^2} (+t)^n \\ &= e^{-S(0)/g} \cdot \frac{1}{g} \int_C \mathrm{d}t \ e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; (+2t)\right) \end{split}$$

Borel resummation

[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

Perturbation theory around a non-trivial saddle diverges

$$Z(g) = \frac{1}{(2\pi g)^{1/2}} \int_{-\pi/2}^{\pi/2} \mathrm{d}\phi \ e^{-\frac{1}{2g}\sin^2\phi}$$
$$\stackrel{\text{around } \phi = \pi/2}{=} i e^{-S(\pi/2)/g} \cdot \frac{1}{g} \sum_{n=0}^{\infty} \frac{\textcircled{2}^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)} g^{n+1}$$

There is NO Borel singularity (nor branch cut) around $\arg g = 0$

$$\begin{split} \mathcal{S}Z(g) &= \int_C \mathrm{d}t \ e^{-t/g} \mathcal{B}Z(t) \\ &= i e^{-S(\pi/2)/g} \cdot \frac{1}{g} \int_C \mathrm{d}t \ e^{-t/g} \sum_{n=0} \frac{2^n \Gamma(n+1/2)^2}{\Gamma(1/2)^2 \Gamma(n+1)^2} (-t)^n \\ &= i e^{-S(\pi/2)/g} \cdot \frac{1}{g} \int_C \mathrm{d}t \ e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1, -2t\right) \end{split}$$

Resurgence structure

The two types of ambiguities cancel and the location of the Borel singularity agrees with $S\left(\frac{\pi}{2}\right) = 1/2$

[Cherman, Dorigoni, Unsal, 14]

$$\begin{split} \mathcal{S}Z(g) &= \underbrace{\mathfrak{S}Z(g)}_{\text{around } \phi = 0} \oplus \mathcal{S}Z(g)|_{\text{around } \phi = \pi/2} \\ &= e^{-S(0)/g} \cdot \frac{1}{g} \int_{C^{\pm}} dt \ e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; \pm 2t\right) \\ &= i e^{-\mathfrak{S}(\pi/2)/g} \cdot \frac{1}{g} \int_{C} dt \ e^{-t/g} {}_2F_1\left(\frac{1}{2}, \frac{1}{2}, 1; -2t\right) \\ &= \operatorname{Re} \left. \mathcal{S}_{\pm}Z(g) \right|_{\text{around } \phi = 0} \end{split}$$

Information of non-trivial saddles is encoded in perturbation theory around the trivial saddle

Large-flavor expansion

Consider the Borel resummation of 1/N expansion to see how thimbles' structure is encoded

$$Z(\lambda; N) = \frac{1}{2^N} \int d\sigma \ e^{-NS(\lambda;\sigma)}, \quad S(\lambda; \sigma) = -i\lambda\sigma + \ln(\cosh\sigma + \cosh m)$$

$$\xrightarrow{\text{around } \sigma_0^+} \frac{1}{2^N} \sqrt{\frac{2\pi}{NS''(\lambda; \sigma_0^+)}} e^{-NS(\lambda; \sigma_0^+)} \sum_{l=0}^{\infty} \frac{a_l(\lambda)}{N^l}$$

$$\mathcal{S}Z(\lambda;N) = \frac{1}{2^N} \sqrt{\frac{2\pi}{NS''(\lambda;\sigma_0^+)}} e^{-NS(\lambda;\sigma_0^+)} \cdot N \int_C \mathrm{d}t \ e^{-Nt} \sum_{l=0}^\infty \frac{a_l(\lambda)}{\Gamma(l+1)} t^l$$

Does perturbation theory around the trivial saddle know non-trivial saddles and the phase transition?