## Quantum phase transition and Resurgence: Lessons from 3d N=4 SQED

## Takuya Yoda <br> Department of Physics, Kyoto University

[arXiv: 2103.13654]

Collaborators: Toshiaki FujimoriA,D, Masazumi Honda ${ }^{B}$, Syo Kamata ${ }^{\text {C }}$, Takahiro Misumi ${ }^{\text {D,E }}$, Norisuke Sakai ${ }^{\text {D }}$ Hiyoshi Phys. Keio U.A, YITPB, NCBJC, RECNS KeioD, Akita-> Kindai U.E

## Resurgence theory

- One of the approaches to non-perturbative physics
- Decodes non-perturbative information from perturbation theory



## Phase transitions and resurgence

## Common story:

$1^{\text {st }}$ order phase transition $=$ Change of dominant saddles


This is also within the scope of resurgence theory

## Recent works:

- 0-dim Gross-Neveu, Nambu-Jona-Lasinio like model
- 2dim Yang-Mills on lattice (reduced to Gross-Witten-Wadia) [G. Dunne et al., 16, 17, 18] etc.

Is resurgence theory applicable to $2^{\text {nd }}$ order phase transitions or more realistic QFTs?

## Brief summary

## Model

- $3 \operatorname{dim} \mathcal{N}=4 U(1)$ SUSY gauge theory $+2 N_{f}$ hypermultiplets with charge 1
- Fayet-Illiopoulos parameter $\eta$, flavor mass $m$
$\rightarrow 2^{\text {nd }}$ order quantum phase transition at the large-flavor limit
Result: resurgence is applicable!


## $2^{\text {nd }}$ order phase transition $=$ Simultaneous Stokes and Anti-Stokes phenomena

Change of the form of asymptotic expansion and change of dominant saddles

- The order of the phase transition is determined by the collision angle of saddles
- Such information is encoded in a perturbative series



## Contents

$\checkmark$ Motivations and Brief summary

- $2^{\text {nd }}$ order phase transition in SQED3 (review)
- Lefschetz thimble analysis
- Borel resummation
- Lessons from SQED3
- Conclusion and future works

Total: 31

## Contents

$\checkmark$ Motivations and Brief summarr

- $2^{\text {nd }}$ order phase transition in 50
- Lefschetz thimble analysis
- Borel resummation
- Lessons from SQED3

Before these, let me provide lightning introduction to resurgence

- Conclusion and future works

Total: 31

## Asymptotic series and resurgence structure

$$
Z(g)=\sum_{n=0}^{\infty} c_{n} g^{n+r}, \quad c_{n} \sim n!
$$



[J. Ecalle, 81]
[M. Marino, 12]
[Cherman, Dorigoni, Unsal, 14]
[Cherman, Koroteev, Unsal, 14]
[D. Dorigoni, 19]
[I. Aniceto, G. Basar, R. Schiappa, 19]

Resurgence theory:
the perturbative part knows the non-perturbative parts

## Example: Odim Sine-Gordon model

Partition function:

$$
\begin{aligned}
Z(g) & :=\sqrt{\frac{\pi}{2 g}} e^{-1 / 4 g} I_{0}(1 / 4 g)=\frac{1}{\sqrt{2 \pi g}} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \varphi e^{-\frac{1}{2 g} \sin ^{2} \varphi}\left(-\frac{\pi}{2}< \pm \arg (1 / 4 g)<\frac{3 \pi}{2}\right) \\
& =\sum_{n=0}^{\infty} \frac{(+2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} g^{n+1} \pm i e^{-1 / 2 g} \sum_{n=0}^{\infty} \frac{(-2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} g^{n+1}
\end{aligned}
$$

Perturbative part
Non-perturbative part

## Observation 1

$$
Z(g)=\frac{1}{\sqrt{2 \pi g}} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \varphi e^{-\frac{1}{2 g} \sin ^{2} \varphi}=\sum_{n=0}^{\infty} c_{n}^{(0)} g^{n+1} \pm i e^{-1 / 2 g} \sum_{n=0}^{\infty} c_{n}^{(1)} g^{n+1}
$$

$\arg g=+0$


$$
\mathfrak{I}=\mathcal{J}_{0} \square \mathcal{J}_{1}
$$

$\arg g=-0$

$\mathcal{I}=\mathcal{J}_{0} \boxplus \mathcal{J}_{1}$

## Observation 2

$$
\sum_{n=0}^{\infty} c_{n}^{(0)} g^{n+1} \rightarrow \int_{0}^{\infty} \mathrm{d} t e^{-t / g} \sum_{n=0}^{\infty} \frac{c_{n}^{(0)}}{\Gamma(n+1)} t^{n} \quad \text { Borel resummation }
$$

$$
=\int_{0}^{\infty} \mathrm{d} t e^{-t / g}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; 2 t\right)
$$

"Ambiguity" $\sim i e^{-1 / 2 g}$


Recall

$$
\sum_{n=0}^{\infty} \frac{(+2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} g^{n+1} \pm i e^{-1 / 2 g} \sum_{n=0}^{\infty} \frac{(-2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} g^{n+1}
$$

## Observation 3

$$
\begin{aligned}
c_{n}^{(0)} & =\frac{(+2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} \\
& \sim \frac{2^{n} \Gamma(n)}{\Gamma(1 / 2)^{2}}\left[1+\frac{-1 / 4}{\overline{n-1}}+\frac{\boxed{932}}{(n-1)(n-2)}+\frac{-75 / 128}{(n-1)(n-2)(n-3)}+\cdots\right]
\end{aligned}
$$

$$
c_{n}^{(1)}=\frac{(-2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)}
$$

$$
c_{0}^{(1)}=1 c_{1}^{(1)}=2^{1}\left(\frac{-1}{4}\right), c_{2}^{(1)}=2^{2}\left(\frac{9}{32}\right), c_{3}^{(1)}=2^{3}\left(\frac{-75}{128}\right)
$$

## Resurgence theory

- One of the approaches to non-perturbative physics
- Decodes non-perturbative information from perturbation theory



## Contents

$\checkmark$ Motivations and Brief summary

- $2^{\text {nd }}$ order phase transition in SQED3 (review)
- Lefschetz thimble analysis
- Borel resummation
- Lessons from SQED3
- Conclusion and future works

Total: 31

## SQED3

## Model:

$3 \operatorname{dim} \mathcal{N}=4 U(1)$ SUSY gauge theory with

- $2 N_{f}$ hypermultiplets (charge 1 )
- Fayet-Illiopoulos parameter $\eta$
- flavor masses $\pm m$


## Partition function:

Exactly computed on $S^{3}$ by SUSY localization technique
[Pestun, 12]
[A. Kapustin, B. Willett, I. Yaakov, 10]
[N. Hama, K. Hosomichi, S. Lee, 11]
[D. L. Jafferis, 12]
$Z=\int_{-\infty}^{\infty} d \sigma \frac{e^{i \eta \sigma}}{\left[2 \cosh \frac{\sigma+m}{2} \cdot 2 \cosh \frac{\sigma-m}{2}\right]^{N_{f}}}$
$\sigma$ : Coulomb branch parameter
i.e. constant configuration of the scalar belonging to the vector multiplet in $\mathcal{N}=2$ Language

## Saddles

't Hooft like limit:

$$
N_{f} \rightarrow \infty, \quad \lambda \equiv \frac{\eta}{N_{f}}=\text { fixed }
$$

"Action":

$$
S(\sigma)=N_{f}[-i \lambda \sigma+\ln (\cosh \sigma+\cosh m)]
$$

Saddles:

$$
\begin{aligned}
\sigma_{n}^{ \pm}=\log \left(\frac{-\lambda \cosh m \pm i \Delta(\lambda, m)}{i+\lambda}\right)+2 \pi i n & (n \in \mathbb{Z}), \\
\Delta(\lambda, m)=\sqrt{1-\lambda^{2} \sinh ^{2} m .} & \begin{array}{l}
\text { Something must } \\
\text { happen at } \\
\lambda_{c} \equiv \frac{1}{\sinh m}
\end{array}
\end{aligned}
$$

## Saddles

[Russo, Tierz, 17]


## Saddles

[Russo, Tierz, 17]


## Saddles

[Russo, Tierz, 17]


## $2^{\text {nd }}$ order phase transition

If the saddles of smallest real part contribute,

$$
\frac{d^{2} F}{d \lambda^{2}}= \begin{cases}\frac{N_{f}}{1+\lambda^{2}}\left(1+\frac{\cosh m}{\sqrt{1-\lambda^{2} \sinh ^{2} m}}\right) & \lambda<\lambda_{c} \\ \frac{N_{f}}{1+\lambda^{2}} & \lambda \geq \lambda_{c}\end{cases}
$$

$$
\longrightarrow 2^{\text {nd }} \text { order phase transition }
$$

Questions:

- Smallest real part does not necessarily mean that such saddles contribute to the path integral. Can we justify it in more precise way?
- Can we interpret the $2^{\text {nd }}$ order phase transition from the viewpoint of resurgence, and draw lessons for generic QFTs?


## Contents

$\checkmark$ Motivations and Brief summary
$\checkmark 2^{\text {nd }}$ order phase transition in SQED3 (review)

- Lefschetz thimble analysis
(3)
(4)
(9)
(11)
(3)
(1)

Total: 31

## Lefschetz thimbles and dual-thimbles

Lefschetz thimbles = "Steepest descents" in configuration space
Dual-thimble = "Steepest ascents" in configuration space


## Stokes and anti-Stokes phenomena



Stokes phenomenon : Change of an intersection number, which occurs at

$$
\operatorname{Im}\left[S\left[\varphi_{i}\right]\right]=\operatorname{Im}\left[S\left[\varphi_{j}\right]\right]
$$

Anti-Stokes phenomenon: Change of dominant saddles, which occurs at

$$
\operatorname{Re}\left[S\left[\varphi_{i}\right]\right]=\operatorname{Re}\left[S\left[\varphi_{j}\right]\right]
$$

$\longleftrightarrow \quad 1^{\text {st }}$ order phase transition

## What we do

## Recall our goal:

- Smallest real part does not necessarily mean that such saddles contribute to the path integral. Can we justify it in more precise way?
- Can we interpret the $2^{\text {nd }}$ order phase transition from the viewpoint of resurgence, and draw lessons for generic QFTs?

Sub-questions in this part:

- Is the $2^{\text {nd }}$ order phase transition justified by thimble decomposition?
- Is the $2^{\text {nd }}$ order phase transition interpreted as (anti-)Stokes phenomena?


## Application to the "path integral"

Partition function:

$$
Z=\int_{-\infty}^{\infty} \mathrm{d} \sigma e^{-S(\sigma)} \quad S(\sigma)=N_{f}[-i \lambda \sigma+\ln (\cosh \sigma+\cosh m)]
$$

Thimble/dual-thimble equations:

$$
\begin{array}{ll}
\mathcal{J}_{n}^{ \pm}: \frac{\mathrm{d} \sigma(t)}{\mathrm{d} t}=+\frac{\overline{\mathrm{d} S(\sigma)}}{\mathrm{d} \sigma}, & \sigma(-\infty)=\sigma_{n}^{ \pm} \\
\mathcal{K}_{n}^{ \pm}: \frac{\mathrm{d} \sigma(t)}{\mathrm{d} t}=-\frac{\overline{\mathrm{d} S(\sigma)}}{\mathrm{d} \sigma}, & \sigma(-\infty)=\sigma_{n}^{ \pm}
\end{array}
$$

## Lefschetz thimble structure

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

$$
\begin{gathered}
\lambda<\lambda_{c} \\
\arg N=0, \lambda=0.4, m=1
\end{gathered}
$$




Thimble decomposition $\mathcal{I}=\sum_{i} n_{i} \mathcal{J}_{i}$ is ambiguous
$\longrightarrow$ Vary the phase of $N_{f}$

## Lefschetz thimble structure (subcritical)

 $\lambda<\lambda_{c}$
$\arg N=+0.025$



## Lefschetz thimble structure (subcritical)

 $\lambda<\lambda_{c}$$\arg N=-0.025$

$\arg N=+0.025$


Dual thimble

## Lefschetz thimble structure (subcritical)

 $\lambda<\lambda_{c}$$\arg N=-0.025$

$\arg N=+0.025$


## Lefschetz thimble structure (subcritical)

 $\lambda<\lambda_{c}$

$$
\arg N=+0.025
$$



- No Stokes phenomenon
- Only the trivial saddle $\sigma_{0}^{+}$contributes to the path integral


## Lefschetz thimble structure (supercritical)

$\lambda \geq \lambda_{c}$
$\arg N=-0.025$

$\arg N=+0.025$


## Lefschetz thimble structure (supercritical)

$\lambda \geq \lambda_{c}$
$\arg N=-0.025$

$\arg N=+0.025$


## Lefschetz thimble structure (supercritical)

$\lambda \geq \lambda_{c}$
$\arg N=-0.015$

$\arg N=+0.015$


## Lefschetz thimble structure (supercritical)

$\lambda \geq \lambda_{c}$
$\arg N=-0.015$

$\arg N=+0.015$


## Lefschetz thimble structure (supercritical)

$\lambda \geq \lambda_{c}$
$\arg N=-0.025$

$\arg N=-0.015$

$\arg N=0$


- Infinite number of Stokes phenomena occur around $\arg N_{f}=0$
- Infinite number of saddles $\sigma_{n}^{ \pm}$contribute to the path integral


## Stokes and anti-Stokes pheno. at the critical pt.

$\lambda<\lambda_{c}$

$\lambda \geq \lambda_{c}$


Stokes and anti-Stokes pheno. at the critical pt.


At the critical point,

- we have seen a Stokes phenomenon $\sigma_{0}^{+} \rightarrow \sigma_{n}^{ \pm}$
- anti-Stokes phenomenon occurs at the same time


## Phase transition and Lefschetz thimble structure

## Summary

$$
\lambda<\lambda_{c}
$$

- No Stokes phenomenon
- Only the trivial saddle $\sigma_{0}^{+}$contributes - Infinite number of saddles $\sigma_{n}^{ \pm}$contribute (Two of which $\sigma_{0}^{+}, \sigma_{0}^{-}$survive the large-flavor limit)

- Stokes and anti-Stokes phenomena occur at the same time
$\rightarrow$ The phase transition is interpreted from the view point of thimbles


## Contents

$\checkmark$ Motivations and Brief summary
$\checkmark 2^{\text {nd }}$ order phase transition in SQED3 (review)
$\checkmark$ Lefschetz thimble analysis

- Borel resummation
- Lessons from SQED3
- Conclusion and future works

Total: 31

## Asymptotic series and resurgence structure

$$
Z(g)=\sum_{n=0}^{\infty} c_{n} g^{n+r}, \quad c_{n} \sim n!
$$



[J. Ecalle, 81]
[M. Marino, 12]
[Cherman, Dorigoni, Unsal, 14]
[Cherman, Koroteev, Unsal, 14]
[D. Dorigoni, 19]
[I. Aniceto, G. Basar, R. Schiappa, 19]

Resurgence theory:
the perturbative part knows the non-perturbative parts

## Borel resummation

Resuming a asymptotic series

$$
\begin{array}{ll}
Z(g)=\sum_{n=0}^{\infty} c_{n} g^{n+r}, \quad c_{n} \sim n! & \text { Asymptotic series } \\
\mathcal{S} Z(g)=\int_{C} \mathrm{~d} t e^{-t / g} \mathcal{B} Z(t) & \text { Borel resummation } \\
\mathcal{B} Z(t)=\sum_{n=0}^{\infty} \frac{c_{n}}{\Gamma(n+r)} t^{n+r-1} & \text { Borel transformation }
\end{array}
$$

[J. Ecalle, 81]
[D. Dorigoni, 19]
[I. Aniceto, G. Basar, R. Schiappa, 19]

Borel transformation may have Borel singularities


Borel singularities mean non-perturbative corrections!

## Non-trivial saddle and Borel singularities

$$
\begin{aligned}
& Z(g)=\int \mathcal{D} \varphi e^{-S[\varphi] / g} \sim \sum_{n=0}^{\infty} c_{n} g^{n} \\
& c_{n}=\frac{1}{2 \pi i} \oint \frac{\mathrm{~d} g}{g^{n+1}} \int \mathcal{D} \varphi e^{-S[\varphi] / g} \\
& \sim e^{-S\left[\varphi_{*}\right] / g_{*}-(n+1) \ln g_{*}} \\
& \sim \frac{n!}{\left(S\left[\varphi_{*}\right]\right)^{n+1}} \\
& \mathcal{B} Z(t) \sim \sum_{n=0}^{\infty}\left(\frac{t}{S\left[\varphi_{i}\right]}\right)^{n}=\frac{1}{1-\frac{t}{S\left[\varphi_{i}\right]}}
\end{aligned}
$$

Non-trivial saddles are encoded in an asymptotic series

## What we do

Large-flavor expansion around the trivial saddle:

asymptotic series!

Borel resummation:

$$
\mathcal{S} Z(\lambda ; N)=\frac{1}{2^{N}} \sqrt{\frac{2 \pi}{N S^{\prime \prime}\left(\lambda ; \sigma_{0}^{+}\right)}} e^{-N S\left(\lambda ; \sigma_{0}^{+}\right)} \cdot N \int_{C} \mathrm{~d} t e^{-N t} \sum_{l=0}^{\infty} \frac{a_{l}(\lambda)}{\Gamma(l+1)} t^{l}
$$

Sub-questions in this part:

- Is the Borel plane structure consistent with the Lefschetz thimble structure?
- Can we decode the phase transition from the perturbative series?


## But please wait (1/2): Borel-Padé approximation

 Exact quantities:$$
\begin{array}{ll}
F\left(\frac{1}{N_{f}}\right)=\sum_{\ell=0}^{\infty} \frac{a_{l}}{N_{f}^{\ell}} & \text { asymptotic series } \\
\mathcal{B} F(t)=\sum_{l=0}^{\infty} \frac{a_{\ell}}{\Gamma(\ell+1)} t^{\ell} & \text { Borel transformation }
\end{array}
$$

Approximate these from finite number of inputs

$$
\mathcal{P}_{m, n}(t)=\frac{P_{m}(t)}{Q_{n}(t)}
$$

Borel-Padé approximation

## But please wait (2/2): Larger $\theta=\arg N_{f}$

Stokes phenomena occur on different Riemann sheets



## But please wait (2/2): Larger $\theta=\arg N_{f}$

Stokes phenomena occur on different Riemann sheets



## Borel plane structure




Poles of the Padé approximant are consumed for branch cuts...

## Improvement: Padé-Uniformized approximation

Uniformize the Borel $t$-plane by a map:

$$
t \mapsto u(t)=-\ln \left(1-\frac{t}{s}\right)
$$

Branch cut singularity at $t=s$ is eliminated

Perform the standard Padé approximation on the $u$-plane

$$
\widetilde{\mathcal{B} F}(t) \simeq \mathcal{P}_{m, n}(u(t))
$$

## Borel plane structure (improved)

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]

$\lambda \geq \lambda_{c}$
$\lambda=1.2, m=1$, Padé-Uniformized $(25,25)$



## Borel plane structure (improved)



- The Stokes phenomena are encoded as Borel non-summability


## Borel plane structure (improved)

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]


- The collision of saddles are encoded as collision of Borel singularities
- The anti-Stokes phenomenon is encoded as Borel singularities along the vertical axis


## Analytical study for large $\lambda$

[T. Fujimori, M. Honda, S. Kamata, T. Misumi, N. Sakai, TY, 21]
Lading contribution for large $\lambda$

$$
\begin{aligned}
F\left(N_{f} ; \lambda\right) & =\int_{-\infty}^{\infty} \mathrm{d} \delta \sigma e^{-N_{f}(i \lambda \delta \sigma+\log (1-i \lambda \delta \sigma))} \\
& =\frac{1}{i \lambda} \int d t e^{-N_{f} t} \frac{W\left(-e^{t-1}\right)}{1+W\left(-e^{t-1}\right)}
\end{aligned}
$$

$\sigma$-plane and Borel $t$-plane are directly related via $\delta \sigma=\frac{1}{i \lambda}\left(1+W\left(-e^{t-1}\right)\right)$


## Contents

$\checkmark$ Motivations and Brief summary
$\checkmark 2^{\text {nd }}$ order phase transition in SQED3 (review)
$\checkmark$ Lefschetz thimble analysis
$\checkmark$ Borel resummation

- Lessons from SQED3
- Conclusion and future works

Total: 31

## Collision of saddles

## Consider

$$
e^{-N F(\lambda)}=\int \mathrm{d} \sigma e^{-N \tilde{S}(\lambda ; \sigma)}
$$

If the "action" is holomorphic, and $n$ saddles collide as


Then, the "action" value at $m$-th saddle is $\tilde{S}_{m} \simeq c_{0}+T_{m}(\delta \lambda)^{(n+1) \beta}$
$\longrightarrow$ Phase transition is of order $\lceil(n+1) \beta\rceil$

## Revisiting the SQED3



$$
n=2, \beta \pi=\pi / 2
$$

$\longrightarrow$ Phase transition is of order $\lceil(2+1) / 2\rceil=2$

## Revisiting the SQED3

The $2^{\text {nd }}$ order phase transition corresponds to followings

Lefschetz thimble analysis:

I. Two Borel singularities collide and line up along the vertical axis
II. Two Borel singularities collide with an angle $\pi / 2$
III. Large-flavor expansion becomes Borel non-summable

## Revisiting the SQED3

The $2^{\text {nd }}$ order phase transition corresponds to followings

Lefschetz thimble analysis:
i. Contributing saddles jump as $\sigma_{0}^{+} \rightarrow \sigma_{0}^{+}, \sigma_{2}^{-} \quad$ The order of phase
ii. Two saddles collide with an angle $\pi / 2$
iii. Infinite number of Stokes phenomena associa

Borel resummation:
I. Two Borel singularities collide and line up along the vertic axis
II. Two Borel singularities collide with an angle $\pi / 2$ transition is decoded from "scattering angle"
III. Large-flavor expansion becomes Borel non-summable

## Revisiting the SQED3

The $2^{\text {nd }}$ order phase transition corresponds to followings

Lefschetz thimble analysis:
i. Contributing saddles jump as $\sigma_{0}^{+} \rightarrow \sigma_{0}^{+}, \sigma_{0}^{-}$
ii. Two saddles collide with an angle $\pi / 2$
iii. Infinite number of Stokes phenomena associated with $\sigma_{n>0}^{ \pm}$occur

Borel resummation:

III. Large-flavor expansion becomes Borel non-summable

$$
Z=\int_{-\infty}^{\infty} d \sigma \frac{{ }^{i \eta \sigma}}{\left.\left[2 \cosh \frac{\sigma+m}{2} \cdot 2 \cosh \frac{\sigma-m}{2}\right]^{n}\right)}
$$

## Revisiting the SQED3

The $2^{\text {nd }}$ order phase transition corresponds to followings

Lefschetz thimble analysis:
i. Contributing saddles jump as $\sigma_{0}^{+} \rightarrow \sigma_{0}^{+}, \sigma_{0}^{-}$
ii. Two saddles collide with an angle $\pi / 2$
iii. Infinite number of Stokes phenomena associated with $\sigma_{n>0}^{ \pm}$occur

## Borel resummation:

I. Two Borel singularities collide and line up along the vertical axis
II. Two Borel singularities collide with an angle $\pi / 2$
III. Large-flavor expansion becomes Borel non-summable

They can be generalized as long as $e^{-N F(\lambda)}=\int \mathrm{d} \sigma e^{-N \tilde{S}(\lambda ; \sigma)}$

## Contents

$\checkmark$ Motivations and Brief summary
$\checkmark 2^{\text {nd }}$ order phase transition in SQED3 (review)
$\checkmark$ Lefschetz thimble analysis
$\checkmark$ Borel resummation
$\checkmark$ Lessons from SQED3

- Conclusion and future works

Total: 31

## Conclusion and future works

## Question:

Is resurgence applicable to $2^{\text {nd }}$ order phase transitions or more realistic QFTs?

Answer: resurgence is applicable!
$2^{\text {nd }}$ order phase transition $=$ simultaneous Stokes and anti-Stokes phenomenon

- The order of phase transition is determined by a collision of saddles
- It is decoded from a perturbative series
$\longrightarrow$ Generalized to other systems

Future works:

- Relation to Lee-Yang zeros ?
- Expansion with respect to other parameters?
- Physical meaning of the phase transition ?


## Backups

## Borel singularities

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin




## Borel singularities

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin




## Borel singularities

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin



## Borel singularities

- The Borel plane structure is consistent with the Lefschetz thimble structure
- Still there are artifacts, and missing singularities far from the origin



## The order of the phase transition

 $2^{\text {nd }}$ order phase transition corresponds tocollision of two saddles with the reflection angle $\pi / 2$


## Lefschetz thimble analysis

Odim Sine-Gordon model

$$
Z(g)=\frac{1}{(2 \pi g)^{1 / 2}} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \phi e^{-S(\phi) / g}, \quad S(\phi)=\frac{1}{2} \sin ^{2} \phi
$$

Saddles and Lefschetz thimbles

$$
\begin{array}{ll}
0=\frac{\mathrm{d} S(\phi)}{\mathrm{d} \phi} \Rightarrow \phi=0, \pm \frac{\pi}{2} & \text { Trivial saddle and non-trivial saddles } \\
\mathcal{J}_{i}: \frac{\mathrm{d} \phi(t)}{\mathrm{d} t}=\frac{\overline{\mathrm{d} S}}{\mathrm{~d} \phi}, \quad \phi(-\infty)=\phi_{i} & \operatorname{Im} S(\phi(t))=\text { const., }
\end{array} \quad \operatorname{Re} S\left(\phi_{i}\right) \leq \operatorname{Re} S(\phi(t)), ~\left(\mathcal{K}_{i}: \frac{\mathrm{d} \phi(t)}{\mathrm{d} t}=-\frac{\overline{\mathrm{d} S}}{\mathrm{~d} \phi}, \quad \phi(-\infty)=\phi_{i} \quad \operatorname{Im} S(\phi(t))=\text { const., } \quad \operatorname{Re} S\left(\phi_{i}\right) \geq \operatorname{Re} S(\phi(t)) .\right.
$$

## Lefschetz thimble analysis

Around $\arg g=0$,
[Cherman, Dorigoni, Unsal, 14] [Cherman, Koroteev, Unsal, 14]

Stokes phenomenon associated with the trivial saddle

$$
\arg g=+0 \quad \arg g=-0
$$



NO Stokes phenomenon associated with the non-trivial saddles

## Borel resummation

Perturbation theory around the trivial saddle diverges

$$
\begin{aligned}
Z(g) & =\frac{1}{(2 \pi g)^{1 / 2}} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \phi e^{-\frac{1}{2 g} \sin ^{2} \phi} \\
& \quad \text { around } \phi=0 \\
= & e^{-S(0) / g} \cdot \frac{1}{g} \sum_{n=0}^{\infty} \frac{(\oplus 2)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} g^{n+1}
\end{aligned}
$$

There is a Borel singularity (and a branch cut) around $\arg g=0$

$$
\begin{aligned}
\mathcal{S} Z(g) & =\int_{C} \mathrm{~d} t e^{-t / g} \mathcal{B} Z(t) \\
& =e^{-S(0) / g} \cdot \frac{1}{g} \int_{C} \mathrm{~d} t e^{-t / g} \sum_{n=0} \frac{2^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)^{2}}(+t)^{n} \\
& =e^{-S(0) / g} \cdot \frac{1}{g} \int_{C} \mathrm{~d} t e^{-t / g}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ;+2 t\right)
\end{aligned}
$$

## Borel resummation

Perturbation theory around a non-trivial saddle diverges

$$
\begin{aligned}
Z(g) & =\frac{1}{(2 \pi g)^{1 / 2}} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} \phi e^{-\frac{1}{2 g} \sin ^{2} \phi} \\
& \stackrel{\operatorname{around} \phi=\pi / 2}{=} i e^{-S(\pi / 2) / g} \cdot \frac{1}{g} \sum_{n=0}^{\infty} \frac{(\Theta)^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)} g^{n+1}
\end{aligned}
$$

There is NO Borel singularity (nor branch cut) around $\arg g=0$

$$
\begin{aligned}
& \mathcal{S} Z(g)=\int_{C} \mathrm{~d} t e^{-t / g} \mathcal{B} Z(t) \\
&=i e^{-S(\pi / 2) / g} \cdot \frac{1}{g} \int_{C} \mathrm{~d} t e^{-t / g} \sum_{n=0} \frac{2^{n} \Gamma(n+1 / 2)^{2}}{\Gamma(1 / 2)^{2} \Gamma(n+1)^{2}}(-t)^{n} \\
&\left.=i e^{-S(\pi / 2) / g} \cdot \frac{1}{g} \int_{C} \mathrm{~d} t e^{-t / g}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1,-2 t\right)\right) \\
&-\infty \forall \boxed{t} \\
&
\end{aligned}
$$

## Resurgence structure

The two types of ambiguities cancel and the location of the Borel singularity agrees with $S\left(\frac{\pi}{2}\right)=1 / 2$

$$
\begin{aligned}
\mathcal{S} Z(g)= & \underline{\mathcal{S} \pm\left. Z(g)\right|_{\text {around } \phi=0}} \mp \underline{\left.\mathcal{S} Z(g)\right|_{\text {around } \phi=\pi / 2}} \\
= & e^{-S(0) / g} \cdot \frac{1}{g} \int_{C^{ \pm}} \mathrm{d} t e^{-t / g}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ; \boxed{+2 t}\right) \\
& \mp i e^{-\underline{S(\pi / 2)} / g} \cdot \frac{1}{g} \int_{C} \mathrm{~d} t e^{-t / g}{ }_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, 1 ;-2 t\right) \\
= & \left.\operatorname{Re} \mathcal{S}_{ \pm} Z(g)\right|_{\text {around } \phi=0}
\end{aligned}
$$

Information of non-trivial saddles is
encoded in perturbation theory around the trivial saddle

## Large-flavor expansion

[Fujimori, Honda, Kamata, Misumi, Sakai, TY, to appear]

## Consider the Borel resummation of $1 / N$ expansion

 to see how thimbles' structure is encoded$$
\begin{gathered}
Z(\lambda ; N)=\frac{1}{2^{N}} \int \mathrm{~d} \sigma e^{-N S(\lambda ; \sigma)}, \quad S(\lambda ; \sigma)=-i \lambda \sigma+\ln (\cosh \sigma+\cosh m) \\
\text { around } \sigma_{0}^{+} \\
= \\
2^{N} \\
\frac{1}{\frac{2 \pi}{N S^{\prime \prime}\left(\lambda ; \sigma_{0}^{+}\right)}} e^{-N S\left(\lambda ; \sigma_{0}^{+}\right)} \sum_{l=0}^{\infty} \frac{a_{l}(\lambda)}{N^{l}} \\
\mathcal{S} Z(\lambda ; N)=\frac{1}{2^{N}} \sqrt{\frac{2 \pi}{N S^{\prime \prime}\left(\lambda ; \sigma_{0}^{+}\right)}} e^{-N S\left(\lambda ; \sigma_{0}^{+}\right)} \cdot N \int_{C} \mathrm{~d} t e^{-N t} \sum_{l=0}^{\infty} \frac{a_{l}(\lambda)}{\Gamma(l+1)} t^{l}
\end{gathered}
$$




Does perturbation theory around the trivial saddle know non-trivial saddles and the phase transition?

