ー般化King関係式を用いた 新しい力の探索

2021/12/08 @ 京都大

山本 康裕 (NCTS)

Based on 1710.11443, 1911.05345, 2110.13544

Collaborators

Quantum Optics group @ Kyoto U

Map of phenomenology

1/17

Weakly interacting light boson

Drastically change astrophysical observations.

2/17

Some implications in observations.

Atomic clock

- Extremely precise atomic spectroscopy.
 - The relative precision is O(10⁻¹⁵). (Clock error ~ 410 sec./13By)
 - ► The relativistic effect of GPS is O(10⁻¹⁰).
 - ▶ The error of the fine structure constant is O(10⁻¹⁰).
- ◆ At the frontier with Sr, Yb → O(10⁻¹⁸) or better.
 - Experimentally excellent but theoretically poor.

Breakthrough Prize 2022 Fundamental Physics

Invention and development of the optical lattice clock

New SI

Isotope shift and King's relation

Isotope dependence of spectrum.

Inverse mass diff. Nuclear size $\delta\nu_1 = \frac{K_1\delta\mu + F_1\delta\langle r^2\rangle}{\text{Mass shift}}$ Field shift

(Electron wave fn) x (Isotope dependence)

 Isotope shift of Hg by Nagaoka in 1920s. (c.f. discovery of neutron by J. Chadwick in 1933)

A linear relation among transitions.

 $\frac{\delta\nu_2}{\delta\mu} = \left|\frac{F_2}{F_1}\right|\frac{\delta\nu_1}{\delta\mu} + \left|K_2 - \frac{F_2}{F_1}K_1\right|$

In

Uncertainties to calculate spectra are suppressed.

4/17

H. Nagaoka

Violation of the linear relation

• Other higher order contributions. 198 $\delta \nu_1 = K_1 \delta \mu + F_1 \delta \langle r^2 \rangle + \underline{X_1 \delta \eta}$ • The linear relation is violated. Addition is violated.

1987, Blundell et. al.

5/17

Additional fit parameter

Which kinds of non-linearity may appear?

Violation of King's relation

- Higgs boson 1601.05087: C.Delaunay et.al.
 Heavy boson contribution is canceled.
- Weakly interacting light boson 170 $\delta H = \delta K + \delta V + \alpha_{ne} \delta A \frac{e^{-mr}}{r}$

1704.05068: J.C.Berengut et.al.

• Second order perturbation 1709.00600: V.V. Flambaum et.al. $\delta \nu_1 = G_1 \delta \mu + F_1 \delta \langle r^2 \rangle + H_1 [\delta \langle r^2 \rangle^2] + \cdots$ Yb⁺

• Higher order moment $\delta \nu_1 = G_1 \delta \mu + F_1 \delta \langle r^2 \rangle + \tilde{F}_1 \delta \langle r^4 \rangle + \cdots = \int_{\frac{5}{5}}^{10^{-10}} 10^{-12}$ 1710.11443: K.Mikami, M.Tanaka, Y.Y. 1911.05345: M.Tanaka, Y.Y.

Beyond King's relation

• Non-linearity is observed around 300 Hz of precision.

What is the origin of this non-linearity?

• King's relation is generalized. 1710.11443: K.Mikami, M.Tanaka, Y.Y.

An additional isotope dependence is canceled.

Result

¹S₀-³P₀ transition of neutral Yb with precision of a few Hz.

- Additional 2D King plot studies with Yb⁺ transitions.
 - Implication of two higher order isotope shifts.
- First time to study 3D King plot
 Further insight to origin of non-linearity
 - New bound and future prospect to new physics

2110.13544: K.Ono, Y.Y., et.al.

Contents

Introduction

- Some formulas
 Field and particle shift
 Generalized King's relation
- 2D King's plot
 Review of MIT results
 - Combined analyses
- 3D King's plot
 - Implication to higher order IS
 - ► Upper bounds
- Conclusion

Experimental set up drawn by K. Ono

Field shift

Seltzer moment expansion:

1969, E. C. Seltzer

$$\int d\vec{r} \left(|\psi_{j}(\vec{r})|^{2} - |\psi_{i}(\vec{r})|^{2} \right) \delta V(\vec{r}) - Z\alpha \int d\vec{r'} \frac{\delta \rho(\vec{r'})}{|\vec{r} - \vec{r'}|}$$

$$\propto \int_{0}^{\infty} dr' \int_{0}^{r'} dr r^{2} \sum_{k} \xi_{k} r^{k} \left(r' - \frac{r'^{2}}{r} \right) \delta \rho(r')$$

$$\delta \langle r^{k} \rangle = \int d\vec{r} r^{k} \delta \rho(r)$$

$$Z\alpha \sum_{k} \frac{\xi_{k}}{(k+3)(k+2)} \delta \langle r^{k+2} \rangle = F\delta \langle r^{2} \rangle + \tilde{F}\delta \langle r^{4} \rangle + \cdots$$

Second order perturbation:

$$\sum_{m} a_m \langle n | \delta V | m \rangle \langle m | \delta V | n \rangle \propto [\delta \langle r^2 \rangle^2]$$

Particle shift

• Heavy mediator expansion is similar to FS.

Sensitivity to new heavy boson is 1/m⁴ or worse.
 The target is not Higgs but a light particle.

Generalized King's relation

• Considering only the Seltzer moment,

$$\delta\nu_{i} = G_{i}\delta\mu + \sum F_{i}^{(k)}\delta\langle r^{2+k}\rangle + X_{i} \quad \text{(FS2, PS, ...)}$$

$$\vec{\nabla}_{i} = \begin{pmatrix} \vdots & \vdots & \vdots \\ G_{i} & F_{i}^{(0)} & F_{i}^{(2)} & \cdots \\ \vdots & \vdots & \vdots \end{pmatrix} \begin{pmatrix} \delta\mu \\ \delta\langle r^{2}\rangle \\ \delta\langle r^{4}\rangle \\ \vdots \end{pmatrix}$$

(Electronic factors : T) x (Isotope dependence)

King's linearity is $\sum (T^{-1})_{1k} \left(\delta \vec{\nu} - \vec{X}\right)_k = \delta \mu$ Precision of the linearity

Other linearities, e.g., PS induces linearity of δA
 Irreducible formulas to determine the nuclear shape.

Transitions

Yb⁺ ([Xe] 4f¹⁴ 6s¹) 2004.11383: I.Counts, et. al. a: ${}^{2}S_{1/2} - {}^{2}D_{5/2} = \beta$: ${}^{2}S_{1/2} - {}^{2}D_{3/2}$ **Error** ~ 300 Hz Split by the relativistic effect. Yb ([Xe] 4f¹⁴ 6s²)

2110.13544: K.Ono, Y.Y., et.al.

 γ : ${}^{1}S_{0} - {}^{3}P_{0}$ Error ~ 3 Hz

(c.f. ${}^{1}S_{0} - {}^{1}D_{2}$ of Yb with 300 Hz by another group.)

- 4 isotope pairs (168, 170, 172, 174, 176).
- 3 King's plots + 3D King's plot.

2D King relation by Yb⁺

NP is excluded by other exps.

2D King's relation with Yb

• γ : ${}^{1}S_{0} - {}^{3}P_{0} & a / \beta$

Cannot fit the data

Need two or more higher order IS to fit the results.

3D King's relation

• The linear relation is recovered by an additional source.

χ^2 (p-value)	King	FS_2	\mathbf{PS}
$(lpha,eta,\gamma)$	$15(2.3 \times 10^{-3})$	4.037	4.037

Need two or more higher order isotope shifts.

Upper bound

• Cancel unknown IS with 3D King relation in FS2 fit.

$$\delta\nu_{\beta} = f_{\alpha}\delta\nu_{\alpha} + f_{\gamma}\delta\nu_{\gamma} + k\delta\mu + h[\delta\langle r^{2}\rangle^{2}]$$

Assuming that it gives us the correct constraint to h.

Upper bound to PS within the given h.

$$\delta\nu_{\beta} = f_{\alpha}\delta\nu_{\alpha} + f_{\gamma}\delta\nu_{\gamma} + k\delta\mu + h[\delta\langle r^2\rangle^2] + \underline{X\delta}A$$

Conclusion

- Search for light new boson with isotope shifts.
 How can we understand new data with higher order IS?
- First attempt of the generalized King relation to data.
 - New measurement of a few Hz level IS with Yb.
 - Extract information of higher order IS from data.
 - New bound and prospect excluding possible BG.

