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Introduction

* Many interesting subjects related to the 6 term or topology of YM theory
e.g.) strong CP, axion, EDM, fate of U,(1), ...

Focus on the B dependence of free energy density in 4d SU(2) YM



Free energy density:  f(0)
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For SU(N) YM theory,
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& dependence and CP violation

Dilute instanton gas approximation (DIGA)
= f(0) = y(1 — cos 0)
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* a single branch
* sSmooth everywhere



& dependence and CP violation

Dilute instanton gas approximation (DIGA)
= f(0) = y(1 — cos 0)
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* a single branch
* sSmooth everywhere

Large N argument [Witten (1980, 1998)]
= f(0) = y/2 min(@ + 27k)* + O(1/N?)
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» several branches crossing
. spontaneous CPV (1st order PT) at @ = & with

the order parameter df(0)/d0 = — i(q(x))
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» several branches crossing
. spontaneous CPV (1st order PT) at @ = & with

the order parameter df(0)/d0 = — i(q(x))

Interested in (@) around 0@ ~ 7w in 4d SU(N) YM theory.
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Learning from 2d CP"~! model

N — .
L = %Dﬂz D,z — ifq

z . N-component complex scalar field with zz = 1
Dﬂ = ()ﬂ + iAﬂ ] Aﬂ = iZ()ﬂz

1 I
g(x) = z_ne’wa”A” = 2_7z€””D”Z D,z

* Good testing ground for 4d SU(NN) because of many similarities

[asymptotic freedom, dynamical mass gap, instanton, 1//N expandable, ...]
* Gapped and CP broken at @ = wfor N > 3.

* But CP! (i.e. N = 2) is exceptional !
= gapless and no CPV at @ = © («<Haldane conjecture)

5



(@) in 2d CP"~! model (lattice results)
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CP! is indeed consistent with the DIGA,
J(0) = y(1 — cos 0)

while others indicate CPV.



Previous Lattice calculations of 4d SU(N)
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q(x) = 6472 GpwpaF //wF po

* Sign problem makes direct lattice
calculation difficult/impossible.



Previous Lattice calculations of 4d SU(N)

* Relies on Taylor expansion around 8 = 0
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First two coefficients

[Review by Vicari and Panagopoulos (2018)]

2 2 4
ylo® = Coo + -+ O(L/NY)

004- | | | -

0.03- __ 4 gl( -

0.02-

¥
—e—
LI

= e
——_

001 N—g N=6 N=35 —4 =3

0.0 | | | | | | | | |
6).00 0.02 0.04 0.06 0.08 0.10 0.12

1IN



First two coefficients

[Review by Vicari and Panagopoulos (2018)]
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First two coefficients

[Review by Vicari and Panagopoulos (2018)]
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only small corrections to the large N limit indicates CPV for N > 3.
(No SU(2) calculation)



Finite temperature
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DIGA: f(Q) ~ T 4 exp( — 27[ )(1 —cos0) ~ T (l—cos 0)
g (T) OC)((T) : 92/2(1 + bzgz + b4g4 + ”‘)
= b, =—1/12, -




Finite temperature
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(1 —cosf) ~ T4‘_A_(1 — Cos 0)

x y(T')

[DeI Debbio, Panagopoulos Vicari (2004)]
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Finite temperature
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Finite temperature
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DIGA works for "> 1.15 T,
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(1 —cosf) ~ T4‘_A_(1 — Cos 0)

x y(I) = 0%/2(1 + b,0% + b,0* +
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' [Bonati, et al. (2016)]
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Summary of previous results on f(6)

* Large N argument seems robust = CPV at § = 7 and large N SU(N) for N> 1

T
* Formal arguments tell “For general /V, CP has to be broken at . deconfine
0 = r if the vacuum is in the confining phase.” T~
[Gaiotto, et al.(2017)], [Kitano, Suyama, NY(2017)] confine
* Numerical evidences of CPV for N > 3 %\
* What happens to the possible smallest &, i.e. SU(2) ?
- " 1 79 1 15! T 271'
Is it like “large N” or “2d CP " ? ,
= Lattice numerical simulations
T SU2)?
T deconfine
m/z
T T

0
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)( and bz in S U (2) at T p— O [Kitano, NY, Yamazaki (2021)]
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)( and bz in S U (2) at T p— O [Kitano, NY, Yamazaki (2021)]
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New method without any expansion

Introduce sub-volume V. ;, = [* and

Oup= D, q) &7

x€V
¢ 'sub sub(e) — Z(H) — 1 J@U e_Sg_l_iHqub — <ei9qub>H=O
Z(0)  Z(0)
|
Jsun(0) = v In{ cos(0Qqyp) )9=0
sub

0 {0 w00}
f0) = lim £,,(6) = lim § fO)+——+ O(L/’)

Vsub_>OO
with lgyn Vi K Vfuu (lgyn : dynamical length scale)

s(0) : surface tension
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[Kitano,Matsudo,NY,Yamazaki(2021)]

“sub-volume method”




Expected behavior of f () as a function of V.

e Voup > [ would have to be satisfied.

dyn

4
up >

.As long as V. dyn ?

. f.un(0) is expected to show the scaling

. s(0) 5
behavior, f.,,(6) = f(0) l F O(1/1%).

- Buch a behavior willend as V , — V},;, where

O, = Oy € Z . Thus, V., < V4, is required.

X Data

- On the other hand, the method fails when |0 O, ;| ~ 7 because
fiup(@) o In{( cos(0Q, ;) ) becomes ill-defined.

* Crucial question:

V.. satisfying lgyn

< Vsub < Vfull and ‘ H qub‘ < 7 exists ?
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Similarity to the static potential calculation

In the static potential calculation, Wilson loop is inserted.

Z([])
Z(1)

V() =— lim ln(Tr[e”SA]) = o + -

A — 0

In sub-volume method, instead a operator extending over

subvolume Is inserted.

f(0) is analogous to o in the static potential.

1 . - : -
= 7 J@U Tr[e’SBA]e SQCD = (Tr[e 93‘4]) — e V)
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About smearing

o Need to numerically calculate g(x) = F¢ F¢_on the lattice
q 64 72 //wpa UV~ po

* Raw configurations are contaminated by local lumps.
* Smearing (= smoothing a configuration) removes such short-distance artifacts.
* However, at the same time, smearing may alter relevant topological excitations, too.

* We studied this point and developed the procedure to restore relevant information.
[Kitano, NY, Yamazaki (2021)]

= calculate an observable every 5 steps of the smearing

_ extrapolate those back to nypp — 0, (O) = lim (O(nppp))
napp—0
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Lattice parameters and observables

*SU(2) YM theory by Symanzik improved gauge action
A
L= — = 1.975 (relatively fine: 1/(aT.) = 9.50)

V.

g full
Ve = 24° % {48, 6,8} (T=0, 1.2T., 1.6T,) 0 =0
*Periodic boundary condition in all directions
*# of configs = { 68000, 5000, 5000 }

-Calculate @ ;,= Z g(x) and estimate 0% 0

XEVh
. 1 %

¢ f0) =— lim ——In(cos(6Qy,,) )

Vo= Vsub
df (9) . 1 < qub Sin(erub) >
v = Imm
do Vsup— 00 Vsub < COS(Qqub) >

which are used to crosscheck each other
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Finite temperature (1 = 1.2 7))

4 5
a* f.+(8) % 10

o

~ WL O

C
| | 6 I I
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0=31/2, nppp=25 < S 35t/2
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NAPpPE

o Vsub p— 13 X 6 with [ € {12, "t 20}

* Linear fit works well in either extrapolations.
* Not monotonic function, f(x) > f(37/2)
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J(©) 1%

¢ dependence of f(0) atT = 1.2T,

=~ WL O

12T,
0% /2
1-cosO
[do df/de

| /R
' /

/2
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Systematic error due to ambiguity of the scaling region

is large for @ > &

Within large uncertainty, consistent with the DIGA.

df(0)/do

~ () = no CPV above T,
O=n

d
Numerical consistency with Jd@d—g

Similar resultsat T = 1.6 T,



5
a* f..(8) x 10

[ > colimitat7 = 0

=2 =20 1 | ¢ V.. =I[*with] € {10, 12, ---, 20}
0=T, Ny pp=20 —~L— |
20 | 9:3,“;, E:)Ezz() , - | e Data in the range of lgyn K Vo, K Vg are
| fitted to
D as(0)
Jaun(6) = J(6) +

10 | [

* Linear extrapolation works well.
5 N
0
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napp — Olimitat 7 = 0

[
o0

~ O
B
> i
>
>

* Fitrange n,pp = [20, 40] determined in
[Kitano, NY, Yamazaki (2021)].

Linear fit works well.

S 12 | |
X * Monotonic function f(x) < f(37/2)
10|
< 8 .\@\@\@W\@ ® ® @ @
S O=m/2

6 1 T O

4 3m/2

n
2 |

NApE
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6 dependence of f(0) atT =0

J(0) 1%

14 |
12 |
10 |

S B O 0

T=0

0% /2
1-cosO
[do df/de

N
N

21

Succeed to calculate upto @ ~ 3

Monotonically increasing function
Inconsistent with DIGA

/2

f(m — 0) # f(x + 0) requires explanation.

only around 6 = 0.

Numerical consistency with Jdé’ —

* Re-weighting (=full volume) method works

af
do



df(0)/de |

df(0)/dO at T = 0

S
4 —
3 —
2 B A 1 I _
.

’ .,'
1 m

0 /2 n 31/2 1T

v
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Order parameter is non-zero

Af(0)/d0) =~ i(q(x) Yoy # O

= spontaneous CPV atld = «




DiIScussIon

AT > T,

consistent with 1 — cos @ and no CPV as
expected (though non-trivial).
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*AtT =0,
f(mr— 0) # f(r + 0) and it is not like
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Interpretation

* Sub-volume method seems to trace an original
branch even after the crossing point is passed.
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Interpretation

* Sub-volume method seems to trace an original
branch even after the crossing point is passed.

* Similar to the calculation of the static potential,
where“string breaking” should happen but never
OCCuUrs.
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- €) Tolr He) 4d SU(N) YM has an topological object
! called a bag or a domain-wall
- fif@ + €) [Luscher (1978)].

24




Interpretation o
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4d SU(N) YM has an topological object
called a bag or a domain-wall

[Luscher (1978)].
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Summary and conclusion

* We have developed a sub-volume method, which enables us to calculate f(€) up to
0 ~ 3x/2 in SU(2) Yang-Mills theory.

* Combining with the theory requirement f(x — ) = f(w + 6) , our result provides
with the evidence for spontaneous CPV at @ = 7 and at 7' = 0 and the existence of
a bag-like object.

= N=2 belongs to large N class (not like CP! model).

* The same method roughly reproduces the DIGA result, f(6) ~ y(1 — cosf) , above
1., which makes the above result more confident.
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Future studies

SUN) with N=2, -+ o

T

* exploring the location of 7' .(6) t
* Suppose that 7,.(6)) depends on 6. Then, does it mean [ | decontine
that the f-functi ? C
at the f-function depend on € W/
* Also interesting to apply the sub-volume method to the
finite density system. a
T 27
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Intuitive understanding of periodic behavior of f(0)

f(0) =— lim : In(e™ ) = — 1lim : In{ cos(60Q,) )

Vsub_)OO VSU.b Vsub_>c>o VSllb
@ :instanton
w : anti-instanton
v v v
L v L
Vsub
v v Vsub L
Vsub
qub =+ 1 qub =0 qub =+ 1

In this case, (), is almost always integer if piflstanm < V-

sub

= f(0) . ~ 0 = 2zx-periodicity can be expected.
~NLTT
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0-vacuum

* The vacuum can have an integer winding number, labeled by | 7).

» But, this label is changed by gauge transformation, e.g. Uy, |n) = |n+ 1).
+00

* Define |0) = Z e\ n) = Uy | 0) = e™?| 9)
o (0,16_), =Y e ™ m, |n_), =N 0N (m,|m_+Q),
m,n O m
2
- ZJ DA e Tt f°A5(Q . Jd“xGG)
=~ Jeo 3272

— J@A e—Sg+i9Q+fJ-A
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