Gravitational Positivity Bounds and the Standard Model Toshifumi Noumi (Kobe U)

mainly based on arXiv:2104.09682

w/Katsuki Aoki (YITP), Tran Quang Loc (Cambridge), Junsei Tokuda (Kobe U), see also arXiv:2105.01436 w/Junsei Tokuda (Kobe U)

<u>Outline</u>

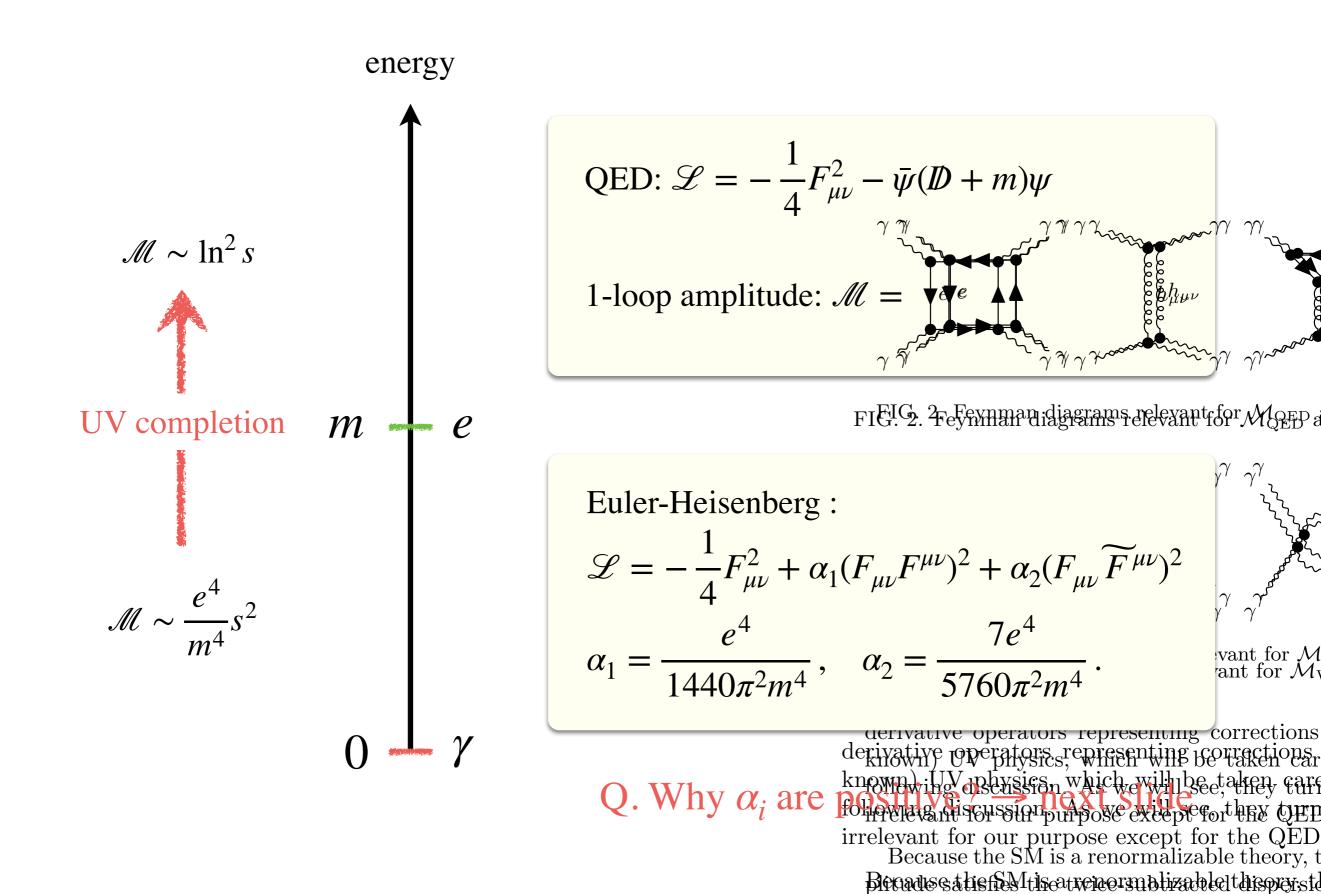
- 1. Positivity bounds on low-energy scattering amplitudes provide a criterion for a low-energy EFT to be UV completable in the standard manner
- 2. They provide a Swampland condition when applied to gravitational EFTs
- 3. Puzzles on positivity in gravitational QED [Alberte-de Rham-Jaitly-Tolley '20]
- implies a cutoff scale $\Lambda \sim 10^8$ GeV (too low to believe???)
- implies that massless QED $m_e \rightarrow 0$ is in the Swampland (sounds strange???)
- 4. Positivity in gravitational Standard Model [Aoki-Loc-TN-Tokuda '21]
- the cutoff scale is improved up to $\Lambda \sim 10^{16}\,{\rm GeV}$
- massless limit $m_e \rightarrow 0$ is allowed if we take $m_W \rightarrow 0$ simultaneously

Introduction: EFT and UV completion

The EFT framework is useful for relating UV physics & IR physics
UV completion of Fermi interactions predicted weak bosons
UV completion of weak boson scattering predicted the Higgs boson
The Swampland program is trying to clarify necessary conditions for a gravitational EFT to be UV completable.

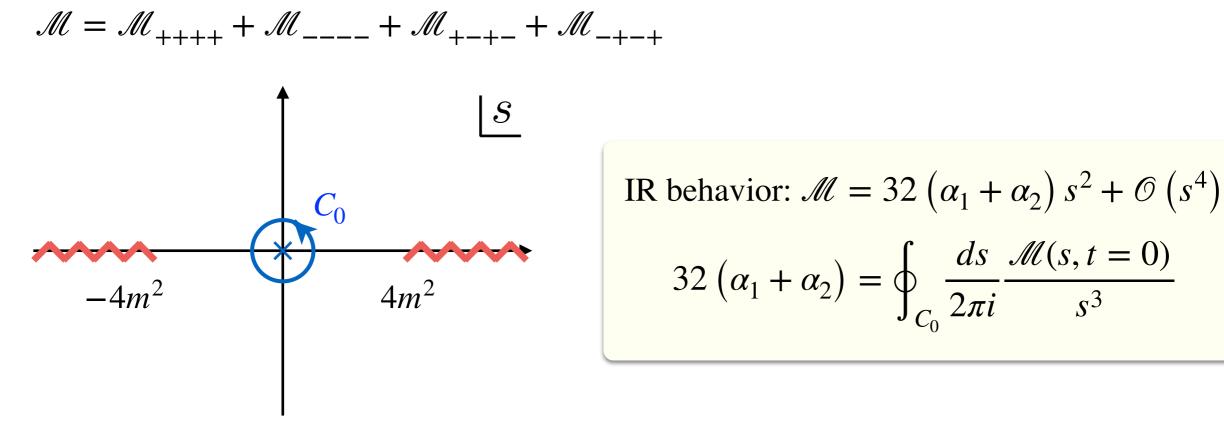
In this introduction, I recap this idea and introduce positivity bounds using QED and the Euler-Heisenberg model as an example.

QED vs Euler-Heisenberg



Why α_i are positive?

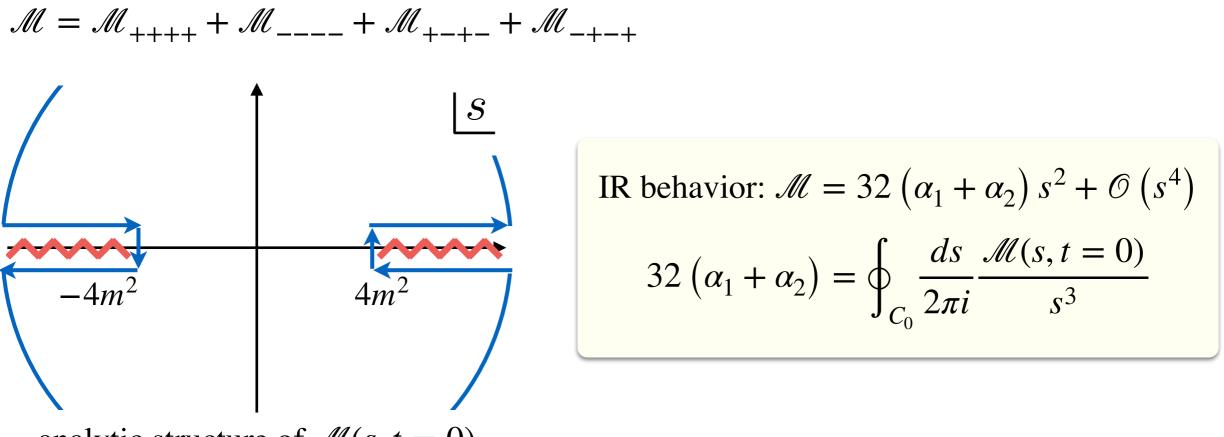
Consider an s-u crossing helicity sum of $\gamma \gamma \rightarrow \gamma \gamma$ scattering in the forward limit:



analytic structure of $\mathcal{M}(s, t = 0)$

Why α_i are positive?

Consider an s-u crossing helicity sum of $\gamma \gamma \rightarrow \gamma \gamma$ scattering in the forward limit:



analytic structure of $\mathcal{M}(s, t = 0)$

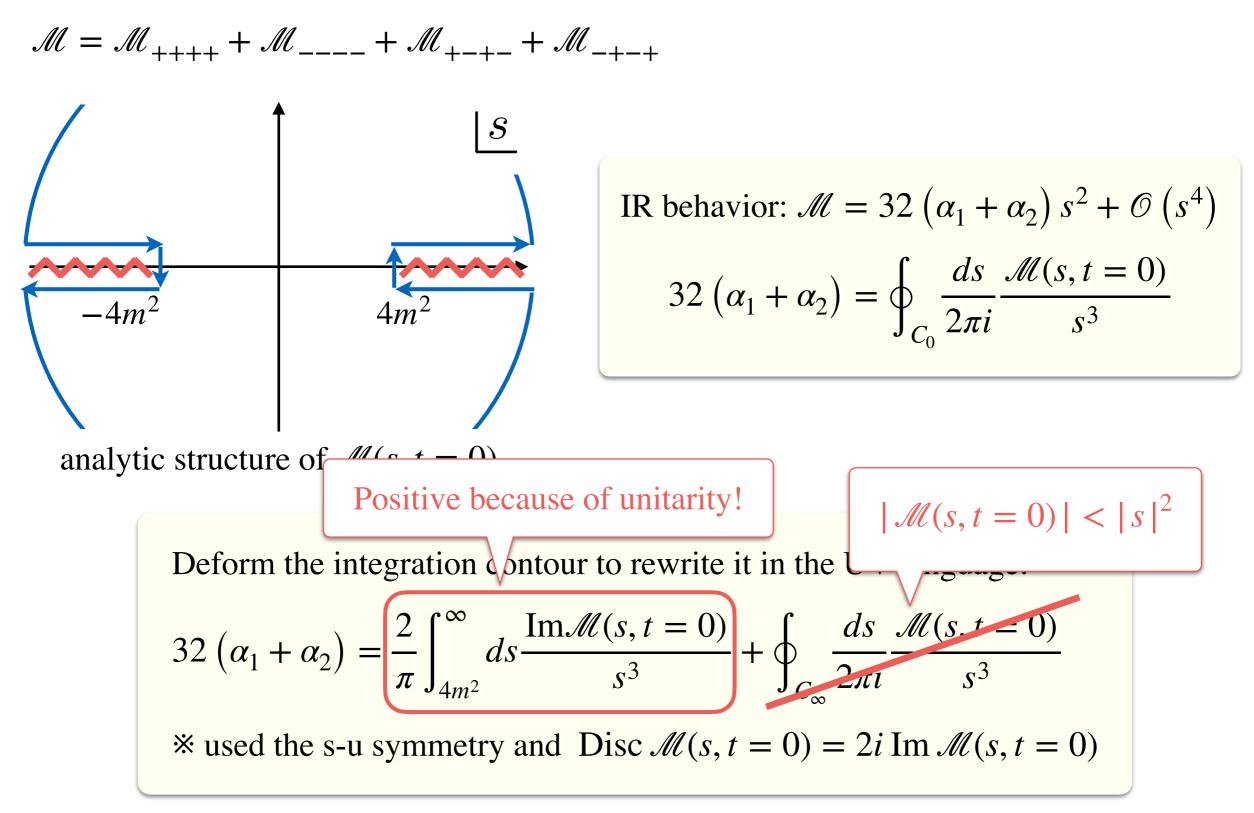
Deform the integration contour to rewrite it in the UV language:

$$32(\alpha_1 + \alpha_2) = \frac{2}{\pi} \int_{4m^2}^{\infty} ds \frac{\text{Im}\mathcal{M}(s, t = 0)}{s^3} + \oint_{C_{\infty}} \frac{ds}{2\pi i} \frac{\mathcal{M}(s, t = 0)}{s^3}$$

 \times used the s-u symmetry and Disc $\mathcal{M}(s, t = 0) = 2i \operatorname{Im} \mathcal{M}(s, t = 0)$

Why α_i are positive?

Consider an s-u crossing helicity sum of $\gamma \gamma \rightarrow \gamma \gamma$ scattering in the forward limit:



This implies that EFTs with $\alpha_1 + \alpha_2 < 0$ cannot be embedded into any unitary UV theory satisfying $|M(s, t = 0)| < |s|^2 (|s| \to \infty)$.

In other words, $\alpha_1 + \alpha_2 > 0$ is required to have such a UV completion * generalization to other helicity sums shows $\alpha_1, \alpha_2 > 0$ (positivity bounds [Adams et al '06])

Froissart bound:

 $|M(s, t = 0)| < s \ln^2 s \ (|s| \to \infty)$ follows from locality etc in gapped theories

Contents

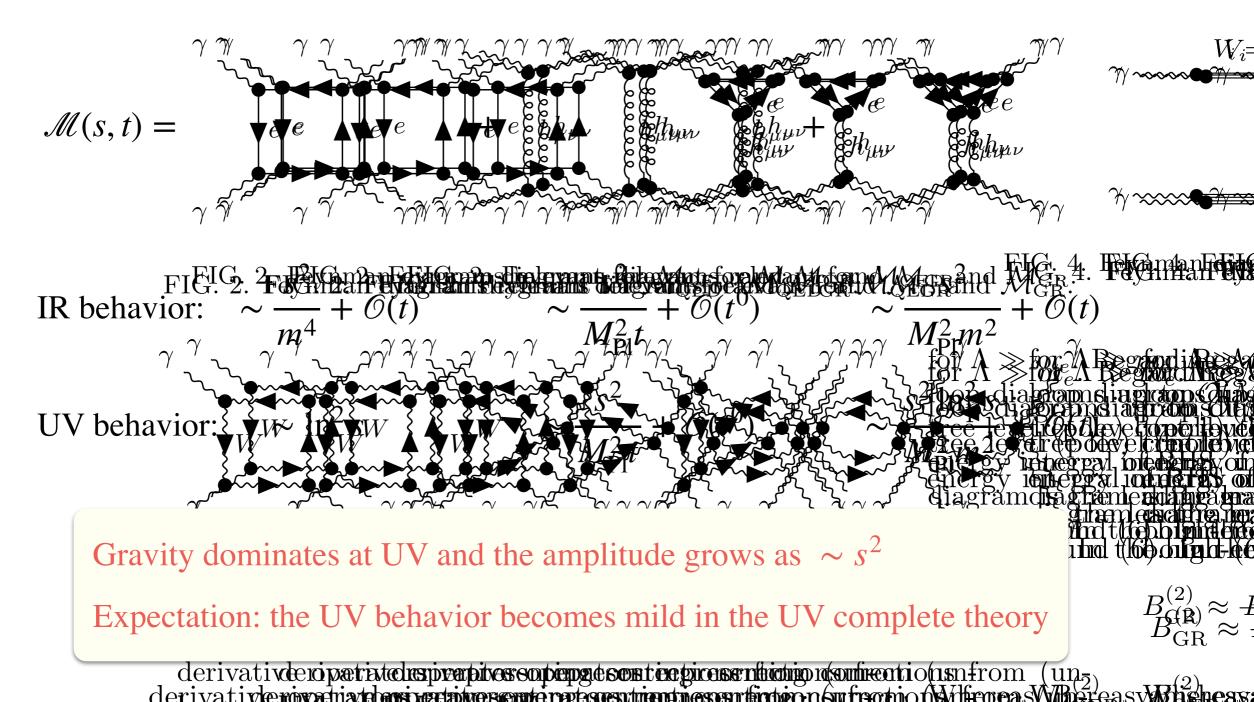
- 1. Introduction: EFT and UV completion
- 2. Gravitational Positivity Bounds
- 3. Positivity in Gravitational QED
- 4. Positivity in Gravitational Standard Model
- 5. Summary and prospects

2. Gravitational Positivity Bounds

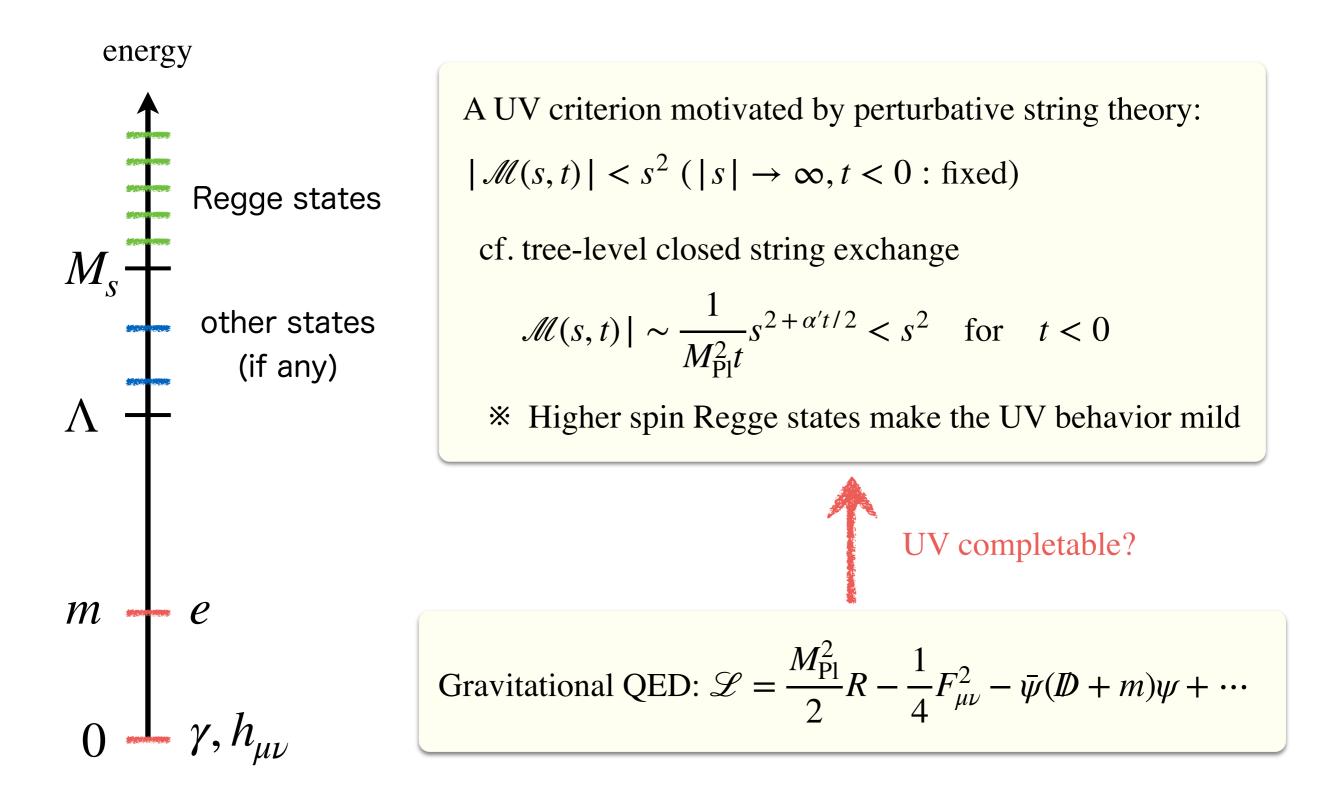
Gravitational QED as an EFT (1)

QED coupled to GR:
$$\mathscr{L} = \frac{M_{\text{Pl}}^2}{2}R - \frac{1}{4}F_{\mu\nu}^2 - \bar{\psi}(D + m)\psi$$

Consider 1-loop amplitudes:

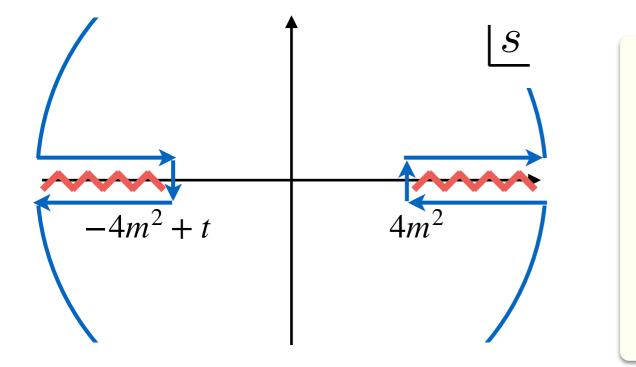


Gravitational QED as an EFT (2)



cf. Froissart-Martin bound (gapped theories): $|M(s,t)| < s^2$ ($|s| \rightarrow \infty; 0 \le t < 4m_{ext}^2$)

Implications of analyticity



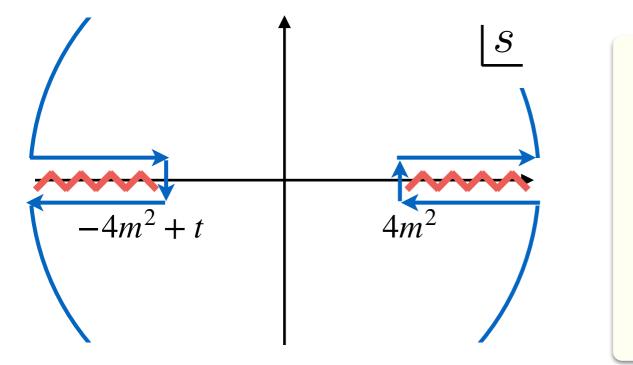
IR expansion of the
$$\gamma \gamma \rightarrow \gamma \gamma$$
 amplitude:
 $\mathcal{M}(s,t) = -\frac{4su}{M_{\text{Pl}}^2 t} - \frac{4tu}{M_{\text{Pl}}^2 s} - \frac{4ts}{M_{\text{Pl}}^2 u}$

$$+ \sum_{n=0}^{\infty} \frac{c_n(t)}{n!} \left(s + \frac{t}{2}\right)^n$$

Repeating the same argument as before, we find

$$c_2(t) - \frac{8}{M_{\rm Pl}^2 t} = \frac{4}{\pi} \int_{4m^2}^{\infty} ds \frac{{\rm Im}\mathscr{M}(s,t)}{(s+t/2)^3}$$

Implications of analyticity



IR expansion of the
$$\gamma\gamma \rightarrow \gamma\gamma$$
 amplitude:
 $\mathcal{M}(s,t) = -\frac{4su}{M_{\text{Pl}}^2 t} - \frac{4tu}{M_{\text{Pl}}^2 s} - \frac{4ts}{M_{\text{Pl}}^2 u}$

$$+ \sum_{n=0}^{\infty} \frac{c_n(t)}{n!} \left(s + \frac{t}{2}\right)^n$$

Repeating the same argument as before, we find

$$c_2(t) - \frac{8}{M_{\text{Pl}}^2 t} = \frac{4}{\pi} \int_{4m^2}^{\infty} ds \frac{\text{Im}\mathscr{M}(s,t)}{(s+t/2)^3} = \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\text{Im}\mathscr{M}(s,t)}{(s+t/2)^3} + \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \frac{\text{Im}\mathscr{M}(s,t)}{(s+t/2)^3}$$

It is convenient to reformulate it as

$$B(\Lambda, t) := c_2(t) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathscr{M}(s, t)}{(s+t/2)^3} = \frac{8}{M_{\text{Pl}}^2 t} + \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \frac{\operatorname{Im}\mathscr{M}(s, t)}{(s+t/2)^3}$$

*** red terms**: calculable within the EFT, i.e., QED + GR

Gravitational positivity bounds [Tokuda-Aoki-Hirano '20]

In the previous slide, we derived

$$B(\Lambda, t) := c_2(t) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathscr{M}(s, t)}{(s + t/2)^3} = \frac{8}{M_{\text{Pl}}^2 t} + \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \frac{\operatorname{Im}\mathscr{M}(s, t)}{(s + t/2)^3}$$

- $B(\Lambda, t)$ is finite in the forward limit $t \to 0$ and also calculable within the EFT

- each term of the r.h.s. diverges in the forward limit, but the sum has to be finite

Assume the following Regge behavior of the imaginary part:

Im $\mathcal{M}(s, t) = f(t) \left(\frac{s}{M_s^2}\right)^{2+\alpha' t+\alpha'' t^2 + \cdots}$ + sub-leading terms. If one further makes the single scaling behavior $\left|f'/f\right|, |\alpha''/\alpha'| \leq \alpha' \sim M_s^{-2}$, one can explicitly show that $B(\Lambda) := B(\Lambda, 0) > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$.

* It is important to clarify how generic this single scaling assumption is.

For related developments, see also Hamada-TN-Shiu '18, Herrero-Valea et al '20, Bellazzini et al '19, Alberte et al '20, Arkani-Hamed et al '20, Caron-Huot et al '21.

Summary of the section

standard assumptions of positivity + the single scaling assumption

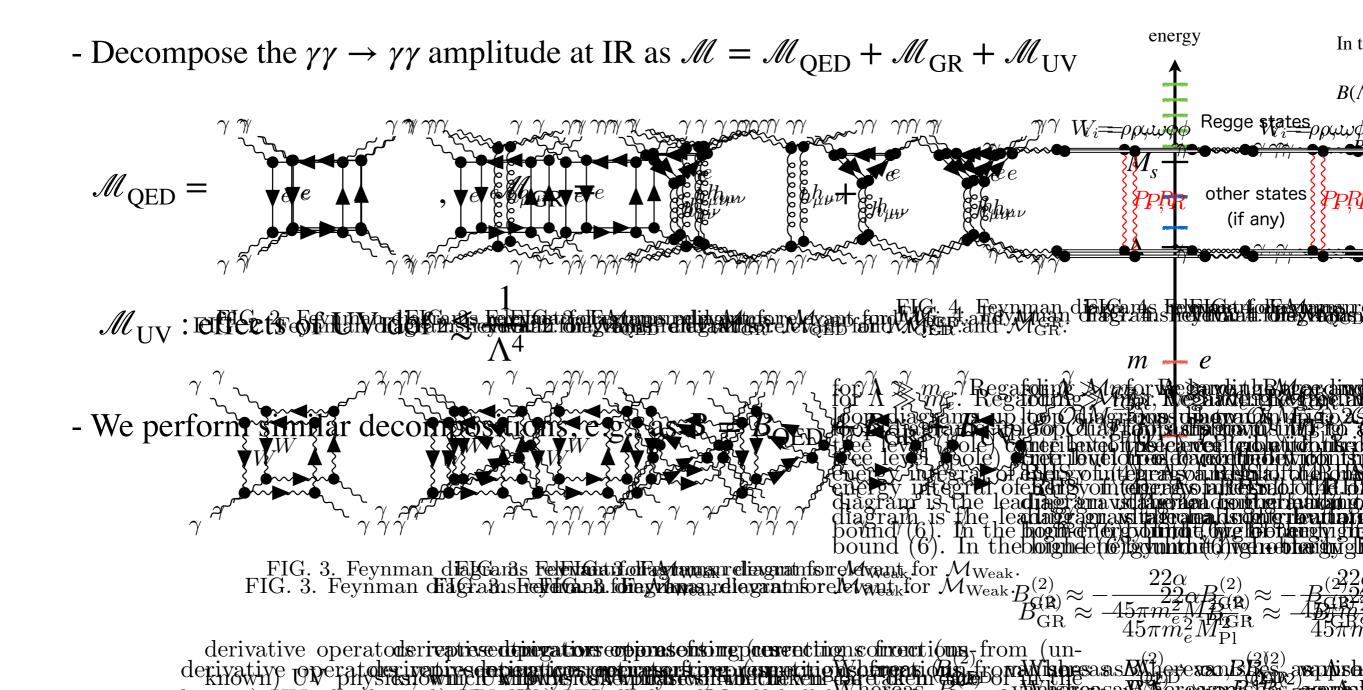
$$\Rightarrow \text{ an approximate positivity } B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\text{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$$

3. Positivity in Gravitational QED

[Alberte-de Rham-Jaitly-Tolley '20, see also Aoki-Loc-TN-Tokuda '21]

Decomposition of scattering amplitudes

gravitational positivity:
$$B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$$



Evaluation of B's

gravitational positivity:
$$B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$$

- evaluation of B_{QED}

Technically, it is convenient to remind $|\mathcal{M}_{QED}(s,0)| < s^2$,

so that $c_{2,\text{QED}}(0) = \frac{4}{\pi} \int_{4m^2}^{\infty} ds \frac{\text{Im}\mathcal{M}_{\text{QED}}(s,0)}{s^3}$ (cf. positivity in non-gravitational QED)

This implies
$$B_{\text{QED}}(\Lambda) = \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \frac{\text{Im}\mathcal{M}_{\text{QED}}(s,0)}{s^3} = \frac{4e^4}{\pi^2 \Lambda^4} \left(\ln \frac{\Lambda}{m} - \frac{1}{4} \right).$$

* Notice in particular that $\lim_{\Lambda \to \infty} B_{\text{QED}}(\Lambda) = 0.$

- A straightforward computation shows
$$B_{\rm GR}(\Lambda) = -\frac{11e^2}{90\pi^2 m^2 M_{\rm Pl}^2}$$

This gives a negative contribution that survives even in the limit $\Lambda \to \infty$.

Cutoff scale of gravitational QED

gravitational positivity:
$$B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$$

Now the gravitational positivity bound reads

$$\frac{4e^4}{\pi^2 \Lambda^4} \left(\ln \frac{\Lambda}{m} - \frac{1}{4} \right) - \frac{11e^2}{90\pi^2 m^2 M_{\rm Pl}^2} + \frac{\alpha_{\rm UV}}{\Lambda^4} > -\mathcal{O}(1) \cdot \frac{1}{M_{\rm Pl}^2 M_s^2} \quad (|\alpha_{\rm UV}| \lesssim 1)$$

Since
$$m \ll \Lambda \lesssim M_s$$
, we find $\frac{64\alpha^2}{\Lambda^4} \left(\ln \frac{\Lambda}{m} - \frac{1}{4} \right) + \frac{\alpha_{\rm UV}}{\Lambda^4} > \frac{22\alpha}{45\pi m^2 M_{\rm Pl}^2}$,

which gives an upper bound on the cutoff scale:

$$\Lambda \lesssim \min\left[\sqrt{emM_{\rm Pl}}, |\alpha_{\rm UV}|^{-1/4}\sqrt{mM_{\rm Pl}/e}\right] \sim 10^8 \,\text{GeV}.$$

for QED parameters in our real world

<u>Summary so far</u>

- standard assumptions of positivity + the single scaling assumption implies

an approximate positivity bound $B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}.$

- when applied to gravitational QED, this implies a cutoff $\Lambda \lesssim \sqrt{mM_{\rm Pl}/e} \sim 10^8 \,{\rm GeV}$.

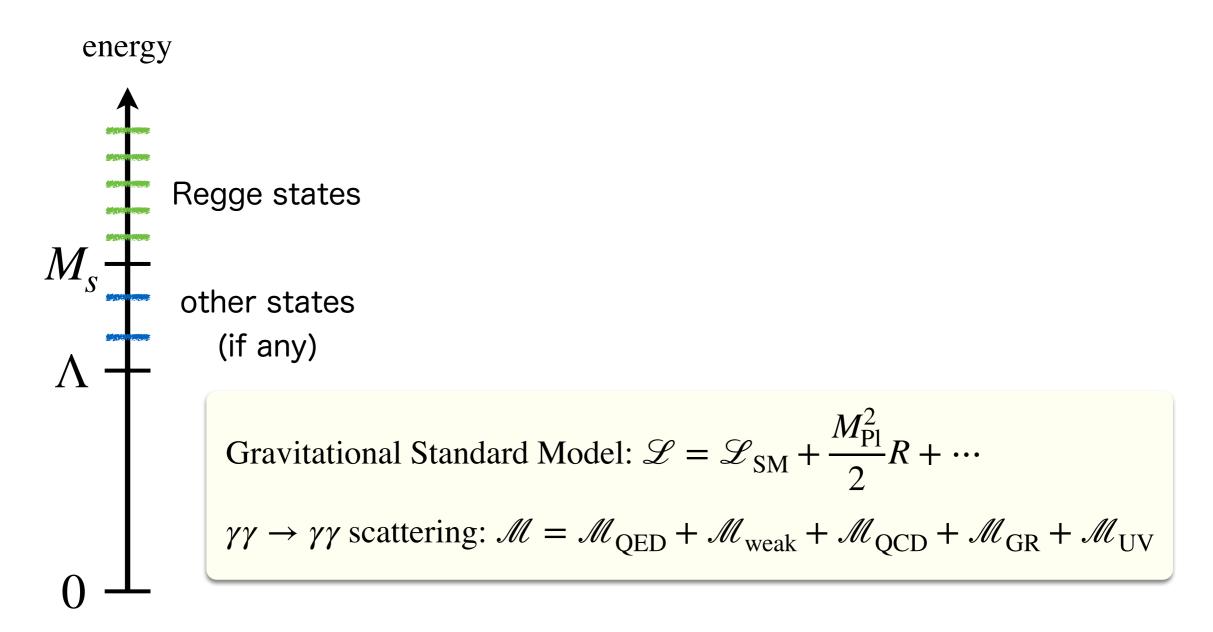
too small to believe the bound??? massless limit is not allowed???

 \rightarrow we extended the analysis to the Standard Model

4. Positivity in Gravitational Standard Model

[Aoki-Loc-TN-Tokuda '21]

Gravitational Standard Model

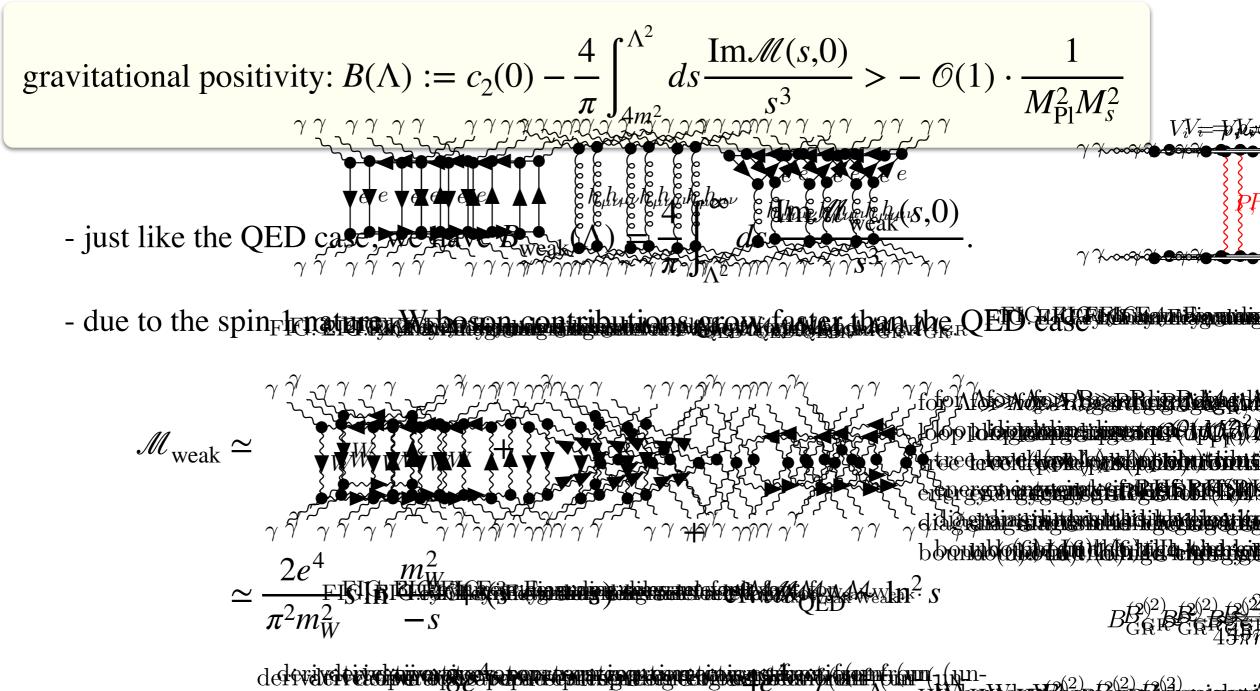


What to do is the same as the QED case except for

(A) there exist charged spin 1 particles (W bosons)

(B) hadrons may contribute if some of s, t, u is below the QCD scale

Weak sector analysis



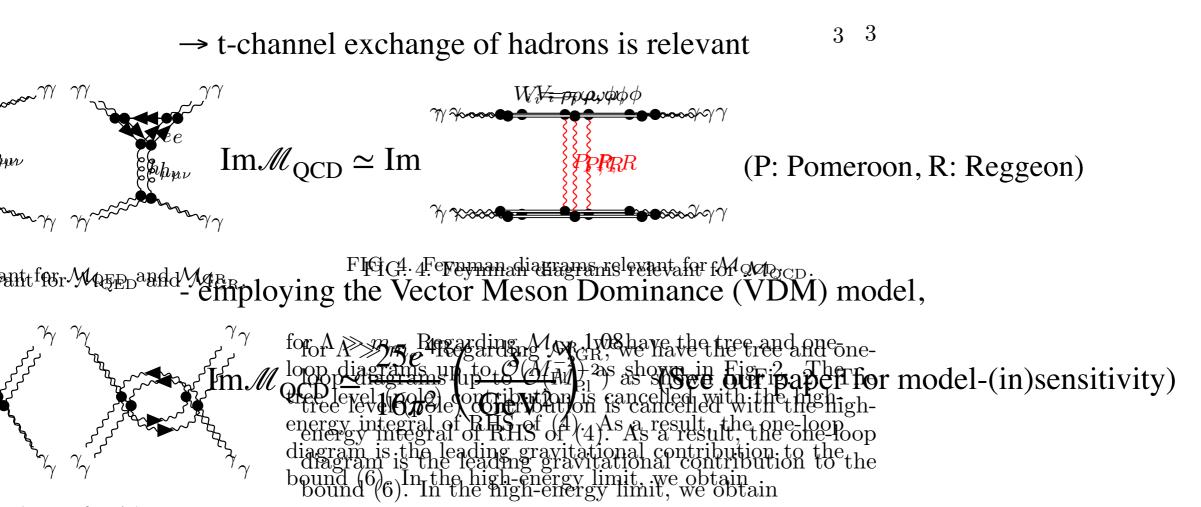
- we then find Rate and the state of the sta fold to fight the second second to be a second to be a second to be the second to be a second to irielevienen and an and a service and a serv - on the other hand, weak boson loops are sub-dominant in B a **A Manada and A Manada and A Manada and A** pletitus and the provide the second state of the providence of the the false all the second states and the seco

QCD sector analysis

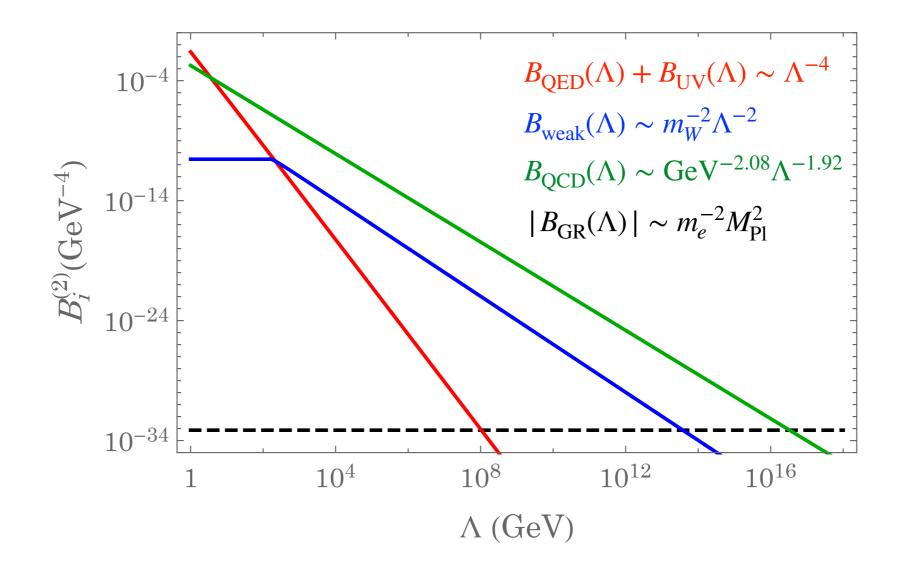
gravitational positivity:
$$B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\operatorname{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$$

- again, we have
$$B_{\text{QCD}}(\Lambda) = \frac{4}{\pi} \int_{\Lambda^2}^{\infty} ds \frac{\text{Im}\mathcal{M}_{\text{QCD}}(s,0)}{s^3}$$

- while the amplitude on the r.h.s. is high-energy, the momentum transfer is small

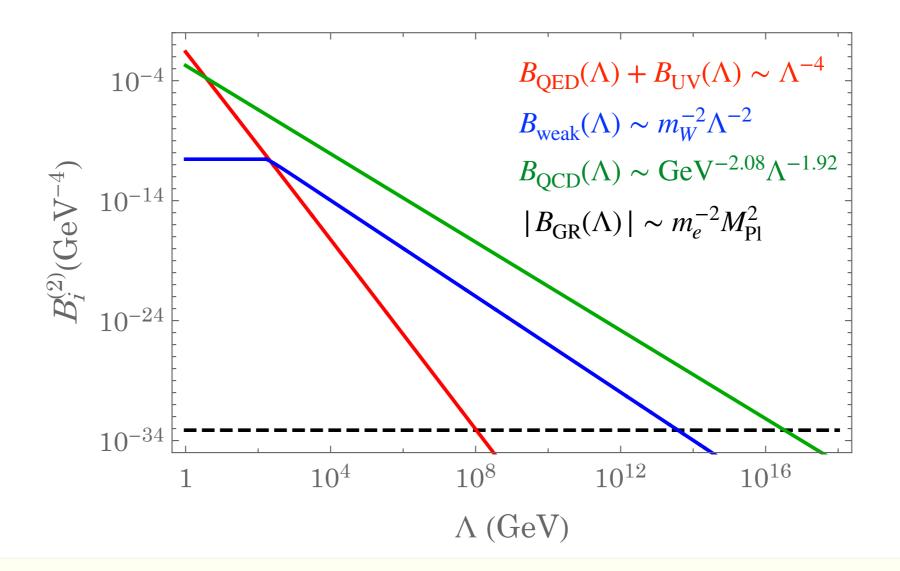


Cutoff scale of gravitational SM



gravitational positivity: $B_{\text{QED}}(\Lambda) + B_{\text{UV}}(\Lambda) + B_{\text{weak}}(\Lambda) + B_{\text{QCD}}(\Lambda) > - B_{\text{GR}}(\Lambda) - \mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}$ $\rightarrow \text{ this defines the cutoff of the gravitational SM } \Lambda \simeq 3 \times 10^{16} \text{ GeV}.$

A remark on EW theory w/o QCD



gravitational positivity implies:

$$B_{\text{weak}}(\Lambda) > - B_{\text{GR}}(\Lambda) \iff \frac{m_W}{M_{\text{Pl}}} < \sqrt{\frac{720}{11}} e \frac{m_e}{\Lambda}$$

- Possible explanation for the hierarchy between the EW scale and the Planck scale??

- Massless limit $m_e \rightarrow 0$ is allowed if we take the limit $m_W \rightarrow 0$ simultaneously

Summary and prospects

<u>Summary</u>

1. Gravitational positivity bounds

standard assumptions of positivity + the single scaling assumption implies

an approximate positivity bound $B(\Lambda) := c_2(0) - \frac{4}{\pi} \int_{4m^2}^{\Lambda^2} ds \frac{\text{Im}\mathcal{M}(s,0)}{s^3} > -\mathcal{O}(1) \cdot \frac{1}{M_{\text{Pl}}^2 M_s^2}.$

2. Puzzles on positivity in gravitational QED [Alberte-de Rham-Jaitly-Tolley '20, ...]

- implies a cutoff scale $\Lambda \sim 10^8$ GeV (too low to believe???)
- implies that massless QED $m_e \rightarrow 0$ is in the Swampland (sounds strange???)
- 3. Positivity in gravitational Standard Model [Aoki-Loc-TN-Tokuda '21]
- the cutoff scale is improved up to $\Lambda \sim 10^{16}\,{\rm GeV}$

- when applied to EW theory w/o QCD, we find
$$\frac{m_W}{M_{\text{Pl}}} < \sqrt{\frac{720}{11}} e \frac{m_e}{\Lambda}$$

 \times massless limit $m_e \rightarrow 0$ is allowed if we take $m_W \rightarrow 0$ simultaneously

Future directions

- How generic the single scaling assumption is? \rightarrow detailed study of string amplitudes
- connections to other principles such as energy conditions, entropy bounds?
- phenomenological applications
 - e.g., bounds on scalar potentials [TN-Tokuda '21], dark matters, neutrinos, ...
- possible implications for Higgs mechanism in string theory (brane recombination)?

Thank you!