Nuclei in holographic QCD

Yoshinori Matsuo Kyoto University

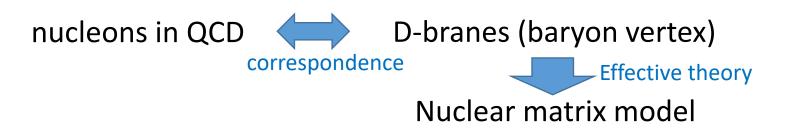
Based on arXiv:1902.07444 with Koji Hashimoto (Kyoto U.), Takeshi Morita (Shizuoka U.)

arXiv:2103.03563 with Koji Hashimoto (Kyoto U.)

April 28, 2021@Kyoto U.

Nuclei can be described by matrix model in holographic QCD

Nuclei = bound states of nucleons = bound states of D-branes



Nuclei in holographic QCD appear as bound states in matrix model

Nuclei have following properties

- Saturation of nucleon number density
- Saturation of nuclear binding energy
- Nuclear magic number

These properties can be reproduced from nuclear matrix model

Plan of Talk

- 1. Important properties of nuclei
- 2. Holographic QCD
- 3. Nuclei in nuclear matrix model
- 4. Conclusion

1. Important properties of nuclei

1. Important properties of nuclei

Saturation of nucleon number density

Saturation of nuclear binding energy

Nuclear magic number

Saturation of nucleon number density: nucleon density is constant

Nucleon density can be read off from charge distribution

 \Rightarrow almost constant $\rho \simeq A/V \simeq \text{const.}$

Constant is almost independent of nuclide for large mass number

Nuclear radius R

 $R \simeq 1.2 \times A^{1/3}$ fm

A: mass number (# of nucleons)

Saturation of nuclear binding energy: binding energy per nucleon is constant

Nuclear binding energy can be read off from mass defect

Binding energy per nucleon is almost constant in large A

Nuclear magic number: # of protons (neutrons) for stable nuclei

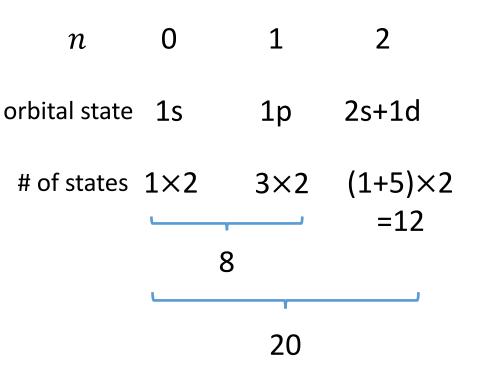
Magic Numbers: 2, 8, 20, 28, 50, 82, 126, …

Nuclei at magic number are stable

Magic number is explained by nuclear shell model

Harmonic potential $V_H \propto r^2$

 $\psi \sim x^{n_x} y^{n_y} z^{n_z}$



1. Important properties of nuclei

Saturation of nucleon number density

Saturation of nuclear binding energy

Nuclear magic number

2. Holographic QCD

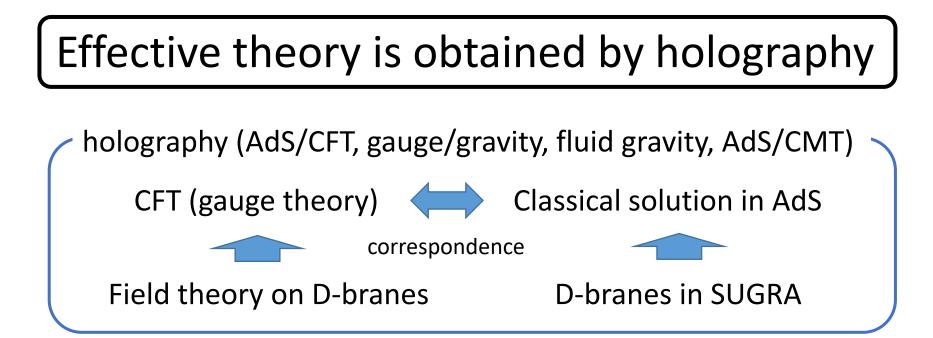
2. Holographic QCD

Effective theory is obtained by holography

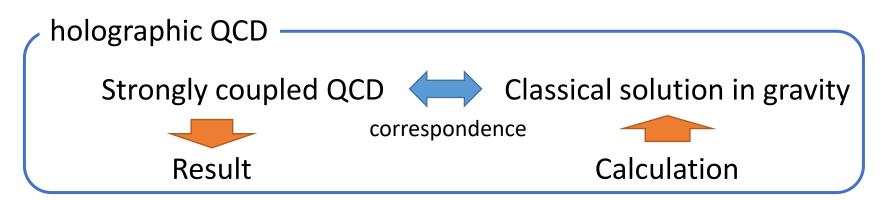
Sakai-Sugimoto model gives effective theory of QCD (in confinement phase)

Baryons in holographic QCD = D-branes (baryon vertex)

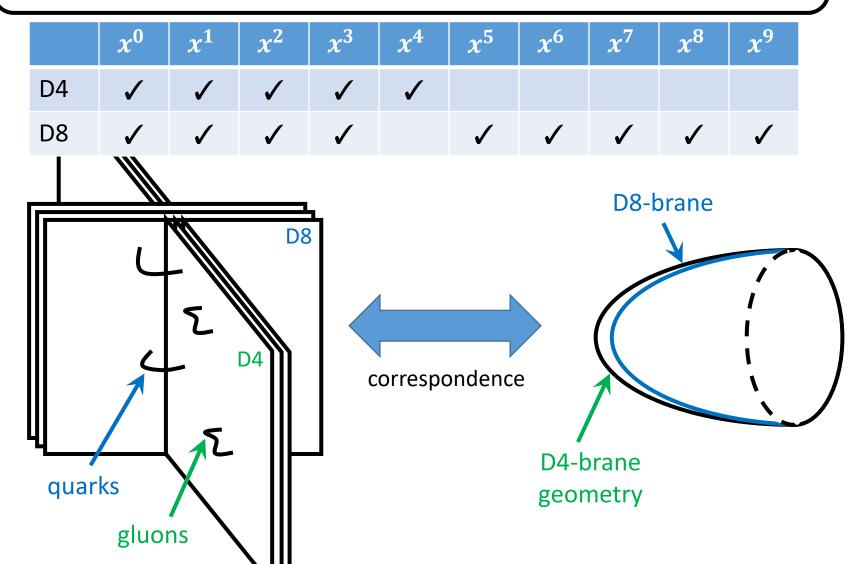
Effective theory of baryon vertex = matrix model



Holography is useful to calculate strongly coupled QCD

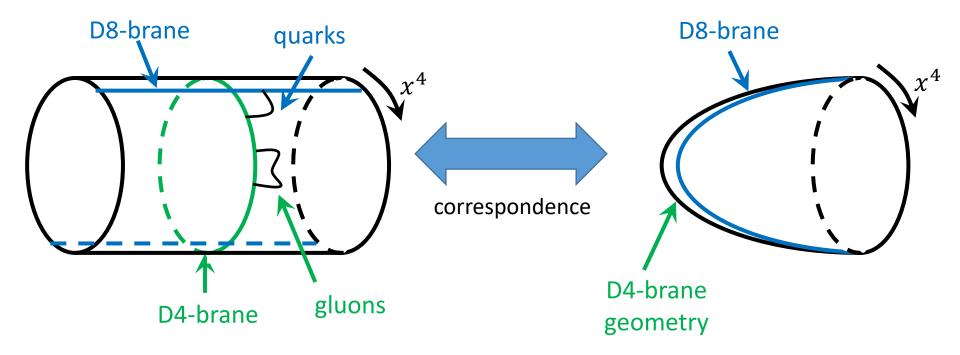


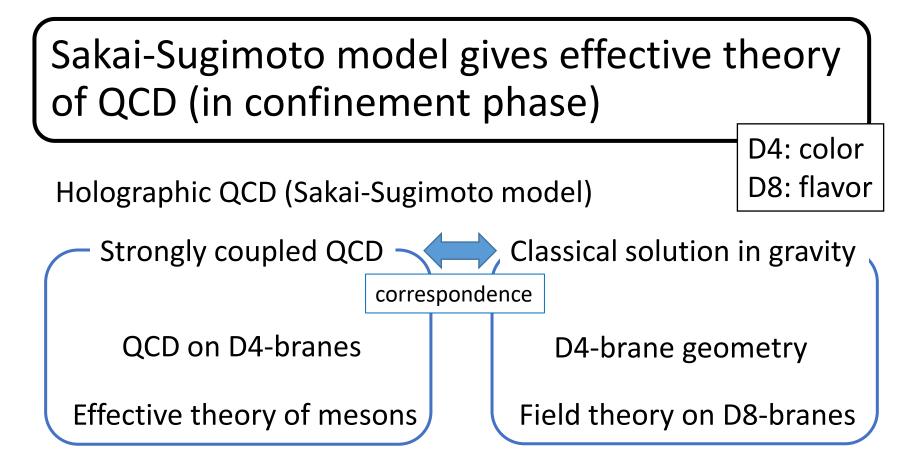
Sakai-Sugimoto model gives effective theory of QCD (in confinement phase)



Sakai-Sugimoto model gives effective theory of QCD (in confinement phase)

	<i>x</i> ⁰	<i>x</i> ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	<i>x</i> ⁵	<i>x</i> ⁶	<i>x</i> ⁷	<i>x</i> ⁸	<i>x</i> ⁹
D4	\checkmark	\checkmark	1	1	\checkmark					
D8	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	1	\checkmark	\checkmark	\checkmark

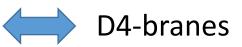




Sakai-Sugimoto model reproduces meson spectra

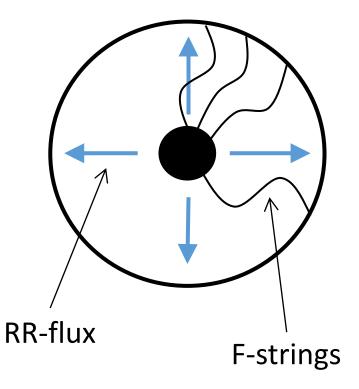
Baryons in Sakai-Sugimoto model

Baryons Soliton on D8-branes



Baryons in AdS/CFT correspondence

Baryons = D-branes wrapping on color D-branes



RR-flux coupled with gauge field on baryon vertex

$$\int_{R \times S^n} A \wedge G = N_c \int_R A$$

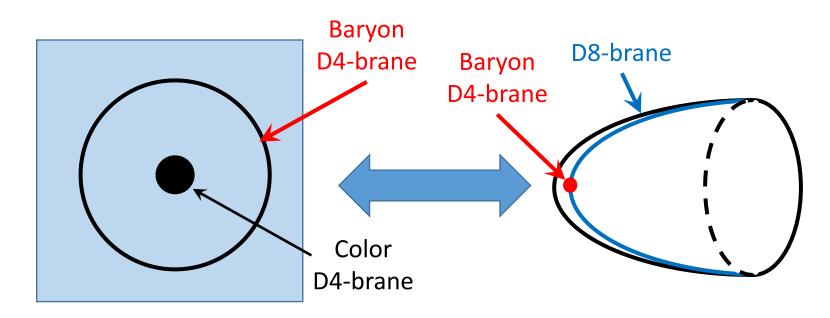
Gauge field RR-flux

 N_c endpoints of F-strings on baryon vertex

Corresponds to baryons

Baryons in Sakai-Sugimoto model: D4-branes wrapping on color D4-branes

	<i>x</i> ⁰	x ¹	<i>x</i> ²	<i>x</i> ³	<i>x</i> ⁴	U	θ^1	θ^2	θ^3	θ^4
D4	1	1	\checkmark	\checkmark	1					
D8	1	1	\checkmark	\checkmark		1	\checkmark	1	\checkmark	\checkmark
Baryon	1						\checkmark	1	\checkmark	1



Effective theory of baryons = Matrix models

Action for baryons

$$S = S_{0} + N_{c} \int dt \, \mathrm{tr}A_{t}$$

$$S_{0} = \int dt \, \mathrm{tr} \left[\frac{1}{2} (D_{t}X^{I})^{2} + \frac{1}{2} (D_{t}\overline{w}^{\dot{\alpha}i}) (D_{t}w_{\dot{\alpha}i}) - \frac{1}{2} M^{2} \overline{w}^{\dot{\alpha}i} w_{\dot{\alpha}i} + \frac{1}{4\lambda} (D^{I})^{2} + D^{I} \left(2i\epsilon^{IJK}X^{J}X^{K} + \overline{w}^{\dot{\alpha}i} (\tau^{I})_{\dot{\alpha}}^{\dot{\beta}} w_{\dot{\beta}i} \right) \right]$$

$$X^{I}: \text{D4-D4 scalar} \qquad \text{Position of baryon vertex}$$

$$w \, (\overline{w}): \text{D4-D8 scalar} \qquad \text{Spin, flavor, baryon number}$$

Nuclei = bound states of baryons

Nuclei appear in eigenstates of matrix quantum mechanics

2. Holographic QCD

Effective theory is obtained by holography

Sakai-Sugimoto model gives effective theory of QCD (in confinement phase)

Baryons in holographic QCD = D-branes (baryon vertex)

Effective theory of baryon vertex = matrix model

3. Nuclei in nuclear matrix model

3. Nuclei in nuclear matrix model

Saturation of nuclear number density (Review of [Hashimoto-Morita,'11])

Eigenstates of nuclear matrix model have similar structure to nuclear shell model is magic number

Saturation of nuclear binding energy

Saturation of nucleon number density

[Hashimoto-Morita,'11]

m

Potential is approximated by harmonic potential

1

Λ

Nucleon density

4

$$\rho = \frac{1}{(2\pi)^3} \int d^3k \ e^{-ikx} \langle \operatorname{tr} \exp ikX \rangle \simeq \begin{cases} \frac{A}{\pi^2 r_0^2 \sqrt{r_0^2 - r^2}} & (r < r_0) \\ 0 & (r > r_0) \end{cases}$$

Nuclear radius $E = 2\langle V \rangle = m^2 \langle \operatorname{tr} X^2 \rangle = \frac{3}{2}m A^2$

$$R^2 = \frac{1}{A} \langle \operatorname{tr} X^2 \rangle \implies R \sim \sqrt{A/m} \propto A^{1/3}$$

Eigenstates of nuclear matrix model has similar structure to nuclear shell model

Action for baryons

 X^{I} : Position of baryon vertex $S = S_0 + N_c \int dt \, \mathrm{tr} A_t$ $w_{\dot{\alpha}i}^{a}$: Spin, flavor, baryon number

$$S_{0} = \int dt \operatorname{tr} \left[\frac{1}{2} (D_{t} X^{I})^{2} + \frac{1}{2} (D_{t} \overline{w}^{\dot{\alpha}i}) (D_{t} w_{\dot{\alpha}i}) - \frac{1}{2} M^{2} \overline{w}^{\dot{\alpha}i} w_{\dot{\alpha}i} \right. \\ \left. + \frac{1}{4\lambda} (D^{I})^{2} + D^{I} \left(2i \epsilon^{IJK} X^{J} X^{K} + \overline{w}^{\dot{\alpha}i} (\tau^{I})_{\dot{\alpha}}^{\dot{\beta}} w_{\dot{\beta}i} \right) \right]$$

Eigenstate of Hamiltonian

A: Number of baryons

$$\begin{aligned} |\psi_{0}\rangle &= \left[\epsilon_{a_{1}\cdots a_{A}}w^{a_{1}}\cdots w^{a_{2N_{f}}}(X^{I}w)\cdots (X^{J}w)\cdots (X^{K}\cdots X^{L}w)^{a_{A}}\right] \\ &\times \cdots \times \left[\epsilon_{b_{1}\cdots b_{A}}w^{b_{1}}\cdots w^{b_{2N_{f}}}(Xw)\cdots (X\cdots Xw)^{b_{A}}\right]|0\rangle \\ & \underbrace{N_{c} \text{ of } \left[\epsilon_{a_{1}\cdots a_{A}}w^{a_{1}}\cdots (X^{I}\cdots X^{J})w^{a_{A}}\right]} \end{aligned}$$

Eigenstates of nuclear matrix model has similar structure to nuclear shell model

Eigenstate of Hamiltonian

A: Number of baryons

$$\psi_{0}\rangle = \left[\epsilon_{a_{1}\cdots a_{A}}w^{a_{1}}\cdots w^{a_{2N}}f(X^{I}w)\cdots (X^{J}w)\cdots (X^{K}\cdots X^{L}w)^{a_{A}}\right]$$
$$\times \cdots \times \left[\epsilon_{b_{1}\cdots b_{A}}w^{b_{1}}\cdots w^{b_{2N}}f(Xw)\cdots (X\cdots Xw)^{b_{A}}\right]|0\rangle$$

 A_t : gauge field (baryon U(A))

Non-dynamical field EOM gives constraints

$$0 = \frac{\delta S}{\delta A_t} = \frac{\delta S_0}{\delta A_t} - N_c \mathbb{I} = Q_{U(A)} - N_c \mathbb{I}$$

We impose constraints to physical states

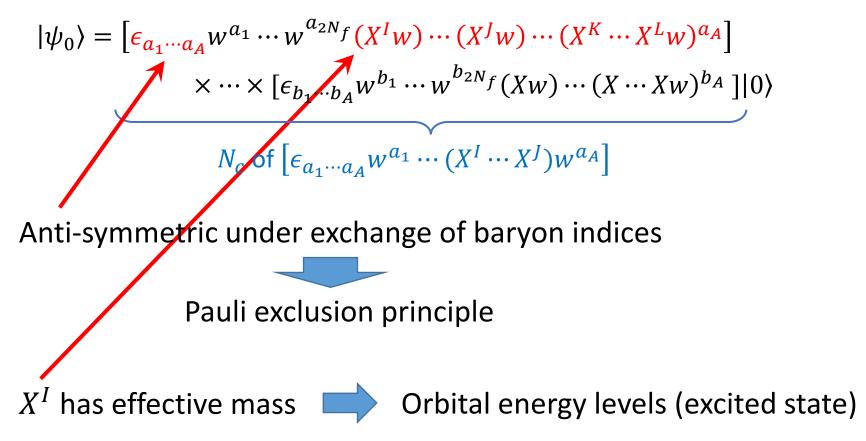
$$Q_{SU(A)}|\psi\rangle = 0$$

 $Q_{U(1)_B}|\psi\rangle = N_c A|\psi\rangle$
 M Singlet state of baryon $SU(A)$
 $Baryon (quark)$ number is $N_c A$

Eigenstates of nuclear matrix model has similar structure to nuclear shell model

Eigenstate of Hamiltonian

A: Number of baryons



magic number

Magic number for u (or d) quarks ($N_c = 1$ case for simplicity)

No correction at leading order of large A

Potential is approximated by harmonic potential

$$S_X = \int dt \operatorname{tr} \left[\frac{1}{2} (D_t X^I)^2 + 2\lambda [X^I, X^J]^2 \right] \simeq \int dt \operatorname{tr} \left[\frac{1}{2} (D_t X^I)^2 - \frac{1}{2} m^2 (X^I)^2 \right]$$
$$m^2 \simeq \frac{16A\lambda_r}{3(A^2 - 1)} \langle \operatorname{tr} X^2 \rangle \qquad E = 2 \langle V \rangle = m^2 \langle \operatorname{tr} X^2 \rangle$$

Harmonic oscillator with N_X excitations

$$E = m\left(N_X + \frac{3}{2}(A^2 - 1)\right) \qquad N_X \simeq \left(\frac{3}{2}\right)^{7/3} A^{4/3}$$

 $\implies m^3 = 8\lambda_r A + 2^{5/3} 3^{4/3} \lambda_r A^{1/3}$

Binding energy of fermions can be read off from density distribution

Multi-fermion ground state in given potential V(r)

WKB approximation

$$\psi = \frac{C}{r} p^{-1/2} e^{i \int dr \, p(r)} Y_{lm} \qquad p(r) = \sqrt{E - V(r) - \frac{l(l+1)}{r^2}}$$

Quantization condition

$$\int dr \, p(r) = \pi n$$

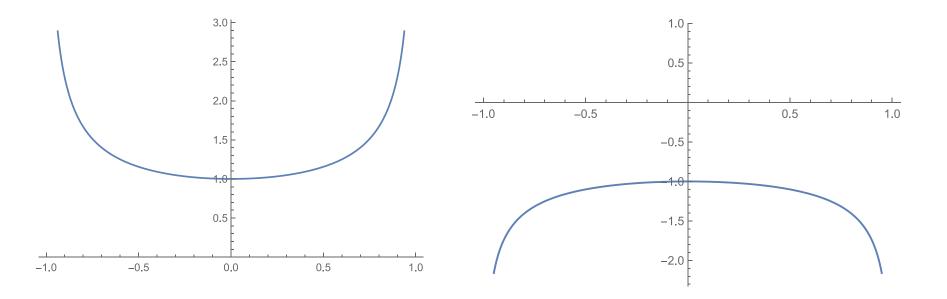
Fermion density

$$\rho(r) = 4 \sum_{n,l,m} |\psi(r)|^2 \implies \rho(r) = \frac{2}{3\pi^2} \left(E_f - V(r) \right)^{3/2}$$

Saturation of nuclear binding energy

Effective potential from nucleon density

$$\rho(r) = \frac{A}{\pi^2 r_0^2 \sqrt{r_0^2 - r^2}} \quad \Longrightarrow \quad V(r) = E_f - \frac{3^{2/3} A^{2/3}}{2^{2/3} r_0^{4/3} (r_0^2 - r^2)^{1/3}}$$



Saturation of nuclear binding energy

Effective potential from nucleon density

$$\rho(r) = \frac{A}{\pi^2 r_0^2 \sqrt{r_0^2 - r^2}} \quad \Longrightarrow \quad V(r) = E_f - \frac{3^{2/3} A^{2/3}}{2^{2/3} r_0^{4/3} (r_0^2 - r^2)^{1/3}}$$

Binding energy (we take $E_f = 0$)

$$B = 4\pi \int r^2 \rho(r) V(r) dr + 2\pi \int r^3 V'(r) dr$$

Potential energy

Kinetic term from virial theorem

Saturation of binding energy

$$\frac{B}{A} = \left[\frac{3^{8/3}\Gamma(\frac{7}{6})}{2^{2/3}\sqrt{\pi}\Gamma(\frac{2}{3})} - \frac{3^{8/3}\sqrt{\pi}}{2^{2/3}5\Gamma(\frac{2}{3})\Gamma(\frac{5}{6})}\right]\lambda_r^{1/3}$$

Numerical estimation

Mass of nucleons and Δ \leftarrow Energy of w excitations

$$E = (N_c + 2N_f)M + \frac{4\lambda}{M^2}I(I+1)$$

Harmonic oscillator First order perturbation $\lambda \langle w^4 \rangle$

 $M_N = 939 \,{\rm MeV}$ Input

 $M_{\Lambda} = 1232 \text{ MeV}$

Nuclear radius

Experiments

$$R = 2.4 \times A^{1/3}$$
 fm

Binding energy per nucleon

$$\frac{B}{A} = 9.7 \text{ MeV}$$

$$R = 1.2 \times A^{1/3}$$
 fm

$$\frac{B}{A} = 8 \text{ MeV}$$

3. Nuclei in nuclear matrix model

Saturation of nuclear number density (Review of [Hashimoto-Morita,'11])

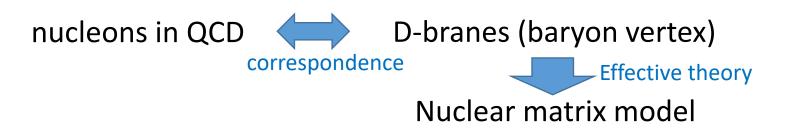
Eigenstates of nuclear matrix model have similar structure to nuclear shell model is magic number

Saturation of nuclear binding energy

4. Conclusion

Nuclei can be described by matrix model in holographic QCD

Nuclei = bound states of nucleons = bound states of D-branes



Nuclei in holographic QCD appear as bound states in matrix model

Nuclei have following properties

- Saturation of nucleon number density
- Saturation of nuclear binding energy
- Nuclear magic number

These properties can be reproduced from nuclear matrix model

Thank you