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Nuclei can be described by 
matrix model in holographic QCD

Nuclei = bound states of nucleons = bound states of D-branes

nucleons in QCD D-branes (baryon vertex)

Nuclear matrix model

correspondence

Nuclei have following properties

Effective theory

Nuclei in holographic QCD appear as bound states in matrix model

• Saturation of nucleon number density

• Saturation of nuclear binding energy

• Nuclear magic number

These properties can be reproduced from nuclear matrix model
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1. Important properties of nuclei



1. Important properties of nuclei

Saturation of nucleon number density

Saturation of nuclear binding energy

Nuclear magic number



Saturation of nucleon number density: 
nucleon density is constant

Nucleon density can be read off from charge distribution

almost constant

Constant is almost independent of nuclide for large mass number

𝜌 ≃ Τ𝐴 𝑉 ≃ const.

Nuclear radius 𝑅

𝑅 ≃ 1.2 × 𝐴 Τ1 3 fm

𝐴: mass number (# of nucleons)



Saturation of nuclear binding energy: 
binding energy per nucleon is constant

Nuclear binding energy can be read off from mass defect

Binding energy per nucleon is almost constant in large 𝐴



Nuclear magic number: 
# of protons (neutrons) for stable nuclei

Magic Numbers: 2, 8, 20, 28, 50, 82, 126, ⋯

Nuclei at magic number are stable



Magic number is explained by 
nuclear shell model

𝜓 ∼ 𝑥𝑛𝑥𝑦𝑛𝑦𝑧𝑛𝑧
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1. Important properties of nuclei

Saturation of nucleon number density

Saturation of nuclear binding energy

Nuclear magic number



2. Holographic QCD



2. Holographic QCD

Effective theory is obtained by holography

Sakai-Sugimoto model gives effective theory of QCD 
(in confinement phase)

Baryons in holographic QCD = D-branes (baryon vertex)

Effective theory of baryon vertex = matrix model



Effective theory is obtained by holography

Strongly coupled QCD Classical solution in gravity
correspondence

CalculationResult

CFT (gauge theory) Classical solution in AdS

correspondence

Field theory on D-branes D-branes in SUGRA

Holography is useful to calculate strongly coupled QCD

holography (AdS/CFT, gauge/gravity, fluid gravity, AdS/CMT)

holographic QCD



Sakai-Sugimoto model gives effective theory 
of QCD (in confinement phase)

gluons

quarks

D8

D4

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗

D4 ✓ ✓ ✓ ✓ ✓

D8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

correspondence

D8-brane

D4-brane 
geometry



Sakai-Sugimoto model gives effective theory 
of QCD (in confinement phase)

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝒙𝟓 𝒙𝟔 𝒙𝟕 𝒙𝟖 𝒙𝟗

D4 ✓ ✓ ✓ ✓ ✓

D8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

correspondence

D8-brane

D4-brane 
geometry

D8-brane

D4-brane

quarks

gluons

𝑥4𝑥4



Sakai-Sugimoto model gives effective theory 
of QCD (in confinement phase)

Holographic QCD (Sakai-Sugimoto model)

QCD on D4-branes D4-brane geometry

Effective theory of mesons Field theory on D8-branes

Sakai-Sugimoto model reproduces meson spectra

Baryons Soliton on D8-branes D4-branes

Baryons in Sakai-Sugimoto model

D4: color
D8: flavor

Strongly coupled QCD Classical solution in gravity

correspondence



Baryons in AdS/CFT correspondence

Baryons = D-branes wrapping on color D-branes

RR-flux
F-strings

RR-flux coupled with 
gauge field on baryon vertex

න
𝑅×𝑆𝑛

𝐴 ∧ 𝐺 = 𝑁𝑐න
𝑅

𝐴

RR-fluxGauge field

𝑁𝑐 endpoints of F-strings 
on baryon vertex

Corresponds to baryons



Baryons in Sakai-Sugimoto model: 
D4-branes wrapping on color D4-branes

𝒙𝟎 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒙𝟒 𝑼 𝜽𝟏 𝜽𝟐 𝜽𝟑 𝜽𝟒

D4 ✓ ✓ ✓ ✓ ✓

D8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Baryon ✓ ✓ ✓ ✓ ✓

D8-braneBaryon 
D4-brane

Baryon 
D4-brane

Color 
D4-brane



Effective theory of baryons = Matrix models

Action for baryons

𝑆 = 𝑆0 + 𝑁𝑐න𝑑𝑡 tr𝐴𝑡

𝑆0 = න𝑑𝑡 tr ቈ
1

2
𝐷𝑡𝑋

𝐼 2 +
1

2
𝐷𝑡ഥ𝑤

ሶ𝛼𝑖 𝐷𝑡𝑤 ሶ𝛼𝑖 −
1

2
𝑀2ഥ𝑤 ሶ𝛼𝑖𝑤 ሶ𝛼𝑖

+
1

4𝜆
𝐷𝐼 2 + 𝐷𝐼 2𝑖𝜖𝐼𝐽𝐾𝑋𝐽𝑋𝐾 + ഥ𝑤 ሶ𝛼𝑖 𝜏𝐼 ሶ𝛼

ሶ𝛽
𝑤 ሶ𝛽𝑖

𝑋𝐼: D4-D4 scalar

𝑤 (ഥ𝑤): D4-D8 scalar

[Hashimoto-Iizuka-Yi,’10]

Position of baryon vertex

Spin, flavor, baryon number

Nuclei = bound states of baryons

Nuclei appear in eigenstates of matrix quantum mechanics 



2. Holographic QCD

Effective theory is obtained by holography

Sakai-Sugimoto model gives effective theory of QCD 
(in confinement phase)

Baryons in holographic QCD = D-branes (baryon vertex)

Effective theory of baryon vertex = matrix model



3. Nuclei in nuclear matrix model



3. Nuclei in nuclear matrix model

Saturation of nuclear number density  (Review of [Hashimoto-Morita,’11])

Eigenstates of nuclear matrix model have 
similar structure to nuclear shell model magic number

Saturation of nuclear binding energy



Saturation of nucleon number density

Potential is approximated by harmonic potential

𝑆𝑋 = න𝑑𝑡 tr
1

2
𝐷𝑡𝑋

𝐼 2 + 2𝜆 𝑋𝐼 , 𝑋𝐽 2 ≃ න𝑑𝑡 tr
1

2
𝐷𝑡𝑋

𝐼 2 −
1

2
𝑚2 𝑋𝐼 2

𝑚2 ≃
16𝐴𝜆

3 𝐴2 − 1
𝑋2 𝑚3 ≃ 8𝜆𝐴

Nucleon density

𝜌 =
1

2𝜋 3
න𝑑3𝑘 𝑒−𝑖𝑘𝑥⟨tr exp 𝑖𝑘𝑋⟩ ≃

𝑟0 =
2𝐴

𝑚

Nuclear radius

𝑅2 =
1

𝐴
tr 𝑋2

𝐸 = 2 𝑉 = 𝑚2 tr 𝑋2 = 3
2𝑚 𝐴2

𝑅 ∼ 𝐴/𝑚 ∝ 𝐴1/3

[Hashimoto-Morita,’11]



Eigenstates of nuclear matrix model has 
similar structure to nuclear shell model

Action for baryons

𝑆 = 𝑆0 + 𝑁𝑐න𝑑𝑡 tr𝐴𝑡

𝑆0 = න𝑑𝑡 tr ቈ
1

2
𝐷𝑡𝑋

𝐼 2 +
1

2
𝐷𝑡ഥ𝑤

ሶ𝛼𝑖 𝐷𝑡𝑤 ሶ𝛼𝑖 −
1

2
𝑀2ഥ𝑤 ሶ𝛼𝑖𝑤 ሶ𝛼𝑖

+
1

4𝜆
𝐷𝐼 2 + 𝐷𝐼 2𝑖𝜖𝐼𝐽𝐾𝑋𝐽𝑋𝐾 + ഥ𝑤 ሶ𝛼𝑖 𝜏𝐼 ሶ𝛼

ሶ𝛽
𝑤 ሶ𝛽𝑖

Eigenstate of Hamiltonian

𝜓0 = 𝜖𝑎1⋯𝑎𝐴𝑤
𝑎1 ⋯𝑤

𝑎2𝑁𝑓 𝑋𝐼𝑤 ⋯ 𝑋𝐽𝑤 ⋯ 𝑋𝐾⋯𝑋𝐿𝑤 𝑎𝐴

×⋯× [𝜖𝑏1⋯𝑏𝐴𝑤
𝑏1 ⋯𝑤

𝑏2𝑁𝑓 𝑋𝑤 ⋯ 𝑋⋯𝑋𝑤 𝑏𝐴 ] 0

𝑁𝑐 of 𝜖𝑎1⋯𝑎𝐴𝑤
𝑎1 ⋯(𝑋𝐼⋯𝑋𝐽)𝑤𝑎𝐴

𝑋𝐼: Position of baryon vertex

𝑤 ሶ𝛼𝑖
𝑎 : Spin, flavor, baryon number

𝐴: Number of baryons



𝐴𝑡: gauge field (baryon 𝑈(𝐴))

0 =
𝛿𝑆

𝛿𝐴𝑡
=
𝛿𝑆0
𝛿𝐴𝑡

− 𝑁𝑐𝕀 = 𝑄𝑈 𝐴 −𝑁𝑐𝕀

Non-dynamical field EOM gives constraints

𝑄𝑆𝑈 𝐴 |𝜓〉 = 0

𝑄𝑈 1 𝐵
|𝜓〉 = 𝑁𝑐𝐴|𝜓〉

We impose constraints to physical states

Singlet state of baryon 𝑆𝑈(𝐴)

Baryon (quark) number is 𝑁𝑐𝐴

Eigenstate of Hamiltonian

𝜓0 = 𝜖𝑎1⋯𝑎𝐴𝑤
𝑎1 ⋯𝑤

𝑎2𝑁𝑓 𝑋𝐼𝑤 ⋯ 𝑋𝐽𝑤 ⋯ 𝑋𝐾⋯𝑋𝐿𝑤 𝑎𝐴

×⋯× [𝜖𝑏1⋯𝑏𝐴𝑤
𝑏1 ⋯𝑤

𝑏2𝑁𝑓 𝑋𝑤 ⋯ 𝑋⋯𝑋𝑤 𝑏𝐴 ] 0

𝐴: Number of baryons

Eigenstates of nuclear matrix model has 
similar structure to nuclear shell model



Eigenstate of Hamiltonian

𝜓0 = 𝜖𝑎1⋯𝑎𝐴𝑤
𝑎1 ⋯𝑤

𝑎2𝑁𝑓 𝑋𝐼𝑤 ⋯ 𝑋𝐽𝑤 ⋯ 𝑋𝐾⋯𝑋𝐿𝑤 𝑎𝐴

×⋯× [𝜖𝑏1⋯𝑏𝐴𝑤
𝑏1 ⋯𝑤

𝑏2𝑁𝑓 𝑋𝑤 ⋯ 𝑋⋯𝑋𝑤 𝑏𝐴 ] 0

𝑁𝑐 of 𝜖𝑎1⋯𝑎𝐴𝑤
𝑎1 ⋯(𝑋𝐼⋯𝑋𝐽)𝑤𝑎𝐴

𝐴: Number of baryons

Anti-symmetric under exchange of baryon indices

Pauli exclusion principle

𝑋𝐼 has effective mass Orbital energy levels (excited state)

Eigenstates of nuclear matrix model has 
similar structure to nuclear shell model



magic number

Magic number for 𝑢 (or 𝑑) quarks (𝑁𝑐 = 1 case for simplicity)

𝜓0 = 𝜖𝑢↑|0〉𝐴 = 1

𝑤 = 𝑢 ሶ𝛼 ሶ𝛼 = 1, 2 (𝑖 = 1)

𝜓0 = 𝜖𝑢↑𝑢↓|0〉𝐴 = 2

2 of 𝑢 (spin ↑ and ↓)

𝜓0 = 𝜖𝑢↑𝑢↓𝑢↑ 0 = 0𝐴 = 3

𝜓0 = 𝜖𝑢𝑢(𝑢𝑋)(𝑢𝑋)|0〉𝐴 = 4

𝜓0 = 𝜖𝑢𝑢 𝑋𝑢 |0〉

𝑋𝐼 𝐼 = 1, 2, 3

2 × 3 = 6 of 𝑋𝑢

𝜓0 = 𝜖𝑢𝑢 𝑋𝑢 ⋯ 𝑋𝑢 |0〉𝐴 = 8
⋮ ⋮

𝜓0 = 𝜖𝑢𝑢 𝑋𝑢 ⋯ 𝑋𝑢 (𝑋𝑢) 0 = 0𝐴 = 9

𝐴 = 9

6 of 𝑋𝑢

Additional energy of 𝑋𝐼

Magic 
number

Magic 
number

6 of 𝑋𝑢

𝜓0 = 𝜖𝑢𝑢 𝑋𝑢 ⋯ 𝑋𝑢 (𝑋𝑋𝑢) 0

6 of 𝑋𝑢



No correction at leading order of large 𝐴

Potential is approximated by harmonic potential

𝑆𝑋 = න𝑑𝑡 tr
1

2
𝐷𝑡𝑋

𝐼 2 + 2𝜆 𝑋𝐼 , 𝑋𝐽 2 ≃ න𝑑𝑡 tr
1

2
𝐷𝑡𝑋

𝐼 2 −
1

2
𝑚2 𝑋𝐼 2

𝑚2 ≃
16𝐴𝜆𝑟

3 𝐴2 − 1
tr 𝑋2 𝐸 = 2 𝑉 = 𝑚2 tr 𝑋2

𝐸 = 𝑚 𝑁𝑋 +
3

2
𝐴2 − 1 𝑁𝑋 ≃

3

2

7/3

𝐴4/3

Harmonic oscillator with 𝑁𝑋 excitations

𝑚3 = 8𝜆𝑟𝐴 + 25/334/3𝜆𝑟𝐴
1/3



Binding energy of fermions can be 
read off from density distribution

Multi-fermion ground state in given potential 𝑉(𝑟)

WKB approximation

𝜓 =
𝐶

𝑟
𝑝−1/2 𝑒𝑖  𝑑𝑟 𝑝(𝑟)𝑌𝑙𝑚

Fermion density

න𝑑𝑟 𝑝(𝑟) = 𝜋𝑛

Quantization condition

𝜌 𝑟 =
2

3𝜋2
𝐸𝑓 − 𝑉 𝑟

3/2



Saturation of nuclear binding energy

Effective potential from nucleon density

𝜌 𝑟 = 𝑉 𝑟 = 𝐸𝑓 −
32/3𝐴2/3

22/3𝑟0
4/3

𝑟0
2 − 𝑟2 1/3



Saturation of nuclear binding energy

Effective potential from nucleon density

𝜌 𝑟 = 𝑉 𝑟 = 𝐸𝑓 −
32/3𝐴2/3

22/3𝑟0
4/3

𝑟0
2 − 𝑟2 1/3

Binding energy (we take 𝐸𝑓 = 0)

𝐵 = 4𝜋න𝑟2𝜌 𝑟 𝑉 𝑟 𝑑𝑟 + 2𝜋න𝑟3𝑉′ 𝑟 𝑑𝑟

Kinetic term from virial theoremPotential energy

Saturation of binding energy

𝐵

𝐴
=

38/3Γ 7
6

22/3 𝜋Γ 2
3

−
38/3 𝜋

22/35Γ 2
3 Γ 5

6

𝜆𝑟
1/3



Numerical estimation

Mass of nucleons and Δ Energy of 𝑤 excitations

𝐸 = (𝑁𝑐 + 2𝑁𝑓)𝑀 +
4𝜆

𝑀2
𝐼 𝐼 + 1

Harmonic oscillator First order perturbation 𝜆 𝑤4

Input 𝑀𝑁 = 939 MeV 𝑀Δ = 1232 MeV

Binding energy per nucleon

Nuclear radius

𝑅 = 2.4 × 𝐴1/3 fm

𝐵

𝐴
= 9.7 MeV

Experiments

𝑅 = 1.2 × 𝐴1/3 fm

𝐵

𝐴
= 8 MeV



3. Nuclei in nuclear matrix model

Saturation of nuclear number density  (Review of [Hashimoto-Morita,’11])

Eigenstates of nuclear matrix model have 
similar structure to nuclear shell model magic number

Saturation of nuclear binding energy



4. Conclusion



Nuclei can be described by 
matrix model in holographic QCD

Nuclei = bound states of nucleons = bound states of D-branes

nucleons in QCD D-branes (baryon vertex)

Nuclear matrix model

correspondence

Nuclei have following properties

Effective theory

Nuclei in holographic QCD appear as bound states in matrix model

• Saturation of nucleon number density

• Saturation of nuclear binding energy

• Nuclear magic number

These properties can be reproduced from nuclear matrix model



Thank you


