Flux Compactification and Naturalness

Nobuhito Maru Osaka City University & NITEP

Based on papers with Takuya Hirose

7/28/2021 Seminar@Kyoto University

Problems in the Standard Model

- Hierarchy problem
- Unpredictable observables
 - (masses of quarks, leptons & Higgs, CP phase, flavor mixing angles, etc)
- Dark matter, Dark energy
- Neutrino oscillation
- Unification
- Gravity
- Charge quantization
 Extension
- Number of generations of the SM

required

Problems in the Standard Model

- Hierarchy problem
- Unpredictable observables
 - (masses of quarks, leptons & Higgs, CP phase, flavor mixing angles, etc)
- Dark matter, Dark energy
- Neutrino oscillation
- Unification
- Gravity
- Charge quantization
 Extension
- Number of generations of the SM

required

Hierarchy problem

Unnatural fine-tuning of parameters in the SM Higgs mass

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

$$m_{H}^{2} = m_{0}^{2} + \delta m^{2} \approx \left(125 GeV\right)^{2}$$

 $m_H^2 = \mathcal{O}\left(M_P^2\right) - \mathcal{O}\left(M_P^2\right) \approx \left(125GeV\right)^2$

Unnatural fine-tuning!!

Can we explain naturally Higgs mass without unnatural fine-tuning??

 $m_H^2 = \mathcal{O}\left(M_P^2\right) - \mathcal{O}\left(M_P^2\right) \approx \left(125GeV\right)^2$

New physics around 1TeV expected

 $m_H^2 = \mathcal{O}(1TeV^2) - \mathcal{O}(1TeV^2) \approx (125GeV)^2$

However, no signature of new physics so far ...

Good chance to reconsider??

SM might be correct at higher scale

- GUT \Rightarrow up to 10^{16} GeV
- or up to Planck scale 10¹⁸GeV

m_{Higgs}² =0@10¹⁶ , 10¹⁸ GeV including quantum corrections Possible to generate m_{Higgs}² =125GeV by some mechanism??

example

Magnetic Flux Compactification

Motivations of Flux Compactification

- Chiral fermions
- 3 generations?
- Yukawa hierarchy
- SUSY breaking
- String phenomenology

6D QED on T² with magnetic flux Buchmuller, Dierigl and Dudas, JHEP04 (2018) 151 [hep-th:1804.07497]

Cancellation of 1-loop corrections to mass of 0 mode scalar $A_{5,6}$ (WL scalar)

0 mode scalar $A_{5,6}$ = NG boson of $x_{5,6}$ translation

We would like to identify scalar 0 modes A_{5,6} with SM Higgs

Extension of Buchmuller et al's work to Non-abelian gauge theory is necessary

> As a first step, extended to SU(2) YM Hirose & Maru, JHEP1908 (2019) 054 [arXiv:1904.06028]

1. Introduction 2. Cancellation of 1-loop corrections to WL scalar mass in SU(2) Yang-Mills theory Hirose & Maru, JHEP08 (2019) 054, J. phys. G48 (2021) 055005 3. Nonvanishing finite scalar masses in flux compactification 4. Summary

6D SU(2) Yang-Mills compactified on T^2 with flux

$$\mathcal{L}_{6} = -\frac{1}{4} F^{a}_{MN} F^{aMN} - \frac{1}{2\xi} \left(D_{\mu} A^{a\mu} + \xi \mathcal{D}_{m} A^{am} \right)^{2} - \overline{c}^{a} \left(D_{\mu} D^{\mu} + \xi D_{m} \mathcal{D}^{m} \right) c^{a}$$

$$F_{MN}^{a} = \partial_{M} A_{N}^{a} - \partial_{N} A_{M}^{a} - ig [A_{M}, A_{N}]^{a}$$

$$D_{M} A_{N}^{a} = \partial_{M} A_{N}^{a} - ig [A_{M}, A_{N}]^{a}, D_{m} A^{am} = \partial_{m} A^{am} - ig [\langle A_{m} \rangle, A^{m}]^{a}$$

$$M=0,1,2,3,5,6$$

$$m=5,6, a=1,2,3$$

$$\begin{aligned} \mathbf{flux} \quad D^{m} \langle F_{mn} \rangle &= 0 \Rightarrow \langle A_{5}^{1} \rangle = -\frac{1}{2} fx_{6}, \langle A_{6}^{1} \rangle = \frac{1}{2} fx_{5}, \langle A_{5}^{2,3} \rangle = \langle A_{6}^{2,3} \rangle = 0 \\ &\Rightarrow \langle F_{56}^{1} \rangle = f, \ \frac{g}{2\pi} \int_{T^{2}} d^{2}x f = \frac{g}{2\pi} fL_{5}L_{6} = N \in \mathbb{Z} \end{aligned}$$

(4+2)-dim decomposition

$$\begin{aligned} \mathcal{L}_{total} &= -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} - \frac{1}{2\xi} D_{\mu} A^{a\mu} D_{\nu} A^{a\nu} - \partial_{\mu} \overline{\phi}^{a} \partial^{\mu} \phi^{a} \\ &- \frac{1}{2} \partial A^{a}_{\mu} \overline{\partial} A^{a\mu} + g^{2} \Big[A_{\mu}, \phi \Big]^{a} \Big[A^{\mu}, \phi \Big]^{a} - \frac{g}{\sqrt{2}} \Big(- \partial A^{a}_{\mu} \Big[A^{\mu}, \overline{\phi} \Big]^{a} + \overline{\partial} A^{a}_{\mu} \Big[A_{\mu}, \phi \Big]^{a} \Big) \\ &+ ig \Big(\partial_{\mu} \phi^{a} \Big[A^{\mu}, \overline{\phi} \Big]^{a} + \partial^{\mu} \overline{\phi}^{a} \Big[A_{\mu}, \phi \Big]^{a} \Big) \\ &- \frac{1}{4} \Big(D \overline{\phi}^{a} + \overline{D} \phi^{a} + \sqrt{2}g \Big[\phi, \overline{\phi} \Big]^{a} \Big)^{2} + \frac{\xi}{4} \Big(D \overline{\phi}^{a} - \overline{D} \phi^{a} \Big)^{2} \\ &- \overline{c}^{a} \Big(D_{\mu} D^{\mu} + \xi D_{m} D^{m} \Big) c^{a} \end{aligned}$$

$$\partial \equiv \partial_{z} = \partial_{5} - i \partial_{6}, \ z \equiv \frac{1}{2} \Big(x_{5} + i x_{6} \Big), \ \phi = \frac{1}{\sqrt{2}} \Big(A_{6} + i A_{5} \Big) \end{aligned}$$

 $\mathcal{L}_{A^{2}} = -\frac{1}{2} \partial A^{a}_{\mu} \overline{\partial} A^{a\mu} + g^{2} \left[A_{\mu}, \langle \phi \rangle \right]^{a} \left[A^{\mu}, \langle \overline{\phi} \rangle \right]^{a}$ $-\frac{g}{\sqrt{2}}\left(-\partial A^{a}_{\mu}\left[A^{\mu},\left\langle \overline{\phi}\right\rangle\right]^{a}+\overline{\partial}A^{a}_{\mu}\left[A^{\mu},\left\langle \phi\right\rangle\right]^{a}\right)$ $= -\frac{1}{2}A^a_{\mu} \left(-\mathcal{D}\overline{\mathcal{D}}\right)A^{a\mu}$ $\mathcal{D} = \left(\begin{array}{ccc} \partial & 0 & 0 \\ 0 & \partial & igf\overline{z} \\ 0 & -igf\overline{z} & \partial \end{array} \right)$ $\begin{bmatrix} i\overline{\mathcal{D}}, i\mathcal{D} \end{bmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -2igf \\ 0 & 2igf & 0 \end{pmatrix} = 2igf\varepsilon^{a1c}$ $\overline{\mathcal{D}} = \left(\begin{array}{ccc} \overline{\partial} & 0 & 0 \\ 0 & \overline{\partial} & -igfz \\ 0 & igfz & \overline{\partial} \end{array} \right)$

$$\begin{aligned} \mathcal{L}_{A^{2}} &= -\frac{1}{2} \partial A^{a}_{\mu} \,\overline{\partial} A^{a\mu} + g^{2} \Big[A_{\mu}, \langle \phi \rangle \Big]^{a} \Big[A^{\mu}, \langle \overline{\phi} \rangle \Big]^{a} \\ &\quad -\frac{g}{\sqrt{2}} \Big(-\partial A^{a}_{\mu} \Big[A^{\mu}, \langle \overline{\phi} \rangle \Big]^{a} + \overline{\partial} A^{a}_{\mu} \Big[A^{\mu}, \langle \phi \rangle \Big]^{a} \Big) \\ &= -\frac{1}{2} A^{a}_{\mu} \Big(-\mathcal{D} \overline{\mathcal{D}} \Big) A^{a\mu} \end{aligned}$$

$$\mathcal{D}_{diag} = \begin{pmatrix} \partial & 0 & 0 \\ 0 & \partial - gf\overline{z} & 0 \\ 0 & 0 & \partial + gf\overline{z} \end{pmatrix} \qquad a = \frac{1}{\sqrt{2gf}} i \overline{\mathcal{D}}, \ a^{\dagger} = \frac{1}{\sqrt{2gf}} i \mathcal{D} \\ \begin{bmatrix} a, a^{\dagger} \end{bmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \begin{bmatrix} a, a^{\dagger} \end{bmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} \\ \text{creation, annihilation operators} \end{aligned}$$

$$\begin{aligned} \mathcal{L}_{A^{2}} &= -\frac{1}{2} \partial A^{a}_{\mu} \,\overline{\partial} A^{a\mu} + g^{2} \Big[A_{\mu}, \langle \phi \rangle \Big]^{a} \Big[A^{\mu}, \langle \bar{\phi} \rangle \Big]^{a} \\ &- \frac{g}{\sqrt{2}} \Big(-\partial A^{a}_{\mu} \Big[A^{\mu}, \langle \bar{\phi} \rangle \Big]^{a} + \overline{\partial} A^{a}_{\mu} \Big[A^{\mu}, \langle \phi \rangle \Big]^{a} \Big) \\ &= -\frac{1}{2} A^{a}_{\mu} \Big(-\mathcal{D} \overline{\mathcal{D}} \Big) A^{a\mu} \end{aligned}$$

$$\begin{cases} a_{1} &= \frac{1}{\sqrt{2gf}} i \overline{\partial} \\ a_{2} &= \frac{1}{\sqrt{2gf}} i (\overline{\partial} + gfz), \\ a_{3} &= \frac{1}{\sqrt{2gf}} i (\overline{\partial} - gfz) \end{cases} \begin{cases} a_{1}^{\dagger} &= \frac{1}{\sqrt{2gf}} i (\partial - gf\overline{z}) \\ a_{3}^{\dagger} &= \frac{1}{\sqrt{2gf}} i (\partial + gf\overline{z}) \end{cases} \end{cases} \begin{cases} a_{1}^{\dagger} &= \frac{1}{\sqrt{2gf}} i (\partial + gf\overline{z}) \\ a_{3}^{\dagger} &= \frac{1}{\sqrt{2gf}} i (\partial + gf\overline{z}) \end{cases} \end{cases} \end{cases} \begin{cases} a_{1}, a_{1}^{\dagger} &= 0 \\ a_{2}, a_{2}^{\dagger} &= 1 \\ a_{3}, a_{3}^{\dagger} &= -\frac{1}{\sqrt{2gf}} i (\partial + gf\overline{z}) \end{cases} \end{cases}$$

 $a_1 =$

$$\begin{split} \mathcal{L}_{A^{2}} &= -\frac{1}{2} \partial A^{a}_{\mu} \,\overline{\partial} A^{a\mu} + g^{2} \Big[A_{\mu}, \langle \phi \rangle \Big]^{a} \Big[A^{\mu}, \langle \overline{\phi} \rangle \Big]^{a} \\ &- \frac{g}{\sqrt{2}} \Big(-\partial A^{a}_{\mu} \Big[A^{\mu}, \langle \overline{\phi} \rangle \Big]^{a} + \overline{\partial} A^{a}_{\mu} \Big[A^{\mu}, \langle \phi \rangle \Big]^{a} \Big] \\ &= -\frac{1}{2} A^{a}_{\mu} \Big(-\mathcal{D}\overline{\mathcal{D}} \Big) A^{a\mu} \end{split}$$

Diagonalized mass matrix

$$\left(m_{A}^{2}\right)_{diag} = -\mathcal{D}_{diag}\overline{\mathcal{D}}_{diag} = 2gf \begin{pmatrix} n_{1} & 0 & 0\\ 0 & n_{2} & 0\\ 0 & 0 & n_{3}+1 \end{pmatrix}$$

n_{2,3}: Landau level

Scalar mass & ghost mass

 $\mathcal{L}_{\varphi\varphi} = -\frac{1}{4} \Big(\mathcal{D}\overline{\varphi}^{a} \mathcal{D}\overline{\varphi}^{a} + \mathcal{D}\overline{\varphi}^{a} \overline{\mathcal{D}}\varphi^{a} + \overline{\mathcal{D}}\varphi^{a} \mathcal{D}\overline{\varphi}^{a} + \overline{\mathcal{D}}\varphi^{a} \overline{\mathcal{D}}\varphi^{a} - 4gf[\varphi,\overline{\varphi}]^{1} \Big)$ $-\frac{\xi}{\varDelta} \Big(\mathcal{D}\overline{\varphi}^{a}\mathcal{D}\overline{\varphi}^{a} - \mathcal{D}\overline{\varphi}^{a}\overline{\mathcal{D}}\varphi^{a} - \overline{\mathcal{D}}\varphi^{a}\mathcal{D}\overline{\varphi}^{a} + \overline{\mathcal{D}}\varphi^{a}\overline{\mathcal{D}}\varphi^{a} \Big)$ $\phi^a = \langle \phi^a \rangle + \phi^a$ $\mathcal{L}_{cc} = -\overline{c}^a \xi \mathcal{D}_m \mathcal{D}^m c^a$ $\left(m_{\varphi}^{2} \right)_{diag} = gf \left(\begin{array}{ccc} (1+\xi)n_{1} & 0 & 0 \\ 0 & (1+\xi)n_{2}+1 & 0 \\ 0 & 0 & (1+\xi)n_{3}+\xi \end{array} \right)$ $\left(m_c^2\right)_{diag} = 2gf\xi \left(\begin{array}{rrrr} n_1 & 0 & 0\\ 0 & n_2 + 1/2 & 0\\ 0 & 0 & n_3 + 1/2 \end{array}\right)$

4D effective theory

$$\begin{aligned} \mathcal{L}_{total} &= -\frac{1}{4} \tilde{F}_{\mu\nu}^{a} \tilde{F}^{a\mu\nu} - \partial_{\mu} \overline{\phi}^{a} \partial^{\mu} \overline{\phi}^{a} - \overline{c}^{a} \mathcal{D}_{\mu} \mathcal{D}^{\mu} \tilde{c}^{a} & \phi^{a} = \langle \phi^{a} \rangle + \phi^{a} \\ &- \frac{1}{2} \tilde{A}_{\mu}^{a} m_{A}^{2} \tilde{A}^{a\mu} - \overline{\phi}^{a} m_{\phi}^{2} \widetilde{\phi}^{a} - \overline{c}^{a} m_{c}^{2} \tilde{c}^{a} \\ &- \frac{1}{2} \tilde{A}_{\mu}^{a} \phi^{a} \left[A^{\mu}, \phi \right]^{a} + \partial^{\mu} \overline{\phi}^{a} \left[A_{\mu}, \phi \right]^{a} \right] + g^{2} \left[A_{\mu}, \phi \right]^{a} \left[A^{\mu}, \phi \right]^{a} \\ &+ ig \left(\partial_{\mu} \phi^{a} \left[A^{\mu}, \phi \right]^{a} + \partial^{\mu} \overline{\phi}^{a} \left[A_{\mu}, \phi \right]^{a} \right) + g^{2} \left[A_{\mu}, \phi \right]^{a} \left[A^{\mu}, \phi \right]^{a} \\ &+ \frac{g}{\sqrt{2}} \left(\mathcal{D} \overline{\phi}^{a} - \overline{\mathcal{D}} \phi^{a} \right) \left[\phi, \overline{\phi} \right]^{a} - \frac{1}{2} g^{2} \left[\phi, \overline{\phi} \right]^{a} \left[\phi, \overline{\phi} \right]^{a} \\ &- \frac{g \xi}{\sqrt{2}} \left(\left[\phi, \overline{c} \right]^{a} \overline{\partial} c^{a} - \left[\overline{\phi}, \overline{c} \right]^{a} \partial c^{a} \right) \end{aligned}$$

$$\begin{split} \tilde{A}^{a}_{\mu} &= U A^{a}_{\mu}, \ \tilde{A}^{a\mu} = U^{-1} A^{a\mu}, \\ \tilde{\varphi} &= U^{-1} \varphi, \ \bar{\tilde{\varphi}} = U \overline{\varphi}, \ \bar{\tilde{c}}^{a} = U \overline{c}^{a}, \ \tilde{c}^{a} = U^{-1} c^{a} \quad U = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & 1 & i \\ 0 & i & 1 \end{pmatrix} \end{split}$$

Diagrams to be calculated

Gauge boson loop

Gauge boson loop

Gauge boson loop

Scalar loop

Ghost loop

$$I_{5}^{(2)} = I_{5}^{(3)} = \frac{ig^{2}|N|\xi^{2}}{2} \sum_{n=0}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{\alpha(n+1)}{(p^{2} + \alpha(n+1/2))(p^{2} + \alpha(n+3/2))}$$

Cancellation between scalar loop & ghost loop Landau gauge: $\xi=0 \Rightarrow$ ghost loop trivially zero Scalar loop

$$\begin{split} I_{3}^{(2)} + I_{4}^{(2)} &= -ig^{2} |N| \sum_{n=0}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \Biggl(\frac{1}{p^{2} + \frac{\alpha}{2}(n+1)} - \frac{\frac{\alpha}{2}(n+1)}{\left(p^{2} + \frac{\alpha}{2}(n+1)\right)\left(p^{2} + \frac{\alpha}{2}(n+2)\right)} \Biggr) \\ &= -ig^{2} |N| \sum_{n=0}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \Biggl(-\frac{n}{p^{2} + \frac{\alpha}{2}(n+1)} + \frac{n+1}{p^{2} + \frac{\alpha}{2}(n+2)} \Biggr) = 0 \\ I_{3}^{(3)} + I_{4}^{(3)} &= -ig^{2} |N| \sum_{n=0}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \Biggl(\frac{1}{p^{2} + \frac{\alpha}{2}n} - \frac{\frac{\alpha}{2}(n+1)}{\left(p^{2} + \frac{\alpha}{2}n\right)\left(p^{2} + \frac{\alpha}{2}(n+1)\right)} \Biggr) \\ &= -ig^{2} |N| \sum_{n=0}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \Biggl(-\frac{n}{p^{2} + \frac{\alpha}{2}n} + \frac{n+1}{p^{2} + \frac{\alpha}{2}(n+1)} \Biggr) = 0 \end{split}$$

Feynman gauge: $\xi=1$

Physical reason of cancellation

Translations in compactified space

$$\delta_T A_5^a = (\varepsilon_5 \partial_5 + \varepsilon_6 \partial_6) \tilde{A}_5^a - \frac{f}{2} \varepsilon_6 \delta^{a1}$$

$$\delta_T A_6^a = (\varepsilon_5 \partial_5 + \varepsilon_6 \partial_6) \tilde{A}_6^a + \frac{f}{2} \varepsilon_5 \delta^{a1}$$

$$\delta_T \phi^a = \left(\varepsilon \partial_{\overline{\varepsilon}} \overline{\partial} + \overline{\varepsilon} \overline{\partial} \right) \phi^a + \frac{f}{\sqrt{2}} \overline{\varepsilon} \delta^{a_1}$$

$$\partial \equiv \partial_5 - i \partial_6, \phi^a = \frac{1}{\sqrt{2}} \left(A_6^a + i A_5^a \right) = \frac{f}{\sqrt{2}} \overline{z} \delta^{a_1} + \phi^a$$

^{a=1} ^{0 mode} constant shift

 $\delta_T \phi^1 = \frac{f}{\sqrt{2}}\overline{\varepsilon}$

 $\delta_T \phi^1 = \frac{f}{\sqrt{2}} \overline{\varepsilon}$ constant
shift

¹ NG boson of spontaneously broken translational symmetry in 5,6 directions

Only derivative interactions are allowed (Not only mass terms, but also potential forbidden)

Analogy: π meson NG boson of spontaneously broken chiral symmetry ⇒ chiral Lagrangian We have also shown a cancellation in a presence of higher dimensional operators Hirose & Maru, J.Phys.G 48 (2021) 5 [2012.03494]

$$\mathcal{L} = -\frac{1}{4}F_{MN}F^{MN} + \frac{1}{\Lambda^2}\mathcal{O}_1(D,F) + \frac{1}{\Lambda^4}\mathcal{O}_2(D,F) + \frac{1}{\Lambda^6}\mathcal{O}_3(D,F) + \cdots$$

Only dim-6 operators are considered in our paper

$$\mathcal{O}_{1} = Tr \Big[D_{L} D^{L} D_{M} D_{N} F^{MN} \Big] + 2Tr \Big[D_{L} F_{MN} D^{L} F^{MN} \Big]$$
$$+ \varepsilon^{M_{1}N_{1}M_{2}N_{2}M_{3}N_{3}} Tr \Big[F_{M_{1}N_{1}} F_{M_{2}N_{2}} F_{M_{3}N_{3}} \Big]$$

Reason of cancellation is very simple: WL scalar appears in a commutator

, φ invariant under a constant shift

1. Introduction 2. Cancellation of 1-loop corrections to WL scalar mass in SU(2) Yang-Mills theory 3. Nonvanishing finite scalar masses in flux compactification Hirose & Maru, JHEP06 (2021) 159 4. Summary

Pion has a mass since it is a pseudo NG boson of explicitly broken chiral symmetry by quark mass terms

To obtain WL scalar mass, it has to be a pseudo NG boson of explicitly broken translational symmetry in compactified space, too What are the explicit breaking terms, corresponding to quark mass terms in pion case ??

Divergence structure of the loop integral & mode sum

$$I(x;a,b) = \sum_{n=0}^{\infty} \int \frac{d^4k}{(2\pi)^4} \frac{\left(k^2\right)^a}{\left(k^2 + \alpha(n+x)\right)^b}$$
$$= \frac{1}{\alpha^{b-a}} \left(\frac{4\pi}{\alpha}\right)^{\varepsilon-2} \frac{\Gamma(a+2-\varepsilon)\Gamma(\varepsilon+b-a-2)}{\Gamma(b)\Gamma(2-\varepsilon)} \zeta[\varepsilon+b-a-2,x]$$

 x: parameter specifying KK mass spectrum (x=0(KK gauge), ½(KK scalar), 1(KK fermion))
 2a: number of derivatives
 b: number of propagators (only b=1,2 cases considered)

$$J(x;a,b) = \frac{\Gamma(a+2-\varepsilon)\Gamma(\varepsilon+b-a-2)}{\Gamma(b)\Gamma(2-\varepsilon)}\zeta[\varepsilon+b-a-2,x]$$
$$= \begin{cases} (-1)^{a}\Gamma(\varepsilon-1)\zeta[\varepsilon-a-1,x](b=1)\\ (-1)^{a}(\varepsilon-a-1)\Gamma(\varepsilon-1)\zeta[\varepsilon-a,x](b=2) \end{cases}$$

$$\Gamma(\varepsilon-1) = \frac{\Gamma(\varepsilon)}{\varepsilon-1} = -\left(\frac{1}{\varepsilon} - \gamma_{E} + 1 + \mathcal{O}(\varepsilon)\right)$$
$$\zeta[\varepsilon-p,x] = \zeta[-p,x] + \frac{\partial\zeta[-p,x]}{\partial(-p)}\varepsilon + \mathcal{O}(\varepsilon^{2})$$

 $\zeta[-2n,1] = \zeta[-2n,1/2] = \zeta[-2n,0] = 0$ $\Gamma(\varepsilon-1)\zeta(\varepsilon-p,x) = finite(p = even)$

J(x;a,1) for odd a, J(x;a,2) for even a are finite

1-loop finite corrections by 4-point interaction

Scalar loop

$$J(1/2;a,1) \to \overline{\varphi}\varphi \partial_{\mu_1} \cdots \partial_{\mu_a} \overline{\Phi} \partial^{\mu_1} \cdots \partial^{\mu_a} \Phi$$

Fermion loop

$J(1;a,1) \to \overline{\varphi} \varphi \overline{\psi} \left(\gamma^{\mu} \partial_{\mu} \right)^{2a-1} \psi$

SU(2) gauge loop

 $J(1/2;a,1) \to \overline{\varphi}\varphi \partial_{\mu_1} \cdots \partial_{\mu_a} A^a_{\nu} \partial^{\mu_1} \cdots \partial^{\mu_a} A^{a\nu}$

1-loop finite corrections by 3-point interactions

Scalar loop

 $J(1/2;0,2) \to \overline{\varphi}\overline{\Phi}\Phi + \varphi\overline{\Phi}\Phi$ $J(1/2;a,2) \to \overline{\varphi}\partial_{\mu_{1}}\cdots\partial_{\mu_{a/2}}\overline{\Phi}\partial^{\mu_{1}}\cdots\partial^{\mu_{a/2}}\Phi + \varphi\partial_{\mu_{1}}\cdots\partial_{\mu_{a/2}}\overline{\Phi}\partial^{\mu_{1}}\cdots\partial^{\mu_{a/2}}\Phi$

Fermion loop

$$J(1;a,2) \to \overline{\varphi}\overline{\psi}\left(\gamma^{\mu}\partial_{\mu}\right)^{a-1}\psi + \varphi\overline{\psi}\left(\gamma^{\mu}\partial_{\mu}\right)^{a-1}\psi$$

SU(2) gauge loop

$$J(1/2;a,2) \to \overline{\varphi} \,\partial_{\mu_1} \cdots \partial_{\mu_{a/2}} A^a_\nu \,\partial^{\mu_1} \cdots \partial^{\mu_{a/2}} A^{a\nu} + \varphi \,\partial_{\mu_1} \cdots \partial_{\mu_{a/2}} A^a_\nu \,\partial^{\mu_1} \cdots \partial^{\mu_{a/2}} A^{a\nu}$$

Illustration of finite WL scalar mass

6D scalar QED on T² with flux

1

$$\mathcal{L} = -\frac{1}{4} F_{MN} F^{MN} - D_M \overline{\Phi} D^M \Phi + \kappa \left(\phi \overline{\Phi} \Phi + \overline{\phi} \overline{\Phi} \Phi \right)^2$$

 $\phi = \left< \phi \right> + \varphi$

 $\delta m^2 = \frac{|N| \ln 2}{32\pi^2} \frac{\kappa^2}{L^2}$

New contribution from K interactions

• $\kappa = 0 \Rightarrow \delta m^2 = 0$ •same result is derived from $V_{eff}@1$ -loop

If we regard
$$\delta m^2 = \frac{|N| \ln 2}{32\pi^2} \frac{\kappa^2}{L^2}$$
 as M_{Higgs}^2
 $\Rightarrow \frac{\kappa}{L} \approx TeV$

Even if 1/L is Planck scale,

 $\kappa(\phi \overline{\Phi} \Phi + \overline{\phi} \overline{\Phi} \Phi)$ is generated as $\kappa \sim \text{TeV/Planck}$ by some dynamics, M_{Higgs}^2 is obtained On the gauge invariance of interaction $\, \phi \overline{\Phi} \Phi \,$

Gauge invariance?? : $\delta \phi \propto \partial \Lambda(z, \overline{z})$

 $\Rightarrow \varphi, \overline{\varphi}$ should be expressed by a gauge invariant non-local Wilson line operator

$$U_{5} = \exp\left[ig\oint dx^{5}A_{5}\right] = \exp\left[\frac{g}{\sqrt{2}}\oint\left(\varphi dz + \varphi d\overline{z} - \overline{\varphi} dz - \overline{\varphi} d\overline{z}\right)\right]$$
$$U_{6} = \exp\left[ig\oint dx^{6}A_{6}\right] = \exp\left[\frac{g}{\sqrt{2}}\oint\left(\varphi dz - \varphi d\overline{z} + \overline{\varphi} dz - \overline{\varphi} d\overline{z}\right)\right]$$

 $\phi \Phi \Phi, \overline{\phi} \Phi \Phi$ can be obtained by expansion

$$i\left(U_{5}-U_{5}^{\dagger}\right)\overline{\Phi}\Phi-i\left(U_{6}-U_{6}^{\dagger}\right)\overline{\Phi}\Phi\supset ig_{4}\varphi\overline{\Phi}\Phi-ig_{4}\overline{\varphi}\overline{\Phi}\Phi$$

$\phi \overline{\Phi} \Phi, \overline{\phi} \overline{\Phi} \Phi \quad \text{can be obtained by expansion}$ $i \left(U_5 - U_5^{\dagger} \right) \overline{\Phi} \Phi - i \left(U_6 - U_6^{\dagger} \right) \overline{\Phi} \Phi \supset i g_4 \phi \overline{\Phi} \Phi - i g_4 \overline{\phi} \overline{\Phi} \Phi$

$$U_{5} - U_{5}^{\dagger} = 2i \sin \left[g \oint dx^{5} A_{5} \right], U_{6} - U_{6}^{\dagger} = 2i \sin \left[g \oint dx^{6} A_{6} \right]$$

are not obviously invariant under the constant shift symmetry

$$A_5 \rightarrow A_5 - f\varepsilon_6/2, A_6 \rightarrow A_6 + f\varepsilon_5/2$$

1. Introduction 2. Cancellation of 1-loop corrections to WL scalar mass in SU(2) Yang-Mills theory 3. Nonvanishing finite scalar masses in flux compactification 4. Summary

Summary

No signature of New physics SM might be correct up to Planck scale reconsider the hierarchy problem??

Scalar mass = 0@M_P is favorable → flux compactification

In 6D SU(2)YM with flux compactification, WL scalar mass@1-loop=0 was shown

Gauge loop → in arbitrary gauge
 Scalar loop + ghost loop →
 shown in Landau & Feynman gauge

Summary

Masslessness WL scalar = NG boson of translation in compactified space

- To identify WL scalar with SM Higgs
 ⇒ WL scalar should be a pseudo NG boson
 ⇒ mass & potential are generated
- Classification of explicit breaking terms of translational symmetry providing finite WL scalar mass@ 1-loop

Summary

- Finite WL scalar mass@1-loop was obtained in 6D scalar QED
- Origin of explicit breaking terms??
 - Quantum gravity effects? Nontrivial background as vortex? Dynamical SUSY breaking??
- Our analysis can be applicable to other scalar dynamics
 ⇒ WL scalar as inflaton Hirose & Maru, 2105.11782[hep-th]

ns

