Anomaly and Superconnection

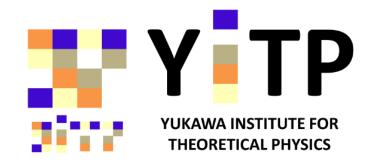
菅野 颯人

京都大学 基礎物理学研究所 (YITP)

Based on arXiv:2106.01591 [hep-th]

Now, v2 is available.

Work with 杉本茂樹(基研)



What is "anomaly"? (1)

Anomaly (Quantum Anomaly)

An classical action has some symmetries, but sometimes these symmetries disappear in quantum theory.

e.g.)
$$\pi^0 \rightarrow 2\gamma$$

- In massless QCD, there is a chiral symmetry $U(N_f)_L \times U(N_f)_R$. N_f : # of flavors
- If there is NO anomaly, π^0 never decays.
- However, π^0 decays into 2γ , because of an anomaly! j_{μ}^{\dagger} $U(N_f)_{\mu} \times U(N_f)_{\mu} \supset U(1)_A$ has an anomaly.

omaly! j_{μ}^{5} j_{μ} Index theorem (5)

Theories what we want to think (1)

Let us consider 4dim action contain fermions.

$$S = \int d^4x \bar{\psi} i D\!\!\!/ \psi = \int d^4x \bar{\psi} i \gamma^\mu (\partial_\mu + A_\mu) \psi$$
 • This action is massless, so it has a chiral symmetry $U(N_f)_L \times U(N_f)_R$.

- There also be a $U(1)_A$ anomaly.
- Add mass term
 - Mass term breaks the chiral symmetry.

$$S = \int d^4x \bar{\psi} \left(i \not\!\!D + m\right) \psi$$

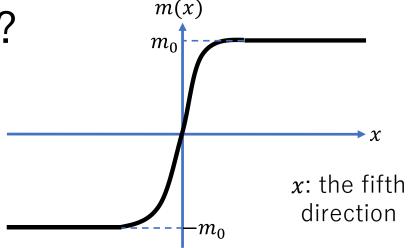
- Let the mass depend on the spacetime.
 - This mass is almost same as the Higgs field.
 - How change the symmetry and the anomaly?

$$S = \int d^4x \bar{\psi} \Big(i \not\!\!D + m(x) \Big) \psi$$

The spacetime dependent mass

What is "the spacetime dependent mass"?

- e.g.) Domain wall fermions
 - One way to realize chiral fermions on the lattice.
 - Consider 5dim spacetime, and realize 4dim fermions on m(x) = 0 subspace.



- Chiral anomalies with Higgs fields
 - If Higgs fields change as bifundamental under the $U(N_f)_L \times U(N_f)_R$ chiral symmetry, the action is invariant for the symmetry.
 - It is known that chiral anomalies are not changed by adding Higgs fields.
 - See Fujikawa-san's text book.

$$S = \int d^4x \bar{\psi} \Big(i \not\!\!D + h(x) \Big) \psi$$

The spacetime dependent mass

What is "the spacetime dependent mass"? INTERNATIONAL SERIES OF MONOGRAPHS

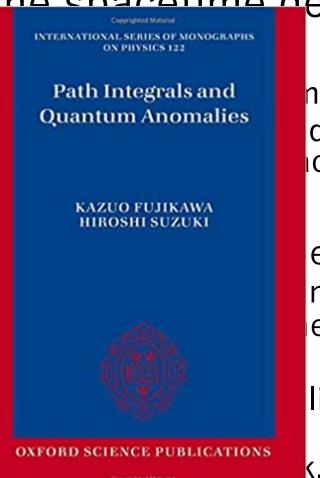
• e.g.) Dom

One wa

 Consid fermio

Chiral and

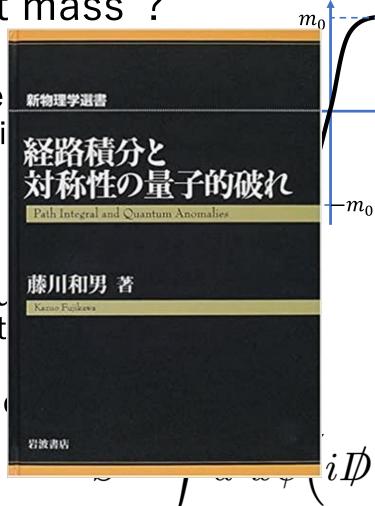
- If Higg invariã
- It is kn by add
- See Fu



nions on the d realize 4di ice.

elds ndamental ป etry, the act

llies are not



m(x)

 $i \not\!\!D + h(x) \psi$

x: the fifth

direction

Theories what we want to think (2)

How about the spacetime dependent mass?

- The chiral anomaly is changed by the mass!!
 - Deference between Higgs and mass
 - Higgs field : bounded
 - Spacetime dependent mass: unbounded

$$S = \int d^d x \bar{\psi} \Big(i \not\!\!\!D + m(x) \Big) \psi$$

- If the mass diverges at some points, it contributes to the anomaly.
 - This contribution might be unknown.
 - We can find the anomaly in any dimension.
- The anomaly can be written by "superconnection." $\mathcal{A}=\left(egin{array}{cc} A_R & iT' \\ iT & A_T \end{array}
 ight)$

$$\mathcal{A} = \begin{pmatrix} A_R & iT^{\dagger} \\ iT & A_L \end{pmatrix}$$

Plan

1. Introduction (4)

- What is anomaly?
- Theories what we want to think

2. Derivation (9)

- How to calculate anomalies
- The anomaly for massless case
- The anomaly for massive case
- Superconnection
- The result

3. Application (7)

- Kink, vortex
- With boundary

4. Index theorem (5)

- Index for massive case
- APS index theorem

5. String theory (5)

- Tachyon condensation
- 6. Conclusion (1)

Introduction (4) Derivation (9) Application (7) Index theorem (5) String theory (5)

How to calculate anomalies

Fujikawa method

- There are several ways to calculate anomalies.
- Today, we focus on the Fujikawa method.
 - Consider path integral for fermions.
 - Anomaly = Jacobian comes from path integral measure
 - We only consider perturbative anomalies.
- We calculate $\log J$ for anomalies in the last part of this talk.

$$Z[A] = \int \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-S}$$

e.g.)
$$U(1)_V$$
 $\psi(x) \rightarrow e^{i\alpha(x)} \psi(x),$ transformation $\bar{\psi}(x) \rightarrow \bar{\psi}(x) e^{-i\alpha(x)}$

$$\mathcal{D}\psi\mathcal{D}\bar{\psi} \xrightarrow{} \mathcal{D}\psi'\mathcal{D}\bar{\psi}' = \mathcal{J}\mathcal{D}\psi\mathcal{D}\bar{\psi}$$

$$= e^{-i\int d^4x \alpha(x)\mathcal{A}(x)}\mathcal{D}\psi\mathcal{D}\bar{\psi}$$
anomaly

$$\log \mathcal{J} = -i \int d^4x \alpha(x) \mathcal{A}(x)$$

Chiral symmetry

Anomalous symmetries we calculate

- $U(N_f)_L \times U(N_f)_R$ chiral symmetry
 - For even dimension
 - Because chirality operators exist only even dimensions.
 - Weyl fermions couple to $U(N_f)_L$ background gauge field A_μ^L and $U(N_f)_R$ background gauge field A_μ^R .

$$\psi^{(\text{Dirac})} = \begin{pmatrix} \psi_R^{(\text{Weyl})} \\ \psi_L^{(\text{Weyl})} \end{pmatrix}$$

- $U(N_f)$ flavor symmetry
 - For odd dimension
 - No perturbative anomaly as usual.
 - Dirac fermions couple to $U(N_f)$ background gauge field.

$$S = \int d^d x \bar{\psi} i \gamma^{\mu} \left\{ \partial_{\mu} + \begin{pmatrix} A_{\mu}^R & 0 \\ 0 & A_{\mu}^L \end{pmatrix} \right\} \psi$$

For even dimension

$$S = \int d^d x \bar{\psi} i \gamma^{\mu} \Big\{ \partial_{\mu} + A_{\mu} \Big\} \psi$$

For odd dimension

Application (7) Index theorem (5) String theory (5)

The anomaly for massless cases

e.g.) fermions in 4dim

- Mass less case
 - With $U(N_f)_L \times U(N_f)_R$ chiral sym.
 - $U(1)_V$ anomaly is written by the field strengths.
- With a Higgs field
 - With $U(N_f)_L \times U(N_f)_R$ chiral sym.
 - The $U(1)_V$ anomaly is same for massless case.
- How about the massive case?

$$S = \int d^4x \bar{\psi} i \gamma^\mu \bigg\{ \partial_\mu + \left(\begin{array}{cc} A^R_\mu & 0 \\ 0 & A^L_\mu \end{array} \right) \bigg\} \psi$$

$$\log \mathcal{J} = \frac{i}{32\pi^2} \int d^4x \alpha(x) \epsilon^{\mu\nu\rho\sigma} \operatorname{tr} \left[F_{\mu\nu}^R F_{\rho\sigma}^R - F_{\mu\nu}^L F_{\rho\sigma}^L \right]$$
$$= \frac{i}{8\pi^2} \int \alpha(x) \operatorname{tr} \left[F^R \wedge F^R - F^L \wedge F^L \right]$$

$$S = \int d^4x \bar{\psi} \Big(i \not\!\!D + h(x) \Big) \psi$$

The anomaly for massive case (1)

Let us consider spacetime dependent mass!

• The action for general even dim with $U(N_f)_L \times U(N_f)_R$ symmetry is,

$$S = \int d^d x \bar{\psi} \left[i \gamma^{\mu} \left\{ \partial_{\mu} + \begin{pmatrix} A^R_{\mu} & 0 \\ 0 & A^L_{\mu} \end{pmatrix} \right\} + \begin{pmatrix} i m(x) & 0 \\ 0 & i m^{\dagger}(x) \end{pmatrix} \right] \psi \equiv \int d^d x \bar{\psi} \mathcal{D} \psi$$

- For odd dim case, there is only $U(N_f)$ sym, we put $A_\mu = A_\mu^R = A_\mu^L$ and $m = m^\dagger$.
- We take m(x) divergent. $|m(x^I)| \to \infty \quad (|x^I| \to \infty)$
 - I denotes some directions which m(x) changes its values.
- We calculated $U(1)_V$ anomaly for this action by Fujikawa method.
 - It is easy to get the anomaly for any dimension.
 - It is also easy to get the anomaly for $U(N_f)_L \times U(N_f)_R$, not only for $U(1)_V$.

The anomaly for massive case (2)

e.g.) In 4dim case, the $U(1)_V$ anomaly is,

$$\tilde{m}=m/\Lambda$$

Λ is UV cut-off comes from heat kernel

regularization.

$$\log \mathcal{J} = \frac{i}{(2\pi)^2} \int d^4x \alpha(x) \operatorname{tr} \left[\epsilon^{\mu\nu\rho\sigma} \left\{ \frac{1}{8} \left(F_{\mu\nu}^R F_{\rho\sigma}^R - F_{\mu\nu}^L F_{\rho\sigma}^L \right) \right\} \right]$$

$$+\frac{1}{12} \left(D_{\mu} \tilde{m}^{\dagger} D_{\nu} \tilde{m} F_{\rho\sigma}^{R} - D_{\mu} \tilde{m} D_{\nu} \tilde{m}^{\dagger} F_{\rho\sigma}^{L} + F_{\mu\nu}^{R} D_{\rho} \tilde{m}^{\dagger} D_{\sigma} \tilde{m} \right)$$

$$-F_{\mu\nu}^{L}D_{\rho}\tilde{m}D_{\sigma}\tilde{m}^{\dagger}-D_{\mu}\tilde{m}F_{\nu\rho}^{R}D_{\sigma}\tilde{m}^{\dagger}+D_{\mu}\tilde{m}^{\dagger}F_{\nu\rho}^{L}D_{\sigma}\tilde{m}\right)$$

$$+ \frac{1}{24} \left(D_{\mu} \tilde{m}^{\dagger} D_{\nu} \tilde{m} D_{\rho} \tilde{m}^{\dagger} D_{\sigma} \tilde{m} - D_{\mu} \tilde{m} D_{\nu} \tilde{m}^{\dagger} D_{\rho} \tilde{m} D_{\sigma} \tilde{m}^{\dagger} \right) \right\} \left| e^{-\tilde{m}^{\dagger} \tilde{m}} \right|$$

- This result seems very complicated...
- Can we rewrite it more simple way? → Superconnection!

Index theorem (5)

- We define the superconnections for even and odd dimensions.
- This is made by Quillen, who is a mathematician, in 1985.

Even dimension

Superconnection

$$\mathcal{A} = \begin{pmatrix} A_R & iT^{\dagger} \\ iT & A_L \end{pmatrix}$$

Field strength

$$\mathcal{F} = d\mathcal{A} + \mathcal{A}^2$$

$$\equiv \begin{pmatrix} F^R - T^{\dagger}T & iDT^{\dagger} \\ iDT & F^L - TT^{\dagger} \end{pmatrix}$$

$$iDT^{\dagger}$$

$$F^{L} - TT^{\dagger}$$

connection
$$A_R: \mathit{U(N_f)}_R \text{ gauge field (1-form)} \\ A_L: \mathit{U(N_f)}_L \text{ gauge field (1-form)} \\ iT \qquad A_L : \mathit{U(N_f)}_L \text{ sauge field (1-form)} \\ T: \mathit{U(N_f)}_L \times \mathit{U(N_f)}_R \text{ bifundamental scalar field (0-form)}$$

Supertrace

$$Str\left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = tr(a) - tr(d)$$

Odd dimension

Superconnection

$$\mathcal{A} = \left(egin{array}{cc} A & iT \ iT & A \end{array}
ight) \qquad egin{array}{c} A: \mathit{U}(\mathit{N_f}) ext{ gauge field (1-form)} \ T: \mathit{U}(\mathit{N_f}) ext{ adjoint scalar field (0-form)} \end{array}$$

Field strength

$$= \left(\begin{array}{cc} F - T^2 & iDT \\ iDT & F - T^2 \end{array} \right)$$

Supertrace

$$\operatorname{Str}\left(\begin{array}{cc} a & b \\ b & a \end{array}\right) = \sqrt{2i}\operatorname{tr}(b)$$

We apply superconnection to write the anomaly.

 $\mathcal{F} \equiv d\mathcal{A} + \mathcal{A}^2$

The result (1)

• We can rewrite the $U(1)_V$ anomaly by superconnection.

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi}\right)^{\frac{d}{2}} \int \alpha(x) \operatorname{Str}\left[e^{\mathcal{F}}\right] \Big|_{d-\text{form}} \begin{vmatrix} \tilde{m} = m/\Lambda \\ \mathcal{F} = dA + A^2 \\ \equiv \begin{pmatrix} F^R - T^{\dagger}T & iDT^{\dagger} \\ iDT & F^L - TT^{\dagger} \end{pmatrix}$$

$$\mathcal{F} \equiv \begin{pmatrix} F^R - \tilde{m}^{\dagger}\tilde{m} & i(D\tilde{m})^{\dagger} \\ iD\tilde{m} & F^L - \tilde{m}\tilde{m}^{\dagger} \end{pmatrix} \qquad \operatorname{Str}\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \operatorname{tr}(a) - \operatorname{tr}(d)$$

- For odd dimension case, put $A_\mu=A_\mu^R=A_\mu^L$ and $m=m^\dagger$. Then, we get U(1) anomaly.
 - In odd dimension, the definition of Str is different from even dim case.

$$Str\left(\begin{array}{cc} a & b \\ b & a \end{array}\right) = \sqrt{2i}tr(b)$$

The result (2)

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi} \right)^{\frac{d}{2}} \int \alpha(x) \operatorname{Str} \left[e^{\mathcal{F}} \right]_{d-\text{form}} \qquad \mathcal{F} \equiv \begin{pmatrix} F^R - \tilde{m}^{\dagger} \tilde{m} & i(D\tilde{m})^{\dagger} \\ iD\tilde{m} & F^L - \tilde{m}\tilde{m}^{\dagger} \end{pmatrix}$$

• In this formula, m(x) is included as $\widetilde{m}(x)$.

- $\tilde{m} = m/\Lambda$
- Λ is UV cut-off comes from heat kernel regularization.
- If m(x) is finite, the mass dependence disappears because we need to take $\Lambda \to \infty$
- The Λ dependence of the anomaly disappears after we integrate $Str[e^{\mathcal{F}}]$ over the spacetime.
- It is easy to check this anomaly is consistent with 4dim massless case.

$$\log \mathcal{J} = \frac{i}{8\pi^2} \int \alpha(x) \operatorname{tr} \left[F^R \wedge F^R - F^L \wedge F^L \right]$$

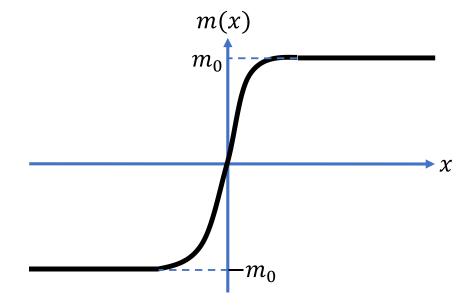
3. Application

Introduction (4) Derivation (9) Application (7) Index theorem (5) String theory (5)

How can we apply this anomaly?

Mass means a wall for some cases!

- e.g.) Domain wall
 - Can we make domain walls by this m(x)?
 - →Yes!



- We can make some systems with boundaries.
 - Kink, vortex and general codimension case
 - With boundary
- We also discuss about some index theorems.
 - APS index theorem
 - Callias type index theorem

Kink (1)

Mass kink for our set up

- For example, let's consider 5dim case.
- In our set up, "kink" means this mass configuration.

$$m(y) = uy$$

$$m(y) = uy$$
 $y = x^5$ $u \in \mathbb{R}$

- This "mass" diverges at $y \to \pm \infty$.
- 5dim fermions with $U(N_f)$ sym, and the mass depends on only y direction.
- The U(1) anomaly is,

$$\log \mathcal{J} = \pm \frac{i}{8\pi^2} \int \alpha(x) \operatorname{tr} \left[F \wedge F \right]$$

• Recall 4dim $U(1)_V$ anomaly,

Corresponds to the sign of u.

$$\log \mathcal{J} = \frac{i}{8\pi^2} \int \alpha(x) \operatorname{tr} \left[F^R \wedge F^R - F^L \wedge F^L \right]$$

Introduction (4)

m(y)

(fifth direction)

Kink (2)

What is the meaning of the anomaly?

- 4dim Weyl fermions are localized at y = 0.
 - u > 0 corresponds to chirality + (right-handed) fermion, and u < 0 corresponds to chirality (left-handed) fermion.

Domain wall fermion

- This Weyl fermions correspond to domain wall fermions.
 - But the regularization is different, so that I don't know the correspondence in detail.



Introduction (4)

Vortex

Next, we check codim-2 case.

- Vortex is 2dim topological object.
- Let us consider $2r + 2 \dim$.

$$m(z) = uz\mathbf{1}_{N\times N}$$

$$z = x^{\mu = 2r + 1} - ix^{\mu = 2r + 2}$$

- m(z) depends on 2 directions, and it is complex valued "mass".
- This mass diverges at $|z| \to \infty$.
- For simplicity, we put $A_L = A_R$ in $2r + 2\dim$.
- The $U(1)_V$ anomaly is,

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi} \right)^r \int \alpha(x) \operatorname{Str} \left[e^F \right]_{2r - \text{form}}$$

- This is $2r\dim U(1)$ anomaly with $U(N_f)_R$ gauge field.
 - If you want to get chirality (left-handed) result, use $m(\bar{z}) = u\bar{z}$, instead.

General defects

We can apply this formula to general codimension cases.

- When we think d dim system with n dim topological defects, we get d-n dim U(1) anomalies.
 - If d-n is odd, we get nothing because odd dim mass less fermions are anomaly-free.
 - The mass configurations for general codimension is,

- This results correspond to "tachyon condensation" in string theory.
 - We will discuss about it in section 5.

With boundary (1)

Let us make some boundaries.

• Fermions are massive = boundary

Odd dimension (2r dim)

- We realize localized fermions at [0,L].
- The bulk is anomaly-free.
- The anomaly is,

at [0,L].
$$m(y) = \mu(y)1_N = \begin{cases} (m_0 + u'(y - L))1_N & (L < y) \\ m_0 1_N & (0 \le y \le L) \\ (m_0 + uy)1_N & (y < 0) \end{cases}$$

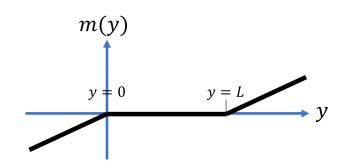
m(y)

$$\log \mathcal{J} = i\kappa_{-} \int_{y=0}^{\pi} \alpha \left[\cosh(F) \right]_{2r} + i\kappa_{+} \int_{y=L}^{\pi} \alpha \left[\cosh(F) \right]_{2r} \kappa_{-} = \frac{1}{2} \operatorname{sgn}(u) , \quad \kappa_{+} = \frac{1}{2} \operatorname{sgn}(u')$$

Introduction (4)

With boundary (2)

Even dimension



Even dimension
$$m(y) = \begin{cases} u'(y-L)g(x) & (L < y) \\ 0 & (0 \le y \le L) \\ uyg(x) & (y < 0) \end{cases}$$

The anomaly is,

$$\log \mathcal{J} = -i \int_{0 < y < L} \alpha \left[\operatorname{ch}(F_{+}) - \operatorname{ch}(F_{-}) \right]_{2r} - i \int_{y = L} \alpha [\omega]_{2r - 1} + i \int_{y = 0} \alpha [\omega]_{2r - 1}$$

- ω is Chern-Simons form.
- Anomaly from bulk + CS

4. Index theorem

Introduction (4) Derivation (9) Application (7) Index theorem (5) String theory (5)

Index for massive Dirac op. (1)

- We will discuss index theorems for the massive Dirac operator \mathcal{D} .
 - We just consider flat spacetime.

$$\mathcal{D} = i\gamma^{\mu} \left\{ \partial_{\mu} + \begin{pmatrix} A_{\mu}^{R} & 0 \\ 0 & A_{\mu}^{L} \end{pmatrix} \right\} + \begin{pmatrix} im(x) & 0 \\ 0 & im^{\dagger}(x) \end{pmatrix}$$

$$S = \int d^d x \bar{\psi}(x) \mathcal{D}\psi(x)$$

$$\operatorname{Ind}(\mathcal{D}) = \dim \ker(\mathcal{D}) - \dim \ker(\mathcal{D}^{\dagger})$$

Chern character

- We need to define Chern character for the superconnection.
- The Chern character for massive case is,

$$\operatorname{ch}(\mathcal{F}) = \sum_{k>0} \left(\frac{i}{2\pi} \right)^{\frac{k}{2}} \operatorname{Str} \left[e^{\mathcal{F}} \right] \Big|_{k-\text{form}} \quad \mathcal{F} \equiv \left(\begin{array}{cc} F^R - \tilde{m}^{\dagger} \tilde{m} & i(D\tilde{m})^{\dagger} \\ iD\tilde{m} & F^L - \tilde{m}\tilde{m}^{\dagger} \end{array} \right)$$

Index theorem (1/5) String theory (5)

Index for massive Dirac op. (2)

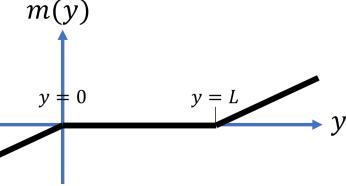
• We can write the U(1) anomaly by the Chern character.

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi}\right)^{\frac{d}{2}} \int \alpha(x) \operatorname{Str}\left[e^{\mathcal{F}}\right] \Big|_{d-\text{form}} = -i \int \alpha(x) \operatorname{ch}(\mathcal{F})$$

• The index for the massive Dirac operator is,

$$\operatorname{Ind}(\mathcal{D}) = \int \operatorname{ch}(\mathcal{F})$$

- For closed manifolds, this is Atiyah-Singer index theorem.
- Let us consider 2r dimensional system with boundary. $_n$
 - We can make the boundary with the mass.
 - The index will be Atiyah-Patodi-Singer(APS) index.
 - Let's check the index!



Introduction (4)

Derivation (9)

Application (7)

Index theorem (2/5)

String theory (5)

APS index theorem

- APS index is the index for open manifold with boundaries.
 - APS index = bulk index + η -invariant on the boundaries
 - In APS paper, they introduce APS boundary condition, which is non-local boundary condition for fermions.
- It is known that APS index is realized with local boundary condition.
 - ['17 Fukaya-Onogi-Yamaguchi] [hep-th/1710.03379]
 - If you use domain walls for boundaries, you can use local boundary condition for fermions. m(y)

- Let us consider both boundary conditions in our set up.
 - We can realize boundaries by mass; this is very similar to DW set up.

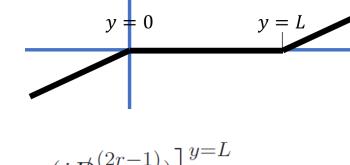
APS index theorem (2)

APS index in our set up

• The index is,

Ind(
$$\mathcal{D}$$
) = $\lim_{\Lambda \to \infty} \int_{y_- < y < y_+} [\operatorname{ch}(\mathcal{F})]_{2r} + \frac{1}{2} [\eta(H_y)]_{y=y_-}^{y=y_+}$

- This is the APS index theorem for the massive Dirac operators in 2r dim with boundaries at $y=y_+$.
- We just consider m(x) depends on only one direction y.
- Let us consider APS index for 2r dim system in previous section.
 - If you take $y_+ = L$ and $y_- = 0$, then you will get APS index with APS boundary condition.
 - But in this case, mass does not work because the Dirac op. is massless in 0 < y < L.



m(y)

$$\operatorname{Ind}(\mathcal{D}|_{[0,L]}) = \int_{0 < y < L} \left[\operatorname{ch}(F_{+}) - \operatorname{ch}(F_{-}) \right]_{2r} - \frac{1}{2} \left[\eta(i \not D_{+}^{(2r-1)}) - \eta(i \not D_{-}^{(2r-1)}) \right]_{y=0}^{y=L}$$

APS index theorem (3)

APS index with mass

- Let us put $y_+ = \infty$ and $y_- = -\infty$.
 - Boundaries come from the mass.
 - APS index is,

$$\operatorname{Ind}(\mathcal{D}) = \int_{0 < y < L} \left[\operatorname{ch}(F_{+}) - \operatorname{ch}(F_{-}) \right]_{2r} + \int_{y = L} [\omega]_{2r - 1} - \int_{y = 0} [\omega]_{2r - 1}$$

- This is APS index with "physicist-friendly" boundary condition.
 - cf. ['17 Fukaya-Onogi-Yamaguchi]
 - In our set up, massive \simeq domain wall.
- To apply this form, we get a relation between eta invariant and Chern-Simons form ω . $\int [\omega]_{2r-1} = \frac{1}{2} \left(\eta(i \not \! D_-^{(2r-1)}) \eta(i \not \! D_+^{(2r-1)}) \right) \pmod{\mathbb{Z}}$

Introduction (4)

Derivation (9)

Application (7)

Index theorem (5/5)

m(y)

String theory (5)

5. String theory

Introduction (4) Derivation (9) Application (7) Index theorem (5) String theory (5)

String theory

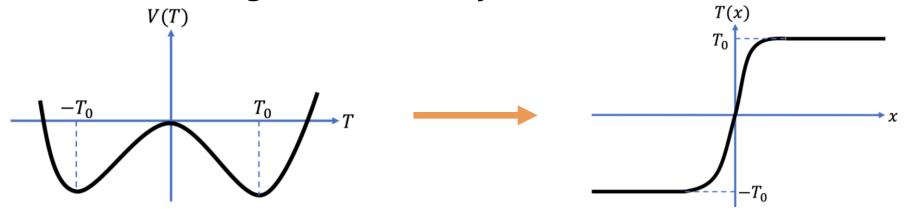
Let us check the relation between this anomaly and string theory.

- Consider type IIA or IIB string theory with D-branes.
 - Open strings have their ends on D-branes.
 - Excitation modes of these open strings → Fields on D-branes
 - Open strings on D_p -branes \rightarrow QFT in p+1 dim

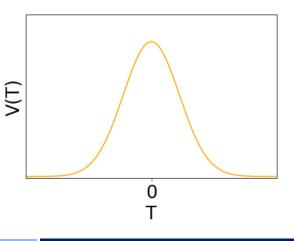
- In some cases, excitation modes of the strings have tachyon modes.
 - Lowest excitation modes are $m^2 < 0$. (Tachyon mode)
 - Non-BPS states have tachyons.
 - This tachyonic modes are unstable. → Tachyon condensation
 - See Sen's review [hep-th/9904207].

Tachyon condensation (1)

- Tachyonic modes are unstable, so the tachyons have non-zero VEV.
 - Non-trivial configuration of tachyon is also realizable.



- e.g.) D-brane and anti D-brane (\overline{D} -brane) system
- Non-BPS state
- Tachyonic modes appear in $D-\overline{D}$ string.
 - The shape of tachyon potential is known. $V(T)=\mathrm{e}^{-T^{\dagger}T}$
 - If tachyon configuration is trivial, the *D*-branes disappear.



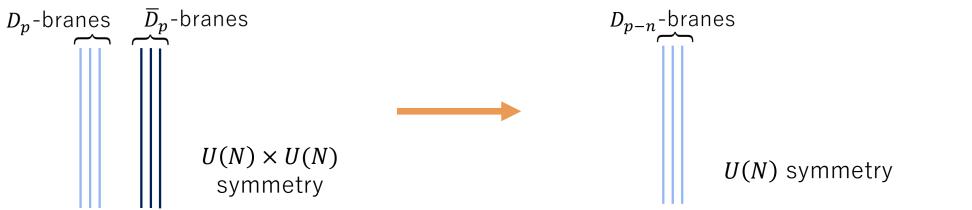
Tachyon condensation (2)

Kink on tachyon in $D_p - \overline{D}_p$ system

Tachyonic kinks for this system is,

$$T(x) = u \sum_{I=1}^{n} \Gamma^{I} x^{I} \qquad \qquad \gamma^{I} = \begin{pmatrix} 0 & \Gamma^{I} \\ \Gamma^{I\dagger} & 0 \end{pmatrix}$$

- We get D_{p-n} -branes from this tachyon.
 - If D_{p-n} -branes are non-BPS, tachyons still exist on the D-branes.
 - In this case, tachyon condensation occur again.



Introduction (4)

Derivation (9)

Application (7)

Index theorem (5)

String theory (3/5)

Tachyon condensation (3)

- The superconnection is used in the context of tachyon condensation.
 - This structure comes from RR-coupling of D-branes.
 - cf.) ['98 Witten] [hep-th/9810188] $['99 \text{ Kennedy-Wilkins}] \text{ [hep-th/9905195]} \qquad S = T_{D9} \int C \wedge \operatorname{Str} \ e^{2\pi\alpha' i\mathcal{F}}$ ['01 Kuraus-Larsen] [hep-th/0012198] ['01 Takayanagi-Terashima-Uesugi] [hep-th/0012210]
- The tachyon configuration is given by ['98 Witten].
 - In this paper, relation between tachyon condensation and K-theory is discussed.
 - This tachyon configuration comes from ['64 Atiyah-Bott-Shapiro]

$$T(x) = u \sum_{I=1}^{n} \Gamma^{I} x^{I}$$

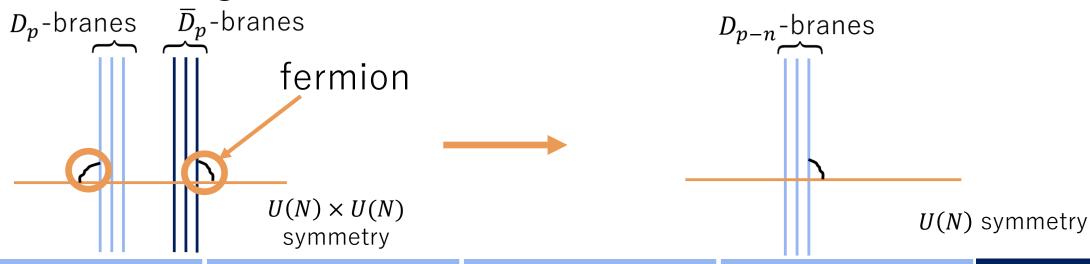
Relation between the anomaly and string

• This tachyon configuration is same for the mass defect in section 3!

$$T(x) = u \sum_{I=1}^{n} \Gamma^{I} x^{I}$$

$$m(x) = u \sum_{I=1}^{n} \Gamma^{I} x^{I}$$

- This anomaly can be understood from string theory.
 - Fermions are found where D-branes intersect.
 - This is similar to flavor symmetry on holographic QCD model. (Sakai-Sugimoto model)



Introduction (4) Derivation (9)

Application (7)

Index theorem (5)

String theory (5/5)

Conclusion

- We discussed about perturbative anomaly with spacetime dependent mass.
 - If value of the mass diverge, non-trivial contribution of the mass appears.
- The anomaly can be written by superconnection.

$$\log \mathcal{J} = -i \left(\frac{i}{2\pi} \right)^{\frac{d}{2}} \int \alpha(x) \operatorname{Str} \left[e^{\mathcal{F}} \right]_{d-\text{form}} \mathcal{F} = \begin{pmatrix} F^{R} - \tilde{m}^{\dagger} \tilde{m} & i(D\tilde{m})^{\dagger} \\ iD\tilde{m} & F^{L} - \tilde{m}\tilde{m}^{\dagger} \end{pmatrix}$$

- There are some applications.
 - Kink, vortex, ...
 - With boundary
 - Index theorem

Index theorem (5)