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Dark matter
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• There are many evidences for dark matter

Galaxy rotation curve (from Wikipedia)

Gravitational lens (from Wikipedia)



Dark matter
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Why are they close to each other?  
(coincidence problem)

→ ΩDM /ΩB ≃ 5

Common origin?



Baryon Asymmetry 
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nB n̄B

pair annihilate

nB n̄B

ηB ≡
nB − n̄B

s
≃ 10−10

For baryons, symmetric part annihilates after QCD phase 
transition, and then asymmetric part remains:



Asymmetric Dark Matter
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nDM n̄DM

pair annihilate

nDM n̄DM

Asymmetric DM hypothesis:

• Similarly to baryons, DM relic abundance 
originates from asymmetric part of DM.

• DM asymmetry is related with that of baryons.

[Barr, Chivukula, Farhi '90]  [Kaplan '92]
[Kitano, Low '04]  [Kaplan, Luty, Zurek '09] 
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• A naive example of the realization is dark QCD...

QCD

baryon

meson

dark QCD

dark baryon (DM)

dark mesonportal interaction

But such a model is rather complicated...   
(UV completion, dark radiation..)

Asymmetric Dark Matter
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• A naive example of the realization is dark QCD...

• Can ADM scenario be realized by New aspects of known fields?

Like what?

QCD

baryon

meson

dark QCD

dark baryon (DM)

dark mesonportal interaction

But such a model is rather complicated...   
(UV completion, dark radiation..)

Asymmetric Dark Matter

Soliton! = non-perturbative object in field theory



Take-home Message
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If SM Higgs Lagrangian is extended by  terms, 
the theory contains asymmetric DM, which is a 
soliton made of Higgs and EW gauge fields!!

𝒪(p4)
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Electroweak Skyrmion
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Skyrme model (review)
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ℒSkyrme =
f 2
π

4
Tr [∂μU†∂μU] +

1
32e2

Tr [[U†∂μU, U†∂νU]
2]

U = exp [iπa(x) σa]U(x) ∈ SU(2)

pion field (π1, π2, π3)
U†U = 1

[Skyrme '62]
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ℒSkyrme =
f 2
π

4
Tr [∂μU†∂μU] +

1
32e2

Tr [[U†∂μU, U†∂νU]
2]

U = exp [iπa(x) σa]U(x) ∈ SU(2)

• Global symmetry of Lagrangian:

SU(2)L × SU(2)R : U(x) → L†U(x)R
R ∈ SU(2)R

L ∈ SU(2)L

• Vacuum  breaks this into diagonal subgroup: ⟨U⟩ = 12 SU(2)V

• Vacuum manifold (order parameter space): 

ℳvac =
SU(2)L × SU(2)R

SU(2)V
≃ S3

pion field (π1, π2, π3)
U†U = 1

[Skyrme '62]
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• compactify 3D space: ℝ3 ∪ {∞} ≃ S3

[Skyrme '62]
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• A static configuration of the field  is a map s.t.U(x)
U(x) : S3 (space) → S3 (vac)

• This map can have non-trivial winding number:
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• compactify 3D space: ℝ3 ∪ {∞} ≃ S3

• A static configuration of the field  is a map s.t.U(x)
U(x) : S3 (space) → S3 (vac)

• This map can have non-trivial winding number:

non-trivial solution of EOM → Skyrmion!

U = exp [iθ(r) ̂xaσa]
(r ≡ xixi, ̂xa ≡ xa /r) 3

For a magnetization texture M(r, t) which varies
smoothly in space and time, one can treat the scalar and
vector potentials V e and Ae as a perturbation to the un-
perturbed Hamiltonian H0 = p2

/(2m)11 + J̃�z. In the
adiabatic approximation, V e and Ae act on each band
separately, allowing us to introduce electromagnetic po-
tentials for both bands:

Ae
� = h�|Ae|�i = (i~/qe)h �|r| �i, (12a)

Ve
� = h�|V e|�i = �(i~/qe)h �|@t| �i, (12b)

with � = ", # for minority and majority spins, respec-
tively, and | �i = U |�i. Above potentials have the same
form of the Berry vector potential introduced in Eq. (3).

Finally, introducing for each band an emergent electric
field, Ee

� = �rVe
� � @tAe

�, and an emergent magnetic
field, Be

� = r ⇥ Ae
�, that are “felt” by the electron, it

becomes clear that the real-space Berry curvature acts
like an emergent magnetic field, while the mixed space-
time Berry curvature acts like an emergent electric field.
By an explicit calculation one finds

(Be
�)i = ⌥ ~

2qe
✏ijk

2
M̂ ·

�
@jM̂ ⇥ @kM̂

�
, (13a)

(Ee
�)i = ⌥ ~

2qe
M̂ ·

�
@iM̂ ⇥ @tM̂

�
, (13b)

where the upper (lower) sign corresponds to the band for
electrons with minority (majority) spin. Let us now as-
sign di↵erent emergent charges to the two bands, because
the sign of the Berry phase depends on the orientation
of the spin.21 For a minority (majority) spin we define22

q
e
" = �1/2 (qe# = 1/2), leading to the emergent fields
given in Eq. (7).

In principle, any magnetic structure that varies
smoothly in position space leads to an emergent magnetic
field [Eq. (7a)] and thus to a geometrical Hall e↵ect. As it
turns out, there are ideal magnetic textures – skyrmions
– which are tailored to investigate these emergent fields.

III. SKYRMIONS

Like the concept of the Berry phase, a skyrmion is a
certain mathematical object which is realized in many ar-
eas of physics ranging from nuclear and particle physics
over high-energy physics to condensed matter physics.
It is named after the nuclear physicist Tony Skyrme
who in the early 1960’s studied a certain nonlinear field
theory for interacting pions, showing that quantized
and topologically stable field configurations – nowadays
called skyrmions – do occur as solutions of such field
theories.23 In the original work, Skyrme considered three-
dimensional versions of skyrmions, but later the notion
of a skyrmion was generalized to arbitrary dimensions:
One can define a skyrmion as a topologically stable,
smooth field configuration describing a non-trivial sur-
jective mapping from coordinate space to an order pa-
rameter space with a non-trivial topology. In the fol-
lowing, we restrict the discussion to the two-dimensional

FIG. 2. (Color online) (a) A (non-chiral) skyrmion con-
figuration (bottom) is obtained by “unfolding” a hedgehog
(top). Arrows correspond to the local magnetization direc-
tion M̂ = M/|M |. The color code is chosen according to the
out-of-plane component of the arrows: from red (“up”) over
green (in-plane) to blue (“down”). (b) Schematic plot of a
chiral skyrmion lattice with an additional in-plane winding of
the magnetization.

unit sphere, S2, describing the magnetization direction
M̂ . An intuive picture of a skyrmion and the mapping
to a sphere is shown in Fig. 2 (a), where “infinity” (the
boundary of the skyrmion) is mapped onto the north
pole. Note that a skyrmion is everywhere non-singular
and finite. In contrast to vortices, skyrmions are trivial
at infinity, i.e., all arrows at the boundary point in the
same direction out of plane.

At the end of the 1980’s skyrmion structures were
shown to be the mean-field ground states of certain
models for anisotropic, non-centrosymmetric magnetic
materials with chiral spin-orbit interactions subjected
to a magnetic field.24 Although some further theoreti-
cal works appeared on magnetic skyrmions and similar
textures,16,25 the real breakthrough was in 2009 when a
hexagonal lattice of skyrmion-tubes perpendicular to a
finite, external magnetic field [as sketched in Fig. 2 (b)]
was experimentally discovered in the cubic helimagnet
manganese silicide (MnSi).10 Since 2009 skyrmions have
been observed in many other B20 compounds4,26,27, in-
cluding metals, semiconductors, and also an insulating,
multiferroic material.28 The skyrmion lattice was also
confirmed to exist in thin films by a direct imaging of the
real-space magnetic texture by Lorentz transmission elec-
tron microscopy.29,30 Moreover, skyrmion textures have
been discussed in thin films in the form of magnetic bub-
ble domains.31 Furthermore, skyrmions have been found
on surfaces as a spontaneous magnetic ground state form-
ing a lattice on the atomic scale.32

In skyrmion lattices, di↵erent length scales appear:10,33

the size of the atomic unit cell corresponding to the wave-
length of the electrons, the diameter of the skyrmions, the
(non-spinflip) mean-free path, and the much larger spin-
flip scattering length. In the adiabatic limit, where the
size of the skyrmions is much larger than the non-spinflip
scattering length, band structure e↵ects are negligible,

fig from arXiv:1405.0987
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ℒ =
f 2
π

4
Tr [∂μU†∂μU] +

1
32e2

Tr [[U†∂μU, U†∂νU]
2]

• The stability of Skyrmion requires Skyrme term.
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unit sphere, S2, describing the magnetization direction
M̂ . An intuive picture of a skyrmion and the mapping
to a sphere is shown in Fig. 2 (a), where “infinity” (the
boundary of the skyrmion) is mapped onto the north
pole. Note that a skyrmion is everywhere non-singular
and finite. In contrast to vortices, skyrmions are trivial
at infinity, i.e., all arrows at the boundary point in the
same direction out of plane.

At the end of the 1980’s skyrmion structures were
shown to be the mean-field ground states of certain
models for anisotropic, non-centrosymmetric magnetic
materials with chiral spin-orbit interactions subjected
to a magnetic field.24 Although some further theoreti-
cal works appeared on magnetic skyrmions and similar
textures,16,25 the real breakthrough was in 2009 when a
hexagonal lattice of skyrmion-tubes perpendicular to a
finite, external magnetic field [as sketched in Fig. 2 (b)]
was experimentally discovered in the cubic helimagnet
manganese silicide (MnSi).10 Since 2009 skyrmions have
been observed in many other B20 compounds4,26,27, in-
cluding metals, semiconductors, and also an insulating,
multiferroic material.28 The skyrmion lattice was also
confirmed to exist in thin films by a direct imaging of the
real-space magnetic texture by Lorentz transmission elec-
tron microscopy.29,30 Moreover, skyrmion textures have
been discussed in thin films in the form of magnetic bub-
ble domains.31 Furthermore, skyrmions have been found
on surfaces as a spontaneous magnetic ground state form-
ing a lattice on the atomic scale.32

In skyrmion lattices, di↵erent length scales appear:10,33

the size of the atomic unit cell corresponding to the wave-
length of the electrons, the diameter of the skyrmions, the
(non-spinflip) mean-free path, and the much larger spin-
flip scattering length. In the adiabatic limit, where the
size of the skyrmions is much larger than the non-spinflip
scattering length, band structure e↵ects are negligible,

eg.) 2D → S2

Skyrme term

cf. Derrick's theorem

    shrinks into an infinitely small one:e → ∞ ⇒

[Skyrme '62]
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and finite. In contrast to vortices, skyrmions are trivial
at infinity, i.e., all arrows at the boundary point in the
same direction out of plane.

At the end of the 1980’s skyrmion structures were
shown to be the mean-field ground states of certain
models for anisotropic, non-centrosymmetric magnetic
materials with chiral spin-orbit interactions subjected
to a magnetic field.24 Although some further theoreti-
cal works appeared on magnetic skyrmions and similar
textures,16,25 the real breakthrough was in 2009 when a
hexagonal lattice of skyrmion-tubes perpendicular to a
finite, external magnetic field [as sketched in Fig. 2 (b)]
was experimentally discovered in the cubic helimagnet
manganese silicide (MnSi).10 Since 2009 skyrmions have
been observed in many other B20 compounds4,26,27, in-
cluding metals, semiconductors, and also an insulating,
multiferroic material.28 The skyrmion lattice was also
confirmed to exist in thin films by a direct imaging of the
real-space magnetic texture by Lorentz transmission elec-
tron microscopy.29,30 Moreover, skyrmion textures have
been discussed in thin films in the form of magnetic bub-
ble domains.31 Furthermore, skyrmions have been found
on surfaces as a spontaneous magnetic ground state form-
ing a lattice on the atomic scale.32

In skyrmion lattices, di↵erent length scales appear:10,33

the size of the atomic unit cell corresponding to the wave-
length of the electrons, the diameter of the skyrmions, the
(non-spinflip) mean-free path, and the much larger spin-
flip scattering length. In the adiabatic limit, where the
size of the skyrmions is much larger than the non-spinflip
scattering length, band structure e↵ects are negligible,

eg.) 2D → S2

Skyrme term

shrink into a point = nothing

cf. Derrick's theorem

    shrinks into an infinitely small one:e → ∞ ⇒

[Skyrme '62]



Skyrme term

13

ℒ =
f 2
π

4
Tr [∂μU†∂μU] +

1
32e2

Tr [[U†∂μU, U†∂νU]
2]

• The stability of Skyrmion requires Skyrme term.

3

For a magnetization texture M(r, t) which varies
smoothly in space and time, one can treat the scalar and
vector potentials V e and Ae as a perturbation to the un-
perturbed Hamiltonian H0 = p2

/(2m)11 + J̃�z. In the
adiabatic approximation, V e and Ae act on each band
separately, allowing us to introduce electromagnetic po-
tentials for both bands:

Ae
� = h�|Ae|�i = (i~/qe)h �|r| �i, (12a)

Ve
� = h�|V e|�i = �(i~/qe)h �|@t| �i, (12b)

with � = ", # for minority and majority spins, respec-
tively, and | �i = U |�i. Above potentials have the same
form of the Berry vector potential introduced in Eq. (3).

Finally, introducing for each band an emergent electric
field, Ee

� = �rVe
� � @tAe

�, and an emergent magnetic
field, Be

� = r ⇥ Ae
�, that are “felt” by the electron, it

becomes clear that the real-space Berry curvature acts
like an emergent magnetic field, while the mixed space-
time Berry curvature acts like an emergent electric field.
By an explicit calculation one finds

(Be
�)i = ⌥ ~

2qe
✏ijk

2
M̂ ·

�
@jM̂ ⇥ @kM̂

�
, (13a)

(Ee
�)i = ⌥ ~

2qe
M̂ ·

�
@iM̂ ⇥ @tM̂

�
, (13b)

where the upper (lower) sign corresponds to the band for
electrons with minority (majority) spin. Let us now as-
sign di↵erent emergent charges to the two bands, because
the sign of the Berry phase depends on the orientation
of the spin.21 For a minority (majority) spin we define22

q
e
" = �1/2 (qe# = 1/2), leading to the emergent fields
given in Eq. (7).

In principle, any magnetic structure that varies
smoothly in position space leads to an emergent magnetic
field [Eq. (7a)] and thus to a geometrical Hall e↵ect. As it
turns out, there are ideal magnetic textures – skyrmions
– which are tailored to investigate these emergent fields.

III. SKYRMIONS

Like the concept of the Berry phase, a skyrmion is a
certain mathematical object which is realized in many ar-
eas of physics ranging from nuclear and particle physics
over high-energy physics to condensed matter physics.
It is named after the nuclear physicist Tony Skyrme
who in the early 1960’s studied a certain nonlinear field
theory for interacting pions, showing that quantized
and topologically stable field configurations – nowadays
called skyrmions – do occur as solutions of such field
theories.23 In the original work, Skyrme considered three-
dimensional versions of skyrmions, but later the notion
of a skyrmion was generalized to arbitrary dimensions:
One can define a skyrmion as a topologically stable,
smooth field configuration describing a non-trivial sur-
jective mapping from coordinate space to an order pa-
rameter space with a non-trivial topology. In the fol-
lowing, we restrict the discussion to the two-dimensional

FIG. 2. (Color online) (a) A (non-chiral) skyrmion con-
figuration (bottom) is obtained by “unfolding” a hedgehog
(top). Arrows correspond to the local magnetization direc-
tion M̂ = M/|M |. The color code is chosen according to the
out-of-plane component of the arrows: from red (“up”) over
green (in-plane) to blue (“down”). (b) Schematic plot of a
chiral skyrmion lattice with an additional in-plane winding of
the magnetization.

unit sphere, S2, describing the magnetization direction
M̂ . An intuive picture of a skyrmion and the mapping
to a sphere is shown in Fig. 2 (a), where “infinity” (the
boundary of the skyrmion) is mapped onto the north
pole. Note that a skyrmion is everywhere non-singular
and finite. In contrast to vortices, skyrmions are trivial
at infinity, i.e., all arrows at the boundary point in the
same direction out of plane.

At the end of the 1980’s skyrmion structures were
shown to be the mean-field ground states of certain
models for anisotropic, non-centrosymmetric magnetic
materials with chiral spin-orbit interactions subjected
to a magnetic field.24 Although some further theoreti-
cal works appeared on magnetic skyrmions and similar
textures,16,25 the real breakthrough was in 2009 when a
hexagonal lattice of skyrmion-tubes perpendicular to a
finite, external magnetic field [as sketched in Fig. 2 (b)]
was experimentally discovered in the cubic helimagnet
manganese silicide (MnSi).10 Since 2009 skyrmions have
been observed in many other B20 compounds4,26,27, in-
cluding metals, semiconductors, and also an insulating,
multiferroic material.28 The skyrmion lattice was also
confirmed to exist in thin films by a direct imaging of the
real-space magnetic texture by Lorentz transmission elec-
tron microscopy.29,30 Moreover, skyrmion textures have
been discussed in thin films in the form of magnetic bub-
ble domains.31 Furthermore, skyrmions have been found
on surfaces as a spontaneous magnetic ground state form-
ing a lattice on the atomic scale.32

In skyrmion lattices, di↵erent length scales appear:10,33

the size of the atomic unit cell corresponding to the wave-
length of the electrons, the diameter of the skyrmions, the
(non-spinflip) mean-free path, and the much larger spin-
flip scattering length. In the adiabatic limit, where the
size of the skyrmions is much larger than the non-spinflip
scattering length, band structure e↵ects are negligible,

eg.) 2D → S2

Skyrme term

shrink into a point = nothing

cf. Derrick's theorem

E = − ∫ d3x ℒ ≃
f 2
π

4
R +

1
32e2

R−1 ⇒ R ∼ (efπ)−1

• Let  be a typical size of Skyrmion.R

    shrinks into an infinitely small one:e → ∞ ⇒

[Skyrme '62]
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ℒhiggs
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= |∂μΦ |2 − λ ( |Φ |2 −
vEW
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=
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Tr |∂μH |2 −
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4 (Tr |H |2 − vEW)
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Can we consider a similar soliton? → Yes!!

   (custodial symmetry)SU(2)L × SU(2)R → SU(2)C

H ≡ (iσ2Φ†, Φ)
• Invariant under  sym: SU(2)L × SU(2)R H → L†HR

 Higgs VEV breaks:
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ℒ =
vEW

4 (1 +
h(x)
vEW )

2

Tr |DμU(x) |2 +
1
2

(∂μh(x))2 − V(h)

+
α
2

Tr [U†DμU, U†DνU]
2

SM +  term (Skyrme-like term)𝒪(p4)

• denoted the 2x2 matrix by  . H(x) =
vEW

2 (1 +
h(x)
vEW ) U(x)

radial field (higgs boson)
angular field (NG boson)

• For simplicity, we take  for a while. α4 = − α5 ≡ α
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• Hedgehog ansatz:

U = exp [iθ(r) ̂xaσa] h(x) = ϕ(r)/vEW

[(vEW)−1]

Wa
i (x) =

χ(r) − 1
r

ϵiab ̂xb − ξ(r) ̂xi ̂xa
auxiliary field 
(explicitly solvable)
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• Hedgehog ansatz:

U = exp [iθ(r) ̂xaσa] h(x) = ϕ(r)/vEW

[(vEW)−1]

Wa
i (x) =

χ(r) − 1
r

ϵiab ̂xb − ξ(r) ̂xi ̂xa
auxiliary field 
(explicitly solvable)
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→EW-Skyrmion does exist!!

• non-trivial solution of EOM:
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Energy of EW-Skyrmion

18

ℒp4 = α4Tr [DμU†DνU] Tr [DμU†DνU]+α5 (Tr [DμU†DμU])
2

• Take two coefficients as independent parameters
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Quartic Gauge Coupling

19

•  and  lead to anomalous quartic gauge 
coupling (aQGC)
α4 α5

W+

W+

W−

W−

• They are measured by WW scattering process at LHC.

→We can put a bound on mass of EW-Skyrmion!

ℒp4 = α4Tr [DμU†DνU] Tr [DμU†DνU]+α5 (Tr [DμU†DμU])
2
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NH =
−1

24π2 ∫ d3x ϵijk Tr [ViVjVk]

• Actually, EW-Skyrmion can decay because winding #

is not gauge invariant.

• A gauge invariant "winding number" is defined by

 : Chern-Simons #NCS

NH = 1

NCS = ϵ

EW-Skyrmion

large gauge 
trsf.

EW-Skyrmion Vacuum
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continuous  

deformation

But this is not topological quantity!!
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Vi ≡ (∂iU)U†



Decay of EW-Skyrmion
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[YH-Kitano-Kurachi '21]

NH =
−1

24π2 ∫ d3x ϵijk Tr [ViVjVk]

• Actually, EW-Skyrmion can decay because winding #

is not gauge invariant.

• A gauge invariant "winding number" is defined by

Q ≡ NH + NCS  : Chern-Simons #NCS

But this is not topological quantity!!

Vi ≡ (∂iU)U†This decay process generates Baryon # 
due to the chiral anomaly:

ΔB = 3ΔNCS

One can predict the relation btw amounts 
of baryons and Skyrmions in the universe!
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NCS = ϵ

EW-Skyrmion

large gauge 
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EW-Skyrmion Vacuum
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Asymmetric darkmatter scenario
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Quantum vs Thermal Decay 

25

• There are two types of decay of EW Skyrmion:

Γ ∝ exp (−
8π2

g2 )
• Quantum tunneling at T = 0

• Thermal sphaleron-like process at T ≠ 0

→ sufficiently long-lived

Hubble only when Γ(T ) ≳ T ≳ T*

 is expected to be  GeVT* 101−2

(cf. EW sphaleron process)
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Thermal History

26

T−1(t) T = T*

YB
equilibrium

T > T*T < T*

Symmetric part annihilates

YDM

YB

frozen ← YDM

YDM ≡
nSk. − n̄Sk.

s

nDM n̄DM

(inverse) decay process: 
DM  ↔ (qqql)3



Thermal History
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T−1(t) T = T*

YB

YDM

equilibrium
YB

YDMfrozen ←

YDM ≡
nSk. − n̄Sk.

s
T > T*T < T*

Assuming thermal equilibrium at ,  we obtainT = T*

ΩDM

ΩB
≃ K ( m*DM

T* )
3/2

exp (−
m*DM

T* )
K ≡

6

2π3/2 [ 25
34

+
6
17

nL

nB ] mDM

mp
∼ 103 for nL /nB = 𝒪(1)

 depends on baryo/lepto-genesis scenariosK

 : DM mass at m*DM T = T*
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Typically,  can explain  !m*DM /T* ≃ 10 ΩDM /ΩB ≃ 5

ΩDM

ΩB
≃ K ( m*DM

T* )
3/2

exp (−
m*DM

T* )

very natural because  , mDM = 𝒪(1)TeV T* = 101−2 GeV
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X =
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exp (−
m*DM

T* ) ∼ 10−3

• rewrite by two conserved quantities:  and  , YDM−B/3 YB−L

YA ≡
nA
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ΩDM

ΩB
= X

111YDM−B/3 + 12YB−L

−102YDM−B/3 + 36XYB−L

mDM

mp

X =
12

(2π)3/2 ( m*DM

T* )
3/2

exp (−
m*DM

T* ) ∼ 10−3

• rewrite by two conserved quantities:  and  , YDM−B/3 YB−L

YA ≡
nA

s

• For leptogenesis, YDM−B/3 = 0

⇒
ΩDM

ΩB
=

1
3

mDM

mp
∴ mDM ≃ 15 GeV

this is very unlikely

Our scenario seems inconsistent with leptogenesis.

requires generation of either DM or B asymmetry 



Direct detection experiment
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• Assume effective coupling btw EW-Skyrmion and Higgs: 

ℒeff. = − κ |S |2 |H |2

• Bound for spin-independent cross section with nucleon:

5

FIG. 3: Background model in the fiducial mass in a reference
region between the NR median and �2� quantile in cS2b,
projected onto cS1. Solid lines show that the expected number
of events from individual components listed in Table I; the
labels match the abbreviations shown in the table. The dotted
black line Total shows the total background model, the dotted
red line WIMP shows an m = 50 GeV/c2, � = 10�46cm2

WIMP signal for comparison.
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FIG. 4: The spin-independent WIMP-nucleon cross sec-
tion limits as a function of WIMP mass at 90% confidence
level (black) for this run of XENON1T. In green and yellow
are the 1- and 2� sensitivity bands. Results from LUX [27]
(red), PandaX-II [28] (brown), and XENON100 [23] (gray)
are shown for reference.

this, and therefore assume their rate is proportional to
the ER rate, at 0.10+0.10

�0.07 events based on the outliers ob-
served in the 220Rn calibration data. The physical origin
of these events is under investigation.

The WIMP search data in a predefined signal box was
blinded (99% of ERs were accessible) until the event se-
lection and the fiducial mass boundaries were finalized.
We performed a staged unblinding, starting with an ex-
posure of 4 live days distributed evenly throughout the
search period. No changes to either the event selection
or background types were made at any stage.

A total of 63 events in the 34.2-day dark matter
search data pass the selection criteria and are within the
cS12 [3, 70] PE, cS2b 2 [50, 8000] PE search region used
in the likelihood analysis (Fig. 2c). None are within
10 ms of a muon veto trigger. The data is compatible
with the ER energy spectrum in [9] and implies an ER
rate of (1.93 ± 0.25) ⇥ 10�4 events/(kg⇥ day⇥ keVee),
compatible with our prediction of (2.3 ± 0.2) ⇥ 10�4

events/(kg⇥ day⇥ keVee) [9] updated with the lower Kr
concentration measured in the current science run. This
is the lowest ER background ever achieved in such a dark
matter experiment. A single event far from the bulk
distribution was observed at cS1 = 68.0 PE in the ini-
tial 4-day unblinding stage. This appears to be a bona
fide event, though its location in (cS1, cS2b) (see Fig. 2c)
is extreme for all WIMP signal models and background
models other than anomalous leakage and accidental co-
incidence. One event at cS1 = 26.7 PE is at the �2.4�
ER quantile.

For the statistical interpretation of the results, we
use an extended unbinned profile likelihood test statis-
tic in (cS1, cS2b). We propagate the uncertainties on
the most significant shape parameters (two for NR, two
for ER) inferred from the posteriors of the calibration
fits to the likelihood. The uncertainties on the rate of
each background component mentioned above are also
included. The likelihood ratio distribution is approxi-
mated by its asymptotic distribution [25]; preliminary
toy Monte Carlo checks show the e↵ect on the exclusion
significance of this conventional approximation is well
within the result’s statistical and systematic uncertain-
ties. To account for mismodeling of the ER background,
we also calculated the limit using the procedure in [26],
which yields a similar result.

The data is consistent with the background-only hy-
pothesis. Fig. 4 shows the 90% confidence level upper
limit on the spin-independent WIMP-nucleon cross sec-
tion, power constrained at the �1� level of the sensitivity
band [29]. The final limit is within 10% of the uncon-
strained limit for all WIMP masses. For the WIMP en-
ergy spectrum we assume a standard isothermal WIMP
halo with v0 = 220 km/s, ⇢DM = 0.3 GeV/cm3, vesc =
544 km/s, and the Helm form factor for the nuclear
cross section [30]. No light and charge emission is as-
sumed for WIMPs below 1 keV recoil energy. For all
WIMP masses, the background-only hypothesis provides
the best fit, with none of the nuisance parameters rep-
resenting the uncertainties discussed above deviating ap-
preciably from their nominal values. Our results improve
upon the previously strongest spin-independent WIMP
limit for masses above 10 GeV/c2. Our strongest exclu-
sion limit is for 35-GeV/c2 WIMPs, at 7.7 ⇥ 10�47cm2.

These first results demonstrate that XENON1T has
the lowest low-energy background level ever achieved by
a dark matter experiment. The sensitivity of XENON1T
is the best to date above 20 GeV/c2, up to twice the

[XENON1T, 1705.06655]

mDM ≳ 0.8 TeV

benchmark value: κ = 0.1

σSI



Summary

• EW-Skyrmion = soliton made of Higgs and EW gauge fields 

naturally arises by  extension of Higgs Lagrangian 
plays a role of an asymmetric DM 

•  is realized for  and . 

• DM direct detection experiments and measurements of aQGC 
put stringent window:

𝒪(p4)

ΩDM /ΩB ≃ 5 mDM = 𝒪(1) TeV T* = 𝒪(102) GeV
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0.8 TeV ≲ mDM ≲ 2.2 TeV



Backup
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EW-Skyrmion Solution
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• Hedgehog ansatz:

U = exp [iθ(r) ̂xaσa] h(x) = ϕ(r)/vEW
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• Firstly, we take   

→ The only difference from Skyrme model is the existence of  . 
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EW-Skyrmion Solution
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• Hedgehog ansatz:

U = exp [iθ(r) ̂xaσa] h(x) = ϕ(r)/vEW

• Then, we set  (keeping )g ≃ 0.65 g′ = 0

[(vEW)−1]

Wa
i (x) =

χ(r) − 1
r

ϵiab ̂xb − ξ(r) ̂xi ̂xa
auxiliary field 
(explicitly solvable)
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EW-Skyrmion Solution

34

• Hedgehog ansatz:

U = exp [iθ(r) ̂xaσa] h(x) = ϕ(r)/vEW

• Then, we set  (keeping )g ≃ 0.65 g′ = 0

[(vEW)−1]

Wa
i (x) =

χ(r) − 1
r

ϵiab ̂xb − ξ(r) ̂xi ̂xa
auxiliary field 
(explicitly solvable)
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→EW-Skyrmion does exist!!
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Thermal History
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GeV−2 = 0.04 × 10−26 cm2

c × GeV−2 = 0.12 × 10−16 cm3/s

[Graesser+, 1103.2771]r =
n̄DM

nDM
≃ exp (−2σann/σWIMP)

Solving Boltzman eq.,  late-time ratio is given by

cf.  ⟨σv⟩WIMP ∼ 10−26 cm3/s



Thermal History

35

GeV−2 = 0.04 × 10−26 cm2

c × GeV−2 = 0.12 × 10−16 cm3/s

[Graesser+, 1103.2771]r =
n̄DM

nDM
≃ exp (−2σann/σWIMP)

Solving Boltzman eq.,  late-time ratio is given by

cf.  ⟨σv⟩WIMP ∼ 10−26 cm3/s

σann ∼ πR2 ∼ πα(vEW)−2 ∼ ( α
10−3 ) × 10−23 cm3/s



Direct detection experiment
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• Assume effective coupling btw EW-Skyrmion and Higgs: 

ℒeff. = − κ |S |2 |H |2

σSI ≃ ( κ
0.1 )

2

( 1 TeV
mDM )

2

( f
0.3 )

2

× 3.6 × 10−46 cm2

• Spin-independent cross section with nucleon:

5

FIG. 3: Background model in the fiducial mass in a reference
region between the NR median and �2� quantile in cS2b,
projected onto cS1. Solid lines show that the expected number
of events from individual components listed in Table I; the
labels match the abbreviations shown in the table. The dotted
black line Total shows the total background model, the dotted
red line WIMP shows an m = 50 GeV/c2, � = 10�46cm2

WIMP signal for comparison.
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FIG. 4: The spin-independent WIMP-nucleon cross sec-
tion limits as a function of WIMP mass at 90% confidence
level (black) for this run of XENON1T. In green and yellow
are the 1- and 2� sensitivity bands. Results from LUX [27]
(red), PandaX-II [28] (brown), and XENON100 [23] (gray)
are shown for reference.

this, and therefore assume their rate is proportional to
the ER rate, at 0.10+0.10

�0.07 events based on the outliers ob-
served in the 220Rn calibration data. The physical origin
of these events is under investigation.

The WIMP search data in a predefined signal box was
blinded (99% of ERs were accessible) until the event se-
lection and the fiducial mass boundaries were finalized.
We performed a staged unblinding, starting with an ex-
posure of 4 live days distributed evenly throughout the
search period. No changes to either the event selection
or background types were made at any stage.

A total of 63 events in the 34.2-day dark matter
search data pass the selection criteria and are within the
cS12 [3, 70] PE, cS2b 2 [50, 8000] PE search region used
in the likelihood analysis (Fig. 2c). None are within
10 ms of a muon veto trigger. The data is compatible
with the ER energy spectrum in [9] and implies an ER
rate of (1.93 ± 0.25) ⇥ 10�4 events/(kg⇥ day⇥ keVee),
compatible with our prediction of (2.3 ± 0.2) ⇥ 10�4

events/(kg⇥ day⇥ keVee) [9] updated with the lower Kr
concentration measured in the current science run. This
is the lowest ER background ever achieved in such a dark
matter experiment. A single event far from the bulk
distribution was observed at cS1 = 68.0 PE in the ini-
tial 4-day unblinding stage. This appears to be a bona
fide event, though its location in (cS1, cS2b) (see Fig. 2c)
is extreme for all WIMP signal models and background
models other than anomalous leakage and accidental co-
incidence. One event at cS1 = 26.7 PE is at the �2.4�
ER quantile.

For the statistical interpretation of the results, we
use an extended unbinned profile likelihood test statis-
tic in (cS1, cS2b). We propagate the uncertainties on
the most significant shape parameters (two for NR, two
for ER) inferred from the posteriors of the calibration
fits to the likelihood. The uncertainties on the rate of
each background component mentioned above are also
included. The likelihood ratio distribution is approxi-
mated by its asymptotic distribution [25]; preliminary
toy Monte Carlo checks show the e↵ect on the exclusion
significance of this conventional approximation is well
within the result’s statistical and systematic uncertain-
ties. To account for mismodeling of the ER background,
we also calculated the limit using the procedure in [26],
which yields a similar result.

The data is consistent with the background-only hy-
pothesis. Fig. 4 shows the 90% confidence level upper
limit on the spin-independent WIMP-nucleon cross sec-
tion, power constrained at the �1� level of the sensitivity
band [29]. The final limit is within 10% of the uncon-
strained limit for all WIMP masses. For the WIMP en-
ergy spectrum we assume a standard isothermal WIMP
halo with v0 = 220 km/s, ⇢DM = 0.3 GeV/cm3, vesc =
544 km/s, and the Helm form factor for the nuclear
cross section [30]. No light and charge emission is as-
sumed for WIMPs below 1 keV recoil energy. For all
WIMP masses, the background-only hypothesis provides
the best fit, with none of the nuisance parameters rep-
resenting the uncertainties discussed above deviating ap-
preciably from their nominal values. Our results improve
upon the previously strongest spin-independent WIMP
limit for masses above 10 GeV/c2. Our strongest exclu-
sion limit is for 35-GeV/c2 WIMPs, at 7.7 ⇥ 10�47cm2.

These first results demonstrate that XENON1T has
the lowest low-energy background level ever achieved by
a dark matter experiment. The sensitivity of XENON1T
is the best to date above 20 GeV/c2, up to twice the



Non-integer B + L
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EW-Skyrmion Vacuum

NH = 0

NCS = 1 + ϵ

Q = 1 + ϵ

NH = 0

NCS = 0

Q = 0
continuous  

deformation

EW-Skyrmion itself has non-integer B = 3ϵ

This is because fermionic vacuum (Dirac sea) carries non-integer 
number for anomalous charge in the non-trivial background.

ΔBfer. + ΔBSky. = 3(1 + ϵ) = 3ΔNCS

3 3ϵ

Q̂ = : Q̂ : + Q̂vac(A) : anomalous chargeQ̂

• number operator (integer),  : Q̂ := b̂†b̂ + ⋯

• vacuum contribution (non-integer),  Q̂vac(A)



Boson vs fermion
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• Statistics of Skyrmion depends on the underlying UV theory.

• Wess-Zumino-Witten term

ΓWZW = −
iNc

240π2 ∫ℳ5

d5x ϵμνρστ Tr [U†∂μU∂νU†∂ρU∂σU†∂τU]

When UV theory is (strongly coupled)  
gauge theory with , it is given by

SU(NC)
Nc ≥ 3

•  even → boson,    odd → fermionNc

• Electric charge also depends on   (cf.Witten effect in QED)ΓWZW

• In our work, we simply put  ,  leading to electrically 
neutral and bosonic Skyrmion.

ΓWZW = 0



aQGC by ATLAS
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ℒ4 = α4Tr [DμU†DνU] Tr [DμU†DνU] ℒ5 = α5Tr [DμU†DμU] Tr [DνU†DνU]

• using custodial symmetric operators in non-linear rep.

0.024 ≤ α4 ≤ 0.030

[ATLAS, 1609.05122]

0.028 ≤ α5 ≤ 0.033

final states: W(->leptons) V(->hadrons) + forward dijet



aQGC by CMS 
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ℒS,0 =
f0
Λ4 [(DμΦ)†DνΦ] [(DμΦ)†DνΦ] ℒS,1 =

f1
Λ4 [(DμΦ)†DμΦ] [(DνΦ)†DνΦ]

[Eboli+, hep-ph/0606118]

• using custodial non-symmetric operators in linear rep.

They do not correspond to non-linear ones...
ℒS,0 + ℒS,1 = ℒ4 + ℒ5 + ⋯

But anyway, one can translate their constraints into non-linear ones..
f0
Λ4

≤ 2.7 TeV−4 f1
Λ4

≤ 3.3 TeV−4

|α4 | ≤ 0.0012 |α5 | ≤ 0.0016

[CMS,1905.07445]

final states:  
W/Z(->leptons) V(->hadrons)  
+ forward dijet



Example of Asymmetric DM
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𝒪portal =
1

Λ3
D̄ŪŪLH

Nc = 3, Nf = 2

[Ibe, Kamada, Kobayashi, Nakano 1805.06876]

 charge → dark baryonB − L

Symmetric part of dark baryon decays into dark radiations

dark radiations must decay into SM radiation (photon) via

ℒmix =
ϵ
2

FμνF
μν
D

ℒAD
⊃

m2
D

2
ADμAμ

D



EW-Skyrmion Solution
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[YH-Kitano-Kurachi '21]

NH =
−1

24π2 ∫ d3x ϵijk Tr [ViVjVk]

• Actually, EW-Skyrmion can decay because 

is not gauge invariant.

NH = 1

NCS = 0

EW-Skyrmion

• Gauge invariant quantity is 
Q = NH + NCS

NCS =
g2

16π2 ∫ d3x ϵijk Tr [WijWk +
2ig
3

WiWjWk]



Thermal History
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T−1(t) T = T*

YB

YDM

equilibrium
YB

YDMfrozen ←

T > T*T < T*

Assuming thermal equilibrium at ,  we obtainT = T*

ΩDM

ΩB
= X

111YDM−B/3 + 12YB−L

−102YDM−B/3 + 36XYB−L

mDM

mp

X ≡ 6 × f(m*DM /T*) =
12

(2π)3/2 ( m*DM

T* )
3/2

exp (−
m*DM

T* )

YDM ≡
nSk. − n̄Sk.

s



EW Skyrmion Solution
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• Hedgehog ansatz:
U = exp [iθ(r) ̂xaσa] h(x) = ϕ(r)/vEW
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• Then, we set  (keeping ) 

→ The only difference from Skyrme model is the existence of  . 

g ≃ 0.65 g′ = 0

h(x)

[(vEW)−1]

Wa
i (x) =

Re χ(r) − 1
r

ϵiab ̂xb −
Im χ(r)
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Thermal History
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T−1(t) T = T*

YB
equilibrium

T > T*T < T*

YDM

YDM ≡
nSk. − n̄Sk.

s



Thermal History

45

T−1(t) T = T*

YB
equilibrium

T > T*T < T*

YDM

YB

frozen ← YDM

YDM ≡
nSk. − n̄Sk.

s



Thermal History

45

T−1(t) T = T*

YB
equilibrium

T > T*T < T*

Symmetric part annihilates because of 
a quite large cross section:

YDM

YB

frozen ← YDM

YDM ≡
nSk. − n̄Sk.

s

nDM n̄DM

σann ∼ πR2 ∼ πα(vEW)−2 ∼ ( α
10−3 ) × 10−23 cm3/s

cf.  ⟨σv⟩WIMP ∼ 10−26 cm3/s


