Electroweak Skyrmion as Asymmetric Dark Matter

Yu Hamada (KEK)

[arXiv:2108.12185]

in collaboration with

Ryuichiro Kitano (KEK, Sokendai) and Masafumi Kurachi (Keio U.)

12th Novermber 2021, 京大素粒子論研究室セミナー

Introduction

• Electroweak Skyrmion

• Asymmetric darkmatter scenario

• Summary

Dark matter

• There are many evidences for dark matter

Galaxy rotation curve (from Wikipedia)

Why are they close to each other? (coincidence problem)

Common origin?

Baryon Asymmetry

For baryons, symmetric part annihilates after QCD phase transition, and then asymmetric part remains:

$$\eta_B \equiv \frac{n_B - \bar{n}_B}{s} \simeq 10^{-10}$$

Asymmetric Dark Matter

[Barr, Chivukula, Farhi '90] [Kaplan '92] [Kitano, Low '04] [Kaplan, Luty, Zurek '09]

Asymmetric DM hypothesis:

- Similarly to baryons, DM relic abundance originates from asymmetric part of DM.
- DM asymmetry is related with that of baryons.

But such a model is rather complicated...

(UV completion, dark radiation..)

(UV completion, dark radiation..)

• Can ADM scenario be realized by **New aspects of known fields?**

But such a model is rather complicated...

(UV completion, dark radiation..)

• Can ADM scenario be realized by **New aspects of known fields?**

Like what?

But such a model is rather complicated...

(UV completion, dark radiation..)

• Can ADM scenario be realized by **New aspects of known fields?**

Like what?

Soliton!

But such a model is rather complicated...

(UV completion, dark radiation..)

• Can ADM scenario be realized by **New aspects of known fields?**

Like what?

Soliton! = non-perturbative object in field theory

If SM Higgs Lagrangian is extended by $\mathcal{O}(p^4)$ terms, the theory contains asymmetric DM, which is a soliton made of Higgs and EW gauge fields!!

Introduction

• Electroweak Skyrmion

• Asymmetric darkmatter scenario

• Summary

Electroweak Skyrmion

$$\mathscr{L}_{\text{Skyrme}} = \frac{f_{\pi}^{2}}{4} \text{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^{2}} \text{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^{2} \right]$$
$$U(x) \in SU(2) \qquad U^{\dagger} U = 1 \qquad U = \exp \left[i\pi^{a}(x) \sigma^{a} \right]$$
$$pion field (\pi^{1}, \pi^{2}, \pi^{3})$$

$$\mathscr{L}_{\text{Skyrme}} = \frac{f_{\pi}^2}{4} \text{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^2} \text{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 \right]$$
$$U(x) \in SU(2) \qquad U^{\dagger} U = 1 \qquad U = \exp \left[i\pi^a(x) \, \sigma^a \right]$$
$$pion \text{ field } (\pi^1, \pi^2, \pi^3)$$

• Global symmetry of Lagrangian:

 $SU(2)_L \times SU(2)_R : U(x) \to L^{\dagger}U(x)R$ $R \in SU(2)_R$ $L \in SU(2)_L$

$$\mathscr{L}_{\text{Skyrme}} = \frac{f_{\pi}^2}{4} \text{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^2} \text{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 \right]$$
$$U(x) \in SU(2) \qquad U^{\dagger} U = 1 \qquad U = \exp \left[i\pi^a(x) \, \sigma^a \right]$$
$$\text{pion field} \left(\pi^1, \pi^2, \pi^3 \right)$$

• Global symmetry of Lagrangian:

 $SU(2)_L \times SU(2)_R : U(x) \to L^{\dagger}U(x)R$ $L \in SU(2)_L$

• Vacuum $\langle U \rangle = \mathbf{1}_2$ breaks this into diagonal subgroup: $SU(2)_V$

$$\mathscr{L}_{\text{Skyrme}} = \frac{f_{\pi}^2}{4} \text{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^2} \text{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 \right]$$
$$U(x) \in SU(2) \qquad U^{\dagger} U = 1 \qquad U = \exp \left[i \pi^a(x) \, \sigma^a \right]$$
$$pion \text{ field } (\pi^1, \pi^2, \pi^3)$$

• Global symmetry of Lagrangian:

 $SU(2)_L \times SU(2)_R : U(x) \to L^{\dagger}U(x)R$ $R \in SU(2)_R$ $L \in SU(2)_L$

- Vacuum $\langle U \rangle = \mathbf{1}_2$ breaks this into diagonal subgroup: $SU(2)_V$
- Vacuum manifold (order parameter space):

$$\mathcal{M}_{\rm vac} = \frac{SU(2)_L \times SU(2)_R}{SU(2)_V} \simeq S^3$$

• compactify 3D space: $\mathbb{R}^3 \cup \{\infty\} \simeq S^3$

- compactify 3D space: $\mathbb{R}^3 \cup \{\infty\} \simeq S^3$
- A static configuration of the field U(x) is a map s.t.

 $U(x): S^3(\text{space}) \to S^3(\text{vac})$

- compactify 3D space: $\mathbb{R}^3 \cup \{\infty\} \simeq S^3$
- A static configuration of the field U(x) is a map s.t.

$$U(x): S^3(\text{space}) \to S^3(\text{vac})$$

• This map can have non-trivial winding number:

$$N = \frac{-1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \, \mathrm{Tr} \left[V_i V_j V_k \right] \qquad V_i \equiv (\partial_i U) U^{\dagger}$$

- compactify 3D space: $\mathbb{R}^3 \cup \{\infty\} \simeq S^3$
- A static configuration of the field U(x) is a map s.t.

$$U(x): S^3(\text{space}) \to S^3(\text{vac})$$

• This map can have non-trivial winding number:

$$N = \frac{-1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \, \mathrm{Tr} \left[V_i V_j V_k \right] \qquad V_i \equiv (\partial_i U) U^{\dagger}$$

- Hedgehog ansatz (N = 1): $U = \exp \left[i\theta(r) \hat{x}^a \sigma^a\right]$
- $\begin{cases} \theta(0) = \pi \\ \theta(\infty) = 0 \end{cases}$

non-trivial solution of EOM \rightarrow Skyrmion! $(r \equiv \sqrt{x_i x_i}, \hat{x}^a \equiv x^a/r)$

- compactify 3D space: $\mathbb{R}^3 \cup \{\infty\} \simeq S^3$
- A static configuration of the field U(x) is a map s.t.

$$U(x): S^3(\text{space}) \to S^3(\text{vac})$$

• This map can have non-trivial winding number:

$$N = \frac{-1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \, \mathrm{Tr} \left[V_i V_j V_k \right] \qquad V_i \equiv (\partial_i U) U^{\dagger}$$

- Hedgehog ansatz (N = 1): $U = \exp \left[i\theta(r) \hat{x}^a \sigma^a\right]$
- $\begin{cases} \theta(0) = \pi \\ \theta(\infty) = 0 \end{cases}$

non-trivial solution of EOM \rightarrow Skyrmion! $(r \equiv \sqrt{x_i x_i}, \hat{x}^a \equiv x^a/r)$

eg.) 2D
$$\rightarrow$$
 S^2

eg.) 2D $\rightarrow S^2$

[Skyrme '62]

$$\mathscr{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^2} \operatorname{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 \right]$$

Skyrme term

• The stability of Skyrmion requires Skyrme term.

 $e \rightarrow \infty \Rightarrow$ shrinks into an infinitely small one:

cf. Derrick's theorem

[Skyrme '62]

$$\mathscr{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^2} \operatorname{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 \right]$$

Skyrme term

• The stability of Skyrmion requires Skyrme term.

 $e \rightarrow \infty \Rightarrow$ shrinks into an infinitely small one:

eg.) 2D
$$\rightarrow$$
 S^2
shrink into a point = nothing

[Skyrme '62]

$$\mathscr{L} = \frac{f_{\pi}^2}{4} \operatorname{Tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] + \frac{1}{32e^2} \operatorname{Tr} \left[\left[U^{\dagger} \partial_{\mu} U, U^{\dagger} \partial_{\nu} U \right]^2 \right]$$

Skyrme term

• The stability of Skyrmion requires Skyrme term.

 $e \rightarrow \infty \Rightarrow$ shrinks into an infinitely small one:

eg.)
$$2D \rightarrow S^2$$

shrink into a point = nothing

• Let *R* be a typical size of Skyrmion.

$$E = -\int d^3x \,\mathscr{L} \simeq \frac{f_\pi^2}{4}R + \frac{1}{32e^2}R^{-1} \Rightarrow R \sim (ef_\pi)^{-1}$$

• SM Higgs sector has a similar symmetry breaking structure:

$$\begin{split} \mathscr{L}_{higgs} \Big|_{g=g'=0} &= |\partial_{\mu}\Phi|^2 - \lambda \left(|\Phi|^2 - \frac{v_{\rm EW}}{2} \right)^2 \\ &= \frac{1}{2} \mathrm{Tr} |\partial_{\mu}H|^2 - \frac{\lambda}{4} \left(\mathrm{Tr} |H|^2 - v_{\rm EW} \right)^2 \\ &H \equiv \left(i\sigma_2 \Phi^{\dagger}, \Phi \right) \end{split}$$

• SM Higgs sector has a similar symmetry breaking structure:

$$\begin{split} \mathscr{L}_{higgs} \Big|_{g=g'=0} &= |\partial_{\mu}\Phi|^2 - \lambda \left(|\Phi|^2 - \frac{v_{\rm EW}}{2} \right)^2 \\ &= \frac{1}{2} \mathrm{Tr} |\partial_{\mu}H|^2 - \frac{\lambda}{4} \left(\mathrm{Tr} |H|^2 - v_{\rm EW} \right)^2 \\ &H \equiv \left(i\sigma_2 \Phi^{\dagger}, \Phi \right) \end{split}$$

• Invariant under $SU(2)_L \times SU(2)_R$ sym: $H \to L^{\dagger}HR$

• SM Higgs sector has a similar symmetry breaking structure:

$$\begin{split} \mathscr{L}_{higgs} \Big|_{g=g'=0} &= |\partial_{\mu}\Phi|^2 - \lambda \left(|\Phi|^2 - \frac{v_{\rm EW}}{2} \right)^2 \\ &= \frac{1}{2} \mathrm{Tr} |\partial_{\mu}H|^2 - \frac{\lambda}{4} \left(\mathrm{Tr} |H|^2 - v_{\rm EW} \right)^2 \\ &H \equiv \left(i\sigma_2 \Phi^{\dagger}, \Phi \right) \end{split}$$

• Invariant under $SU(2)_L \times SU(2)_R$ sym: $H \to L^{\dagger}HR$

Higgs VEV breaks:

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$ (custodial symmetry)

• SM Higgs sector has a similar symmetry breaking structure:

$$\begin{split} \mathscr{L}_{higgs} \Big|_{g=g'=0} &= |\partial_{\mu}\Phi|^2 - \lambda \left(|\Phi|^2 - \frac{v_{\text{EW}}}{2} \right)^2 \\ &= \frac{1}{2} \text{Tr} |\partial_{\mu}H|^2 - \frac{\lambda}{4} \left(\text{Tr} |H|^2 - v_{\text{EW}} \right)^2 \\ &H \equiv \left(i\sigma_2 \Phi^{\dagger}, \Phi \right) \end{split}$$

• Invariant under $SU(2)_L \times SU(2)_R$ sym: $H \to L^{\dagger}HR$

Higgs VEV breaks:

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$ (custodial symmetry)

Can we consider a similar soliton?

• SM Higgs sector has a similar symmetry breaking structure:

$$\begin{aligned} \mathscr{L}_{higgs} \Big|_{g=g'=0} &= |\partial_{\mu}\Phi|^2 - \lambda \left(|\Phi|^2 - \frac{v_{\rm EW}}{2} \right)^2 \\ &= \frac{1}{2} \mathrm{Tr} |\partial_{\mu}H|^2 - \frac{\lambda}{4} \left(\mathrm{Tr} |H|^2 - v_{\rm EW} \right)^2 \\ &H \equiv \left(i\sigma_2 \Phi^{\dagger}, \Phi \right) \end{aligned}$$

• Invariant under $SU(2)_L \times SU(2)_R$ sym: $H \to L^{\dagger}HR$

Higgs VEV breaks:

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_C$ (custodial symmetry)

Can we consider a similar soliton? \rightarrow Yes!!

$$\mathscr{L} = \frac{v_{\rm EW}}{4} \left(1 + \frac{h(x)}{v_{\rm EW}} \right)^2 \operatorname{Tr} |D_{\mu}U(x)|^2 + \frac{1}{2} (\partial_{\mu}h(x))^2 - V(h)$$

$$+ \alpha_4 \operatorname{Tr} \left[D_{\mu} U^{\dagger} D_{\nu} U \right] \operatorname{Tr} \left[D^{\mu} U^{\dagger} D^{\nu} U \right] + \alpha_5 \left(\operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] \right)^2$$

• denoted the 2x2 matrix by
$$H(x) = \frac{v_{\text{EW}}}{\sqrt{2}} \left(1 + \frac{h(x)}{v_{\text{EW}}}\right) U(x)$$
.

$$\mathscr{L} = \frac{v_{\text{EW}}}{4} \left(1 + \frac{h(x)}{v_{\text{EW}}} \right)^2 \text{Tr} |D_{\mu}U(x)|^2 + \frac{1}{2} (\partial_{\mu}h(x))^2 - V(h)$$

$$+ \alpha_4 \operatorname{Tr} \left[D_{\mu} U^{\dagger} D_{\nu} U \right] \operatorname{Tr} \left[D^{\mu} U^{\dagger} D^{\nu} U \right] + \alpha_5 \left(\operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] \right)^2$$

• denoted the 2x2 matrix by
$$H(x) = \frac{v_{\text{EW}}}{\sqrt{2}} \left(1 + \frac{h(x)}{v_{\text{EW}}} \right) U(x)$$
.
radial field (higgs boson)
angular field (NG boson)

$$\mathscr{L} = \underbrace{\frac{\nu_{\rm EW}}{4} \left(1 + \frac{h(x)}{\nu_{\rm EW}}\right)^2 \operatorname{Tr} |D_{\mu}U(x)|^2 + \frac{1}{2} (\partial_{\mu}h(x))^2 - V(h)}_{+\alpha_4} \operatorname{Tr} \left[D_{\mu}U^{\dagger}D_{\nu}U\right] \operatorname{Tr} \left[D^{\mu}U^{\dagger}D^{\nu}U\right] + \alpha_5 \left(\operatorname{Tr} \left[D_{\mu}U^{\dagger}D^{\mu}U\right]\right)^2$$

SM + $\mathcal{O}(p^4)$ term (Skyrme-like term)

• denoted the 2x2 matrix by $H(x) = \frac{v_{\text{EW}}}{\sqrt{2}} \left(1 + \frac{h(x)}{v_{\text{EW}}} \right) U(x)$. radial field (higgs boson) angular field (NG boson)

$$\mathscr{L} = \underbrace{\frac{v_{\text{EW}}}{4} \left(1 + \frac{h(x)}{v_{\text{EW}}}\right)^2 \text{Tr} |D_{\mu}U(x)|^2 + \frac{1}{2} (\partial_{\mu}h(x))^2 - V(h)} + \alpha_4 \text{Tr} \left[D_{\mu}U^{\dagger}D_{\nu}U\right] \text{Tr} \left[D^{\mu}U^{\dagger}D^{\nu}U\right] + \alpha_5 \left(\text{Tr} \left[D_{\mu}U^{\dagger}D^{\mu}U\right]\right)^2$$

SM + $\mathcal{O}(p^4)$ term (Skyrme-like term)

• denoted the 2x2 matrix by
$$H(x) = \frac{v_{\text{EW}}}{\sqrt{2}} \left(1 + \frac{h(x)}{v_{\text{EW}}} \right) U(x)$$
.
radial field (higgs boson)
angular field (NG boson)

• For simplicity, we take $\alpha_4 = -\alpha_5 \equiv \alpha$ for a while.

$$\begin{aligned} \mathscr{L} = & \frac{v_{\text{EW}}}{4} \left(1 + \frac{h(x)}{v_{\text{EW}}} \right)^2 \text{Tr} \left| D_{\mu} U(x) \right|^2 + \frac{1}{2} (\partial_{\mu} h(x))^2 - V(h) \\ & + \frac{\alpha}{2} \text{Tr} \left[U^{\dagger} D_{\mu} U, U^{\dagger} D_{\nu} U \right]^2 \end{aligned}$$

SM + $\mathcal{O}(p^4)$ term (Skyrme-like term)

• denoted the 2x2 matrix by $H(x) = \frac{v_{\text{EW}}}{\sqrt{2}} \left(1 + \frac{h(x)}{v_{\text{EW}}} \right) U(x)$. radial field (higgs boson) angular field (NG boson)

• For simplicity, we take $\alpha_4 = -\alpha_5 \equiv \alpha$ for a while.
• Hedgehog ansatz:

• non-trivial solution of EOM:

• Hedgehog ansatz:

• non-trivial solution of EOM:

• Take two coefficients as independent parameters

 α_4

Quartic Gauge Coupling

$$\mathscr{L}_{p^4} = \alpha_4 \operatorname{Tr} \left[D_{\mu} U^{\dagger} D_{\nu} U \right] \operatorname{Tr} \left[D^{\mu} U^{\dagger} D^{\nu} U \right] + \alpha_5 \left(\operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] \right)^2$$

• α_4 and α_5 lead to anomalous quartic gauge coupling (aQGC)

• They are measured by WW scattering process at LHC.

→We can put a bound on mass of EW-Skyrmion!

Shaded region is excluded by aQGC measurement

Mass of EW-Skyrmion is bounded as

 $m_{Sk.} \lesssim 2.2 \,\mathrm{TeV}$

• Actually, EW-Skyrmion can decay because winding #

$$N_{H} = \frac{-1}{24\pi^{2}} \int d^{3}x \, \epsilon^{ijk} \,\mathrm{Tr}\left[V_{i}V_{j}V_{k}\right] \qquad \qquad V_{i} \equiv (\partial_{i}U)U^{\dagger}$$

is not gauge invariant.

Actually, EW-Skyrmion can decay because winding #

$$N_{H} = \frac{-1}{24\pi^{2}} \int d^{3}x \,\epsilon^{ijk} \operatorname{Tr} \left[V_{i} V_{j} V_{k} \right] \qquad \qquad V_{i} \equiv (\partial_{i} U) U^{\dagger}$$

is not gauge invariant.

• A gauge invariant "winding number" is defined by

$$Q \equiv N_H + N_{CS}$$

 N_{CS} : Chern-Simons #

But this is **not topological quantity!!**

Actually, EW-Skyrmion can decay because winding #

$$N_{H} = \frac{-1}{24\pi^{2}} \int d^{3}x \,\epsilon^{ijk} \operatorname{Tr} \left[V_{i} V_{j} V_{k} \right] \qquad \qquad V_{i} \equiv (\partial_{i} U) U^{\dagger}$$

is not gauge invariant.

• A gauge invariant "winding number" is defined by

$$Q \equiv N_H + N_{CS}$$

 N_{CS} : Chern-Simons #

But this is not topological quantity!!

Actually, EW-Skyrmion can decay because winding #

Introduction

• Electroweak Skyrmion

• Asymmetric darkmatter scenario

• Summary

Asymmetric darkmatter scenario

Quantum vs Thermal Decay

- There are two types of decay of EW Skyrmion:
 - Quantum tunneling at T = 0

$$\Gamma \propto \exp\left(-\frac{8\pi^2}{g^2}\right) \rightarrow \text{sufficiently long-lived}$$

• Thermal sphaleron-like process at $T \neq 0$

 $\Gamma(T) \gtrsim$ Hubble only when $T \gtrsim T^*$

 T^* is expected to be 10^{1-2} GeV

(cf. EW sphaleron process)

Assuming thermal equilibrium at $T = T^*$, we obtain

$$\frac{\Omega_{DM}}{\Omega_B} \simeq K \left(\frac{m_{DM}^*}{T^*}\right)^{3/2} \exp\left(-\frac{m_{DM}^*}{T^*}\right) \qquad m_{DM}^*: \text{DM mass at } T = T^*$$
$$K \equiv \frac{6}{\sqrt{2}\pi^{3/2}} \left[\frac{25}{34} + \frac{6}{17}\frac{n_L}{n_B}\right] \frac{m_{DM}}{m_p} \sim 10^3 \text{ for } n_L/n_B = \mathcal{O}(1)$$

K depends on baryo/lepto-genesis scenarios

Ratio of relic abundance

Typically, $m^*_{DM}/T^* \simeq 10$ can explain $\Omega_{DM}/\Omega_B \simeq 5$!

Ratio of relic abundance

Typically, $m_{DM}^*/T^* \simeq 10$ can explain $\Omega_{DM}/\Omega_B \simeq 5$!

very natural because $m_{DM} = \mathcal{O}(1) \text{TeV}$, $T^* = 10^{1-2} \, \text{GeV}$

• rewrite by two conserved quantities: $Y_{DM-B/3}$ and Y_{B-L} ,

$$\frac{\Omega_{DM}}{\Omega_B} = X \frac{111Y_{DM-B/3} + 12Y_{B-L}}{-102Y_{DM-B/3} + 36XY_{B-L}} \frac{m_{DM}}{m_p} \qquad Y_A \equiv \frac{n_A}{s}$$

$$X = \frac{12}{(2\pi)^{3/2}} \left(\frac{m_{DM}^*}{T^*}\right)^{3/2} \exp\left(-\frac{m_{DM}^*}{T^*}\right) \sim 10^{-3}$$

• rewrite by two conserved quantities: $Y_{DM-B/3}$ and Y_{B-L} ,

$$\frac{\Omega_{DM}}{\Omega_B} = X \frac{111Y_{DM-B/3} + 12Y_{B-L}}{-102Y_{DM-B/3} + 36XY_{B-L}} \frac{m_{DM}}{m_p}$$

$$X = \frac{12}{(2\pi)^{3/2}} \left(\frac{m_{DM}^*}{T^*}\right)^{3/2} \exp\left(-\frac{m_{DM}^*}{T^*}\right) \sim 10^{-3}$$

• For leptogenesis, $Y_{DM-B/3} = 0$

$$\Rightarrow \frac{\Omega_{DM}}{\Omega_B} = \frac{1}{3} \frac{m_{DM}}{m_p} \qquad \therefore m_{DM} \simeq 15 \text{ GeV}$$

this is very unlikely

 $Y_A \equiv \frac{n_A}{s}$

• rewrite by two conserved quantities: $Y_{DM-B/3}$ and Y_{B-L} ,

$$\frac{\Omega_{DM}}{\Omega_B} = X \frac{111Y_{DM-B/3} + 12Y_{B-L}}{-102Y_{DM-B/3} + 36XY_{B-L}} \frac{m_{DM}}{m_p}$$

$$X = \frac{12}{(2\pi)^{3/2}} \left(\frac{m_{DM}^*}{T^*}\right)^{3/2} \exp\left(-\frac{m_{DM}^*}{T^*}\right) \sim 10^{-3}$$

• For leptogenesis, $Y_{DM-B/3} = 0$

$$\Rightarrow \frac{\Omega_{DM}}{\Omega_B} = \frac{1}{3} \frac{m_{DM}}{m_p} \qquad \therefore m_{DM} \simeq 15 \text{ GeV}$$

this is very unlikely

Our scenario seems inconsistent with leptogenesis.

 $Y_A \equiv \frac{n_A}{c}$

• rewrite by two conserved quantities: $Y_{DM-B/3}$ and Y_{B-L} ,

$$\frac{\Omega_{DM}}{\Omega_B} = X \frac{111Y_{DM-B/3} + 12Y_{B-L}}{-102Y_{DM-B/3} + 36XY_{B-L}} \frac{m_{DM}}{m_p}$$

$$X = \frac{12}{(2\pi)^{3/2}} \left(\frac{m_{DM}^*}{T^*}\right)^{3/2} \exp\left(-\frac{m_{DM}^*}{T^*}\right) \sim 10^{-3}$$

• For leptogenesis, $Y_{DM-B/3} = 0$

$$\Rightarrow \frac{\Omega_{DM}}{\Omega_B} = \frac{1}{3} \frac{m_{DM}}{m_p} \qquad \therefore m_{DM} \simeq 15 \,\text{GeV}$$

this is very unlikely

Our scenario seems inconsistent with leptogenesis. requires generation of either DM or B asymmetry

 $Y_A \equiv \frac{n_A}{c}$

Direct detection experiment

• Assume effective coupling btw EW-Skyrmion and Higgs:

$$\mathscr{L}_{eff.} = -\kappa |S|^2 |H|^2$$
 benchmark value: $\kappa = 0.1$

Bound for spin-independent cross section with nucleon:

- EW-Skyrmion = soliton made of Higgs and EW gauge fields
 - ▶ naturally arises by $\mathcal{O}(p^4)$ extension of Higgs Lagrangian
 - plays a role of an asymmetric DM
- $\Omega_{DM}/\Omega_B \simeq 5$ is realized for $m_{DM} = \mathcal{O}(1)$ TeV and $T^* = \mathcal{O}(10^2)$ GeV.
- DM direct detection experiments and measurements of aQGC put stringent window:

Backup

• Firstly, we take g = g' = 0

→ The only difference from Skyrme model is the existence of h(x).

• Hedgehog ansatz:

 $U = \exp\left[i\theta(r)\,\hat{x}^a\sigma^a\right] \qquad h(x) = \phi(r)/v_{\rm EW}$

- Then, we set $g \simeq 0.65$ (keeping g' = 0)
- Hedgehog ansatz:

3

2

0

- Then, we set $g \simeq 0.65$ (keeping g' = 0)
- Hedgehog ansatz:

 $GeV^{-2} = 0.04 \times 10^{-26} \text{ cm}^2$ $c \times GeV^{-2} = 0.12 \times 10^{-16} \text{ cm}^3/\text{s}$

Solving Boltzman eq., late-time ratio is given by

$$r = \frac{\bar{n}_{DM}}{n_{DM}} \simeq \exp\left(-2\sigma_{ann}/\sigma_{WIMP}\right)$$
 [Graesser+, 1103.2771]

cf.
$$\langle \sigma v \rangle_{\text{WIMP}} \sim 10^{-26} \,\text{cm}^3/\text{s}$$

 $\text{GeV}^{-2} = 0.04 \times 10^{-26} \text{ cm}^2$ $c \times \text{GeV}^{-2} = 0.12 \times 10^{-16} \text{ cm}^3/\text{s}$

Solving Boltzman eq., late-time ratio is given by

$$r = \frac{\bar{n}_{DM}}{n_{DM}} \simeq \exp\left(-2\sigma_{ann}/\sigma_{WIMP}\right)$$
 [Graesser+, 1103.2771]

$$\sigma_{ann} \sim \pi R^2 \sim \pi \alpha (v_{\rm EW})^{-2} \sim \left(\frac{\alpha}{10^{-3}}\right) \times 10^{-23} \,{\rm cm}^3/{\rm s}$$

cf. $\langle \sigma v \rangle_{\rm WIMP} \sim 10^{-26} \, {\rm cm}^3/{\rm s}$

Direct detection experiment

• Assume effective coupling btw EW-Skyrmion and Higgs:

$$\mathscr{L}_{eff.} = -\kappa |S|^2 |H|^2$$

• Spin-independent cross section with nucleon:

Non-integer B + L

EW-Skyrmion itself has non-integer $B = 3\epsilon$

This is because fermionic vacuum (Dirac sea) carries non-integer number for anomalous charge in the non-trivial background.

$$\hat{Q} =: \hat{Q}: + \hat{Q}_{vac}(A)$$
 $\hat{Q}:$ anomalous charge

- number operator (integer), $: \hat{Q} := \hat{b}^{\dagger}\hat{b} + \cdots$
- vacuum contribution (non-integer), $\hat{Q}_{\rm vac}(A)$

Boson vs fermion

- Statistics of Skyrmion depends on the underlying UV theory.
- Wess-Zumino-Witten term

When UV theory is (strongly coupled) $SU(N_C)$ gauge theory with $N_c \ge 3$, it is given by

$$\Gamma_{WZW} = -\frac{iN_c}{240\pi^2} \int_{\mathcal{M}_5} d^5 x \, \epsilon^{\mu\nu\rho\sigma\tau} \operatorname{Tr} \left[U^{\dagger} \partial_{\mu} U \partial_{\nu} U^{\dagger} \partial_{\rho} U \partial_{\sigma} U^{\dagger} \partial_{\tau} U \right]$$

- N_c even \rightarrow boson, odd \rightarrow fermion
- Electric charge also depends on Γ_{WZW} (cf.Witten effect in QED)
- In our work, we simply put $\Gamma_{WZW} = 0$, leading to electrically neutral and bosonic Skyrmion.
aQGC by ATLAS

• using custodial **symmetric** operators in **non-linear rep.**

$$\mathscr{L}_{4} = \alpha_{4} \operatorname{Tr} \left[D_{\mu} U^{\dagger} D_{\nu} U \right] \operatorname{Tr} \left[D^{\mu} U^{\dagger} D^{\nu} U \right] \qquad \qquad \mathscr{L}_{5} = \alpha_{5} \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] \operatorname{Tr} \left[D_{\nu} U^{\dagger} D^{\nu} U \right]$$

final states: W(->leptons) V(->hadrons) + forward dijet

$$0.024 \le \alpha_4 \le 0.030$$
 $0.028 \le \alpha_5 \le 0.033$

aQGC by CMS

final states: W/Z(->leptons) V(->hadrons) + forward dijet

Figure 1: The Feynman diagram of a VBS process contributing to the EW-induced production of events containing a hadronically decaying gauge boson (V), a W^{\pm}/Z boson decaying to leptons, and two forward jets. New physics (represented by a black circle) in the EW sector can modify the quartic gauge couplings.

• using custodial **non-symmetric** operators in **linear rep.**

$$\mathscr{L}_{S,0} = \frac{f_0}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D_\nu \Phi \right] \left[(D^\mu \Phi)^{\dagger} D^\nu \Phi \right] \qquad \qquad \mathscr{L}_{S,1} = \frac{f_1}{\Lambda^4} \left[(D_\mu \Phi)^{\dagger} D^\mu \Phi \right] \left[(D^\nu \Phi)^{\dagger} D^\nu \Phi \right]$$

They do not correspond to non-linear ones...

$$\mathcal{L}_{S,0} + \mathcal{L}_{S,1} = \mathcal{L}_4 + \mathcal{L}_5 + \cdots$$

But anyway, one can translate their constraints into non-linear ones..

$$\left|\frac{f_0}{\Lambda^4}\right| \le 2.7 \,\text{TeV}^{-4} \qquad \left|\frac{f_1}{\Lambda^4}\right| \le 3.3 \,\text{TeV}^{-4} \qquad \text{[Eboli+, hep-ph/0606118]}$$
$$|\alpha_4| \le 0.0012 \qquad |\alpha_5| \le 0.0016 \qquad 40$$

Example of Asymmetric DM

[Ibe, Kamada, Kobayashi, Nakano 1805.06876]

B - L charge \rightarrow dark baryon

$$N_c = 3, N_f = 2$$

$$\mathcal{O}_{\text{portal}} = \frac{1}{\Lambda^3} \bar{D} \bar{U} \bar{U} L H$$

Symmetric part of dark baryon decays into dark radiations

dark radiations must decay into SM radiation (photon) via

$$\mathscr{L}_{mix} = \frac{\epsilon}{2} F_{\mu\nu} F_D^{\mu\nu}$$

$$\mathscr{L}_{A_D} \supset \frac{m_D^2}{2} A_{D\mu} A_D^{\mu}$$

EW-Skyrmion Solution

• Actually, EW-Skyrmion can decay because

$$N_H = \frac{-1}{24\pi^2} \int d^3x \, \epsilon^{ijk} \, \mathrm{Tr} \left[V_i V_j V_k \right]$$

is not gauge invariant.

• Gauge invariant quantity is

$$Q = N_H + N_{CS}$$

EW-Skyrmion

$$N_H = 1$$
$$N_{CS} = 0$$

$$N_{CS} = \frac{g^2}{16\pi^2} \int d^3x \,\epsilon^{ijk} \operatorname{Tr} \left[W_{ij} W_k + \frac{2ig}{3} W_i W_j W_k \right]$$

Assuming thermal equilibrium at $T = T^*$, we obtain

$$\frac{\Omega_{DM}}{\Omega_B} = X \frac{111Y_{DM-B/3} + 12Y_{B-L}}{-102Y_{DM-B/3} + 36XY_{B-L}} \frac{m_{DM}}{m_p}$$

$$X \equiv 6 \times f(m_{DM}^*/T^*) = \frac{12}{(2\pi)^{3/2}} \left(\frac{m_{DM}^*}{T^*}\right)^{3/2} \exp\left(-\frac{m_{DM}^*}{T^*}\right)$$

EW Skyrmion Solution

- Then, we set $g \simeq 0.65$ (keeping g' = 0)
- \rightarrow The only difference from Skyrme model is the existence of h(x).
- Hedgehog ansatz:

 $U = \exp\left[i\theta(r)\,\hat{x}^a\sigma^a\right] \qquad h(x) = \phi(r)/v_{\rm EW}$

$$\sigma_{ann} \sim \pi R^2 \sim \pi \alpha (v_{\rm EW})^{-2} \sim \left(\frac{\alpha}{10^{-3}}\right) \times 10^{-23} \,\mathrm{cm}^3/\mathrm{s}$$

cf.
$$\langle \sigma v \rangle_{\text{WIMP}} \sim 10^{-26} \,\text{cm}^3/\text{s}$$