

The ALP miracle: unified inflaton and DM

Ryuji Daido Tohoku Univ.

collaboration with F. Takahashi & W. Yin

1702.03284 1710.11107

Part1: アクシオンのレビュー

アクシオンとは? アクシオン探索の現状

Part2: The ALP miracle

イントロダクション

インフレーション

再加熱と暗黒物質

まとめ

Strong CP problem

標準模型の強い相互作用のラグランジアンには θ 項が存在する。

$$\mathcal{L} \supset \theta \frac{g_s^2}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu}$$
CPP

 θ :パラメータ $G^a_{\mu\nu}$:グルーオン場 $\tilde{G}^a_{\mu\nu} \equiv \epsilon_{\mu\nu\rho\sigma} G^{a\rho\sigma}$

中性子の電気双極子モーメントの測定によって θ パラメータの大きさに 強い制限がついている。

$$|\theta| \lesssim 10^{-10}$$
 Baker et al. 2006

Axion

 $U(1)_{
m PQ}$ 対称性を課す($U(1)_{
m PQ}SU(3)^2$ anomaly) Peccei, Quinn 1977

Axion

特徴

・非摂動的な効果により周期的なポテンシャルを持つ。 $V \simeq \Lambda^4 \left[1 - \cos \left(\frac{a}{F_a} \right) \right]$ ・2つのパラメータで特徴付けられる。 崩壊定数: F_a 質量: $m_a \equiv \frac{\Lambda^2}{F_a}$

e.g.

QCDアクシオン (1パラメータ)

$$m_a(T) = \begin{cases} 4.05 \times 10^{-4} \frac{\Lambda_{\rm QCD}^2}{F_a} \left(\frac{T}{\Lambda_{\rm QCD}}\right)^{-3.34} & \text{O. Wantz, E. P. S. Shellard 2009} \\ 3.82 \times 10^{-2} \frac{\Lambda_{\rm QCD}^2}{F_a} & T > 0.26\Lambda_{\rm QCD} \\ T < 0.26\Lambda_{\rm QCD} & \Lambda_{\rm QCD} = \mathcal{O}(100) \text{ MeV} \end{cases}$$

ストリングアクシオン

Axion Dark Matter

・アクシオンは他の粒子とほとんど相互作用せず、かつ非常に軽いので 宇宙年齢より長い寿命を持つ。

・ポテンシャルを振動するスカラー場は、非相対論的粒子として振る舞う

cf. $w \equiv \frac{P}{\rho} = \frac{n-2}{n+2}$ for ϕ^n

アクシオンは暗黒物質に寄与する。

 $\rho_a \propto R^{-\overline{3}}$

QCD axion
$$\Omega_a h^2 \simeq 0.18 \,\theta_i^2 \left(\frac{F_a}{10^{12} \,\mathrm{GeV}}\right)^{1.19} \left(\frac{\Lambda_{\mathrm{QCD}}}{400 \,\mathrm{MeV}}\right)$$

ALP $\Omega_{\mathrm{ALP}} h^2 \simeq 0.50 \,\theta_i^2 \left(\frac{F_a}{10^{12} \,\mathrm{GeV}}\right)^2 \left(\frac{m_a}{0.01 \,\mathrm{eV}}\right)^{1/2}$

Axion Coupling

アクシオン探索

from F. Takahashi's slide

AXION		生成過程		
		地上	天体起源	初期宇宙
検出方法	直接	LSTW, Photon pol. ALPS,OSQAR, PVLAS,	Solar axion CAST, TAXO,TASTE	Axion DM ADMX, CAPP,ORPHEUS LC-circuits, CASPEr, XMASS, EDELWISE,XENON100.
	爭臫	<section-header></section-header>	Excessive cooling of WD, RGB, HB, NS Spectral irreg. Transparency Fermi, IACT.	<text></text>

Axion and Astrophysics

星の中のプラズマ(光子、電子など)から生成されたアクシオンは、 外へとエネルギーを持ち出し、冷却剤としてはたらく。

Cooling Hints?

いくつかの星の進化の過程において、冷却が足りていないという アノマリーが指摘されている。

e.g. HB: $g_{a\gamma\gamma} = (0.29 \pm 0.18) \times 10^{-10} \,\text{GeV}^{-1}$ Gianotti et al. 2015

Solar axion search

天体起源のアクシオンの直接探索としては、太陽アクシオン 探索がある。(CAST, IAXO)

次の世代の太陽アクシオン探索実験(IAXO)は、現在より1桁ほど 感度が良くなる!

Part1 Summary

- ・アクシオンは、strong CP問題や暗黒物質の物理と関連している。
- ・アクシオンは、光子や電子と結合し、星の進化に大きく影響 を及ぼす。
- $f_{a\gamma\gamma} < 6.6 \times 10^{-11} \,\text{GeV}^{-1} \qquad g_{aee} < 4.3 \times 10^{-13}$ $F_a \gtrsim 3c_{\gamma} \times 10^7 \,\text{GeV} \qquad F_a \gtrsim c_e \times 10^9 \,\text{GeV}$
 - ・星の進化においてアノマリーが指摘されていて、アクシオンに よって解決できる可能性がある。

HB: $g_{a\gamma\gamma} = (0.29 \pm 0.18) \times 10^{-10} \,\text{GeV}^{-1}$

・太陽アクシオン探索からは、間接探索と同じくらいの制限が 得られていて、次の世代の実験では1桁ほど感度が良くなる。

Outline

Part1: アクシオンのレビュー

アクシオンとは? アクシオン探索の現状

Part2: The ALP miracle

イントロダクション

アクシオンインフレーション

再加熱と暗黒物質

まとめ

1. Introduction

There are two unknown degree of freedom in the Λ CDM. (except for the origin of Λ .)

Inflaton

Very flat potential for slow-roll inflation.

· Dark matter

Cold, neutral, long-lived, and $\Omega_{\rm DM} h^2 \simeq 0.12$

Both are neutral and occupied a significant fraction of the energy density of the Universe.

Thermal history

Inflaton = DM ?

The remnant inflaton condensate due to incomplete reheating can be dark matter.

cf. Kofman, Linde, Starobinsky `94, Mukaida, Nakayama 1404.1880, Bastero-Gil, Cerezo, Rosa,1501.05539 see also Lerner, McDonald 0909.0520, Okada, Shafi 1007.1672, Khoze 1308.6338 for inflaton WIMP.

What we did

Inflaton = DM = Axion-like particle (ALP)

- The observed CMB and LSS data fix the relation between the ALP mass and decay constant.
- Successful reheating and DM abundance point to specific values

$$0.01 \,\mathrm{eV} \lesssim m_{\phi} \lesssim 1 \,\mathrm{eV}$$
, $g_{\phi\gamma\gamma} = \mathcal{O}(10^{-11}) \,\mathrm{GeV}^{-1}$

within the reach of IAXO.

2. Axion and Inflation

Axion is a pseudo NG boson, and enjoys a discrete shift symmetry.

$$\phi \to \phi + 2\pi n f \qquad n \in \mathbf{Z}$$

Since dangerous radiative corrections are naturally suppressed, axion is compatible with inflation.

The axion potential is periodic, i.e.

$$V(\phi) = V(\phi + 2\pi f)$$

and can be expressed as Fourier series,

$$V(\phi) = \sum_{n \in \mathbf{Z}} c_n e^{in\frac{\phi}{f}}$$

Axion and Inflation

Natural inflation

Freese, Frieman, Olinto `90

The simplest model is the natural inflation.

$$V = \Lambda^4 \left(1 - \cos\left(\frac{\phi}{f}\right) \right)$$

 \cdot Super-Planckian decay constant is required. $f\gtrsim 5M_P$

• Predicted (n_s, r) are not favored by recent observations.

Axion and Inflation

Axion hilltop inflation

Czerny, Takahashi 1401.5212, Czerny, Higaki, Takahashi 1403.0410, 1403.5883

Hilltop inflation can be realized with two cosine terms.

(Minimal extension)

$$V_{inf}(\phi) = \Lambda^4 \left(\cos\left(\frac{\phi}{f} + \theta\right) - \frac{\kappa}{n^2} \cos\left(n\frac{\phi}{f}\right) \right) + C$$
$$= V_0 - \lambda \phi^4 - \Lambda^4 \theta \frac{\phi}{f} + (\kappa - 1) \frac{\Lambda^4}{2f^2} \phi^2 + \dots$$

- \cdot The decay constant can be sub-Planckian. $f \ll M_P$
- Inflaton is light both during inflation and in the true min.

 $m_{\phi}^2 = V''(\phi_{\min}) = -V''(\phi_{\max})$ Flatness=longevity

Spectral index

Relation between m_{ϕ} and f

The Planck normalization of density perturbation and the spectral index fix the relation between $\,m_{\phi}$ and f ,

$$\lambda \sim \left(\frac{\Lambda}{f}\right)^4 \sim 10^{-13} \text{ : Planck normalization}$$

$$\Lambda^4 \sim H_{\inf}^2 M_{pl}^2 \qquad \text{: Friedman eq.}$$

$$m_{\phi} \sim 0.1 H_{\inf} \qquad \text{: Scalar spectral index}$$

$$\text{cf. } n_s \simeq 1 + 2\eta(\phi_*)$$

Mass and coupling to photons

3. Reheating and ALP DM

The inflaton oscillates about $\phi_{\min} = \pi f$ in a quartic potential.

The effective mass, $m_{\rm eff}^2(t) = V''(\phi_{\rm amp}) = 12\lambda\phi_{\rm amp}^2$ decreases with time, and so, decay and dissipation become inefficient at later times.

Reheating and ALP DM

As we shall see, $\xi \lesssim \mathcal{O}(0.1)$ is required to explain DM.

Decay and dissipation

✓ The decay rate into two photons :

$$\Gamma_{\rm dec}(\phi \to \gamma \gamma) = \frac{c_{\gamma}^2 \alpha^2}{64\pi^3} \frac{m_{\rm eff}^3}{f^2} \sqrt{1 - \left(\frac{2m_{\gamma}^{(th)}}{m_{\rm eff}}\right)^2}$$
$$m_{\rm eff}^2(t) = V''(\phi_{\rm amp}) = 12\lambda \phi_{\rm amp}^2$$

The dissipation rate is roughly given by

$$\Gamma_{\mathrm{dis},\gamma} = C \frac{c_{\gamma}^2 \alpha^2 T^3}{8\pi^2 f^2} \frac{m_{\mathrm{eff}}^2}{e^4 T^2}$$

where

Moroi, Mukaida, Nakayama and Takimoto,1407.7465 cf. Salvio, Strumia, Xue, 1310.6982

Here *C* is a numerical constant of $\mathcal{O}(10)$ which represents an uncertainty of the order-of-magnitude estimate as well as the effect of tachyonic preheating and scalar resonance.

Decay and dissipation

At T > 100 GeV, one should consider couplings to weak gauge bosons instead of photons:

$$\mathcal{L} = c_2 \frac{\alpha_2}{8\pi} \frac{\phi}{f} W_{\mu\nu} \tilde{W}^{\mu\nu} + c_Y \frac{\alpha_Y}{4\pi} \frac{\phi}{f} B_{\mu\nu} \tilde{B}^{\mu\nu},$$

with
$$c_2 = \sum_i q_i, \ c_Y = \sum_j q_j Y_j^2 \ c_\gamma = \frac{c_2}{2} + c_Y$$

We adopt the following dissipation rate at T > 100 GeV

$$\Gamma_{\rm dis,EW} = C' \frac{c_2^2 \alpha_2^2 T^3}{32\pi^2 f^2} \frac{m_{\rm eff}^2}{g_2^4 T^2} + C'' \frac{c_Y^2 \alpha_Y^2 T^3}{8\pi^2 f^2} \frac{m_{\rm eff}^2}{g_Y^4 T^2},$$

Decay and dissipation

Due to the decay and dissipation,

$$\xi \equiv \left. \frac{\rho_{\phi}}{\rho_{\phi} + \rho_R} \right|_{\text{after reheating}} = \mathcal{O}(0.01 - 0.1)$$

for
$$g_{\phi\gamma\gamma} = \mathcal{O}(10^{-11}) \,\mathrm{GeV}^{-1}$$
 and $c_2, c_Y = \mathcal{O}(1)$

For successful reheating with $\,\xi \lesssim \mathcal{O}(0.1)\,,\, {\rm one} \,\, {\rm needs}$

$$g_{\phi\gamma\gamma} \gtrsim 10^{-11} \,\mathrm{GeV}^{-1}$$

The typical reheating temperature $T_R \sim \mathcal{O}(10) \,\mathrm{TeV} \left(\frac{m_\phi}{1 \,\mathrm{eV}}\right)^{\frac{1}{2}}$

ALP condensate as CDM

After the reheating, ρ_{ϕ} decreases like radiation until the potential becomes quadratic.

ALP condensate as CDM

DM should be formed before $z_f \gtrsim \mathcal{O}(10^5)$ by SDSS and Ly-alpha

Sarkar, Das, Sethi, 1410.7129

ALP condensate as CDM

Thermalized ALPs as HDM

The ALP is thermalized if r > 1:

Thermalized ALPs as HDM

In our case, the ALP is thermalized until the temperature drops down to the weak scale,

$$r \sim \left(\frac{T}{80 \,\mathrm{GeV}}\right) \left(\frac{8 \times 10^6 \,\mathrm{GeV}}{f/c_2}\right)^2$$

The thermalized ALPs contribute to HDM with $\Delta N_{
m eff}\simeq 0.03$

 $\frac{\text{Upper bound on the mass:}}{m_{\phi} < m_{\phi,\text{HDM}}^{\text{bound}} \simeq 7.7 \,\text{eV} \left(\frac{0.03}{\Delta N_{\text{eff}}}\right)^{3/4}}$

K. Osato, T. Sekiguchi, M. Shirasaki, et al, 1601.07386

•Inflaton = DM = Axion-like particle (ALP)

- The observed CMB and LSS data fix the relation between the mass and decay consttant.
- Successful inflation, reheating and DM abundance point to

$$0.01 \,\mathrm{eV} \lesssim m_{\phi} \lesssim 1 \,\mathrm{eV}, \ g_{\phi\gamma\gamma} = \mathcal{O}(10^{-11}) \,\mathrm{GeV}^{-1}$$

within the reach of IAXO.

• Interestingly, there are some anomalies which can be interpreted as a hint for the ALP in the ALP miracle region.