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What’s next after Higgs?  — New Physics!

Evidences of physics beyond SM 

• neutrino oscillations:   right-handed neutrinos 
• density fluctuations:   inflation 
• dark matter:  new particle, PBH, … 
• baryon asymmetry of universe:   new CP violations 
• dark energy:   ???

New physics is not yet revealed 

• No signals at LHC ⇒ E > 1-2 TeV 

• Flavor/CP observables are sensitive to higher scale



Introduction Model-independent analysis Implications for NP models Conclusions NP implications of b ! s measurements

Theory callenges in exclusive semi-leptonic decays
Perturbative & parametric uncertainties are under control. Main issues:

Form factors

I Systematic improvement
possible: lattice, light-cone sum
rules (LCSR); New results!

I Cross-check: heavy quark limit
+ corrections (not for BRs!)
(see previous talk)

Hadronic, non-FF corrections

I In particular “charm loop” at
low q2 and broad cc̄
resonances at high q2:
Dominant uncertainty and
currently only educated guess

[Khodjamirian et al. 1006.4945, Jäger and

Camalich 1212.2263, Lyon and Zwicky

1406.0566])David Straub (Universe Cluster) 4

Flavor candidates of NP signal

• Muon g-2: >3σ, lattice for light-by-light cont. 

• B→K*ll: >3σ in P5’ angular distribution 
- may underestimate charm loop 

• RK(*)=Γ(B→K(*)µµ)/Γ(B→K(*)ee): >2σ 

- LHCb: challenging to identify electrons 
- electron rate looks unclear 

• RD(*)=Γ(B→D(*)τν)/Γ(B→D(*)lν): >3σ 

- deviation mostly by BaBar ⇒  tau identification? 

- latest LHCb result is consistent with SM 

• CP violation in Kaon decays

had

charm



(✏0/✏)SM =

8
><

>:

(1.38± 6.90)⇥ 10�4

(1.9± 4.5)⇥ 10�4

(1.06± 5.07)⇥ 10�4

What’s new in Kaon?

• CP violation in Kaon decays 
- KL→ππ proceeds via CP violations 

• First lattice computation of hadron matrix element

(✏0/✏)
exp

= (16.6± 2.3)⇥ 10�4 [NA48,KTeV’90-99]

[lattice; RBC-UKQCD’15]

[Buras et.al.’15]

[Kitahara et.al.’16]

New 2.8–2.9σ discrepancy



• Introduction 

- What is ε’/ε? 

- Status: 2.8–2.9σ anomaly 

• New physics interpretation 

- Overview of recent approaches 

SUSY scenarios 

- Gluino box contribution  [Kitahara,Nierste,Tremper’16] 

- Z-penguin contribution 
[ME,Kitahara,Mishima,Yamamoto’16,ME,Mishima,Ueda,Yamamoto’16] 

• Summary

Outline



•                              : JP=0-, not mass-, not CP eigenstate 

• CP eigenstate: 

• Mass eigenstate:

K0(s̄�5d), K̄0(d̄�5s)

|K±i = 1p
2

⇥
|K0i± |K̄0i

⇤

(cf. CP |K0i = |K̄0i)

not mass eigenstate because of CP violation

|K0
Si ⇠ |K+i+ ✏̄|K�i

|K0
Li ⇠ |K�i+ ✏̄|K+i

: CPV parameter (~10-3)

CP: |K+i : even, |K�i : odd

✏̄

CP violations in Kaon: introduction



Im hK0|H|K̄0i
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K0 $ K̄0 : | (t)i = a(t)|K0i+ b(t)|K̄0i

�12 ⇠ hK0|H|K̄0i, �21 ⇠ hK̄0|H|K0i

|K±i = 1p
2

⇥
|K0i± |K̄0i

⇤

K0 $ K̄0

: 45° rotation

where

mixing (  ) ~ CP violation:  

●

✏̄

CP violations in Kaon: oscillation

●

K0 K0—

• Mass eigenstate: |K0
Si ⇠ |K+i+ ✏̄|K�i

|K0
Li ⇠ |K�i+ ✏̄|K+i



• CP selection: KL→ππ is forbidden if CP is exact 

• CP property: CP |⇡⇡i = |⇡⇡iCP |K±i = ±|K±i

|KLi ⇠ |K�i+ ✏̄|K+i

|⇡⇡i
CPV during oscillation

|⇡⇡i
CPV at decay

indirect CPV

direct CP violation

CP-violating K→ππ decay



cf.            , exact in Wu-Yang convention

• Two decay modes: 

- CP violation in oscillation (εK) contributes equally 

- CP violation at decay generates difference

KL ! ⇡+⇡� KL ! ⇡0⇡0

⌘00 = A(KL!⇡0⇡0)
A(KS!⇡0⇡0) = ✏K+

⌘+� = A(KL!⇡+⇡�)
A(KS!⇡+⇡�) = ✏K+

(CPV at decay)

(CPV at decay)’

✏K ⇠ ✏̄

(ε’

Direct CP violation: experiment



• Result  [NA48,KTeV]

where ⌘00 = A(KL!⇡0⇡0)
A(KS!⇡0⇡0) , ⌘+� = A(KL!⇡+⇡�)

A(KS!⇡+⇡�)

Direct CP violation: experiment

✏K = (2.228± 0.011)⇥ 10�3 · ei(0.97±0.02)⇡/4

✏0K
✏K

' 1

6


1� |⌘00|2

|⌘+�|2

�
= (16.6± 2.3)⇥ 10�4

cf.



|⇡0⇡0i =
q

1
3 |(⇡⇡)I=0i �

q
2
3 |(⇡⇡)I=2i

• Final states characterized by isospin     [Note: isovector (π+,π0,π-)] 

• Decay amplitudes in isospin basis

|⇡+⇡�i =
q

2
3 |(⇡⇡)I=0i+

q
1
3 |(⇡⇡)I=2i

A(KL ! (⇡⇡)I=0) = A0e
i�0 , A(KL ! (⇡⇡)I=2) = A2e

i�2

δI=0,2 :  strong phase

✏0

✏
⇠ !p

2✏K


ImA2

ReA2
� ImA0

ReA0

�

Direct CP violation: theory

! = ReA2
ReA0

' 1/22Note: ΔI=1/2 rule,
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!
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W± W±
s

t t

g

d

u, d u, d

t t

�, Z

QCD penguin EW penguin

CPV

• EW penguin is comparable to QCD due to 1/ω~22 (ΔI=1/2) 

• Almost cancel out between A0 and A2

isospin violation

Standard Model



(✏0/✏)SM =

8
><

>:

(1.38± 6.90)⇥ 10�4

(1.9± 4.5)⇥ 10�4

(1.06± 5.07)⇥ 10�4

(✏0/✏)
exp

= (16.6± 2.3)⇥ 10�4 [NA48,KTeV]

[lattice; RBC-UKQCD’15]

[Buras et.al.’15]

[Kitahara et.al.’16]

• SM prediction 

• Experimental result

Status



AI = (Wilson coefficient)    (hadron matrix element)

• First lattice computation of K→ππ matrix element 

- physical mass, physical kinematics 
- need more studies 

• Reduce uncertainty (Re A0 and Re A2) by experimental data 

• Sub-leading contributions (Q3,Q5,Q7) + …   [calc up to NLO] 

• NNLO QCD in progress

⌦

[RBC-UKQCD’15]

[Buras,Gorbahn,Jager,Jamin’15]

[Kitahara,Nierste,Tremper’16]

[Cerda-Sevilla,Gorbahn,Jager,Kokulu]

Recent progress on SM prediction



New 2.8–2.9σ discrepancy

(✏0/✏)SM =

8
><

>:

(1.38± 6.90)⇥ 10�4

(1.9± 4.5)⇥ 10�4

(1.06± 5.07)⇥ 10�4

(✏0/✏)
exp

= (16.6± 2.3)⇥ 10�4 [NA48,KTeV]

[lattice; RBC-UKQCD’15]

[Buras et.al.’15]

[Kitahara et.al.’16]

• SM prediction 

• Experimental result

Status

Exp. result is ~10 larger than SM



• Introduction 

- What is ε’/ε? 

- Status: 2.8–2.9σ anomaly 

• New physics interpretation 

- Overview of recent approaches 

SUSY scenarios 

- Gluino box contribution  [Kitahara,Nierste,Tremper’16] 

- Z-penguin contribution 
[ME,Kitahara,Mishima,Yamamoto’16,ME,Mishima,Ueda,Yamamoto’16] 

• Summary

Outline
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New physics interpretation

• Status: (ε’/ε)exp ~ 10 (ε’/ε)SM ⇒ (ε’/ε)exp ~ (ε’/ε)NP 

• Naive NP estimation: (ε’/ε)NP ~ 1/mNP2 

• Cancellation in SM amplitudes: (ε’/ε)SM ~ cSM/mEW2

(ε’/ε)NP/(ε’/ε)SM ~ mEW2/mNP2 ⇒ mNP < mEW? — NO

(ε’/ε)NP/(ε’/ε)SM ~ (1/cSM) mEW2/mNP2  w/  cSM<<1

⇒ mNP can be larger than mEW
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QCD penguin EW penguin

Recent approach

• NP contributions to ImA0 or ImA2 w/o cancellation 

• Severe constraint by indirect CP violation, εK  (⇒ later) 

• Recent approach: NP contributions to EW penguin

s

d

u/d
�, Z(0)

⇒ enhanced by 1/ω~22
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QCD penguin EW penguin

• Enhance flavor-changing Z coupling or Z’ contributions, …  

• SUSY scenarios 
- Gluino box with large isospin breaking 

- Z penguin contribution

[Buras et.al’15-16; VLQ, 331 model, Little Higgs][Cirigliano et.al.’17; RH]

[Kitahara,Nierste,Tremper’16]

[Tanimoto,Yamamoto’16;ME,Mishima,Ueda,Yamamoto’16]

New physics models



SUSY is a well-motivated NP candidate

Standard Model Supersymmetry

Quarks Squarks SleptonsLeptons Gauge bosons Gauginos

symmetry between fermion and boson



Motivations

Hints of new physics 

• neutrino oscillation 

• early universe (e.g. DM) 

• hierarchy problem 

• GUT 

• many flavor and CP sources

SUSY

LSP, scalars
good
unification

flavor, CP signals 
e.g., in Kaon
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QCD penguin EW penguin

• Enhance flavor-changing Z coupling or Z’ contributions, …  

• SUSY scenarios 
- Gluino box with large isospin breaking 

- Z penguin contribution

[Buras et.al’15-16; VLQ, 331 model, Little Higgs][Cirigliano et.al.’17; RH]

[Kitahara,Nierste,Tremper’16]

[Tanimoto,Yamamoto’16;ME,Mishima,Ueda,Yamamoto’16]

New physics models



[Kitahara,Nierste,Tremper’16]Gluino-box contribution

ε’: direct CP violation in K→ππ

sL

dL

uR

g̃

Q̃ Ũ

uR

sL

dL

g̃

Q̃

dR

D̃

dR

• Flavor and CP violation in left-handed squark 

• QCD interaction 

• Naively excluded by εK ⇒ need something ingenious

M2
d̃
= diag(m2

q̃) +m2
q̃

✓
�LL �LR

�RL �RR

◆

ij

× ×



[Kitahara,Nierste,Tremper’16]Gluino-box contribution

sL

dL

uR

g̃

Q̃ Ũ

uR

sL

dL

g̃

Q̃

dR

D̃

dR

Im A0 Isospin breaking ⇒ Im A2

behave as EW penguin 
(“trojan” penguin)

cf. QCD penguin

sum difference

× ×

ε’: direct CP violation in K→ππ



[Kitahara,Nierste,Tremper’16]Gluino-box contribution

sL

dL

uR

g̃

Q̃ Ũ

uR

sL

dL

g̃

Q̃

dR

D̃

dR

• Isospin violation: 

• Enhancement 

- QCD interaction & 1/ω~22 

- Chiral enhancement: ini=L, fin=R 

• Still constrained by εK

mŨ 6= mD̃

× ×

ε’: direct CP violation in K→ππ

)
relax 
εK bound



|⇡⇡i
CPV in

|⇡⇡i
CPV at decay ⇒ ε’/ε

|KLi ⇠ |K�i+ ✏K |K+i

K0 $ K̄0

✏K ' ✏ ImhK0|H|K̄0ip
2�mK

• CPV during oscillation mixing:

✏(SM)
K = (2.24± 0.19)⇥ 10�3

✏(exp)K = (2.228± 0.011)⇥ 10�3• Experiment:

• SM:
very severe 
constraint

)

Severe εK constraint



sL

dL

g̃

Q̃

dR

D̃

dR

×

sL

dL

g̃

Q̃ Q̃

sL

dL

× ×

ε’: KL→ππ εK: K0 $ K̄0

Model is naively excluded

✏K ' ✏
(SM)
K +

✏ ImhK0|H|K̄0i|NPp
2�mK

Gluino-box contribution



sL

dL

g̃

Q̃ Q̃

sL

dL

× ×

sL

dL

g̃

Q̃ Q̃

sL

dL

× ×

• crossed diagram because 
gluino is Majorana 

• relatively destructive 

• cancellation for 

• εK satisfied for 
1 1052 2031.5 15710 5

10 4

10 3

MS TeV

10 2

1.4 1.5

1.6
2.0

mg̃ ⇠ 1.5mq̃

excluded

mg̃ & 3–4TeV
|(m2

Q̃
)12|/m2

q̃ = 0.1

Cancellation

crossed
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excluded 
by εK

|(m2
Q̃
)12|/m2

q̃ = 0.1

[Kitahara,Nierste,Tremper’16]

θ=-π/4

ε’/ε

1σ
2σ

• Gluino-box with large 
isospin breaking 

• suppress εK by mg/mQ = 1.5  

• ε’/ε discrepancy is 
explained for mQ < 6TeV

Result

θ=3π/4

LH
C

~ ~

~ ~
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QCD penguin EW penguin

• Enhance flavor-changing Z coupling or Z’ contributions, …  

• SUSY scenarios 
- Gluino box with large isospin breaking 

- Z penguin contribution

[Buras et.al’15-16; VLQ, 331 model, Little Higgs][Cirigliano et.al.’17; RH]

[Kitahara,Nierste,Tremper’16]

[Tanimoto,Yamamoto’16;ME,Mishima,Ueda,Yamamoto’16]

New physics models

s

d

u/d
�, Z(0)



• (Naive) effective Lagrangian 

• Effective Lagrangian in SMEFT  [=SU(2)xU(1) inv.]

Z-penguin contribution

L = �L(s̄�
µPLd)Zµ +�R(s̄�

µPRd)Zµ

⇒ NOT gauge invariant

L = LSM +
P

i CiOd�5
i

Od=6
i =(H†i

 !
DµH)(qi�

µqj),

(H†i⌧a
 !
DµH)(qi⌧

a�µqj),

(H†i
 !
DµH)(di�

µdj)

)

⇒  ΔL

⇒  ΔR

EWSB

s

d

u/d
Z

) L = �L(s̄�
µPLd)Zµ +�R(s̄�

µPRd)Zµ + (Gi,W
±–terms)



Observables

• ε’/ε

• εK

s

d

u/d
Z

(✏0/✏)NP / �
⇣
Im�L + c2W

s2W
Im�R

⌘

[ME,Kitahara,Mishima,Yamamoto’16;Buras et.al.’16]
overlooked in literature

sL/R

dL/R

dL/R

sL/R

Z

(a)

sL

dL/R

dL

sL/R

Z

SM

(b)

tsL

dL/R

G−

dL

sL/R

W

(c)

tsL

dL/R

W

dL

sL/R

G−

(d)

tsL

dL/R

G−

dL

sL/R

G−

(e)

Figure 1. The NP contributions to ∆S = 2 process. The black bubble denotes the ver-
tices in Eq. (2.4) originating from the dimension-6 effective operators: OL and OR. The
white bubble with “SM” denotes the SM flavor-changing Z interaction. Subfigures (b)–(e)
correspond to the interference contributions between the NP and SM. A contribution from
G0-exchange diagram is negligible because it receives a suppression factor by the external
momentum, so that we omit it here.

where the right-hand side is [15]

(ϵK)
Z
1 = −4.26× 107 Im∆L Re∆L, (ϵK)

Z
2 = −4.26× 107 Im∆R Re∆R,

(ϵK)
Z
3 = 2.07× 109 Im∆L Re∆R, (ϵK)

Z
4 = 2.07× 109 Im∆R Re∆L. (2.7)

In these expressions, renormalization group corrections and long-distance contribu-
tions are included [25]. In addition, one must take account of the interference terms
between the SM and NP contributions (Figs. 1 (b)–(e)),

(ϵK)
Z
5 = −4.26× 107 Im∆SM

L Re∆L, (ϵK)
Z
6 = −4.26× 107 Im∆LRe∆

SM
L ,

(ϵK)
Z
7 = 2.07× 109 Im∆SM

L Re∆R, (ϵK)
Z
8 = 2.07× 109 Im∆R Re∆SM

L . (2.8)

Here, the SM contribution, ∆SM
L , is generated by radiative corrections. At the one-loop

level, it is calculated as

∆SM
L =

g3λt

8π2cW
C̃

(
m2

t

m2
W

, µ

)
, ∆SM

R = 0, (2.9)

where cW = cos θW , λi ≡ V ∗
isVid with the CKMmatrix Vij, and µ is the renormalization

scale.#4 In this letter, the CKMfitter result [24] is used for the CKM elements,
unless otherwise mentioned. The loop function is#5

C̃(x, µ) = C(x) +∆C(x, µ). (2.10)

#4 In order to introduce how significant the interference contributions are, we ignore the renormal-
ization group corrections to the dimension-6 operators above the electroweak scale, which is out of
scope of this letter.
#5 The loop function C̃(x, µ) is consistent with the result in Ref. [26].

3

~3.3



Constraint on general Z scenario

• Severe bound on ΔR due to chiral enhancement 

• Wide parameter region in ΔL ⇒ Wino (chargino)
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0
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ΔL ΔR
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ε’/ε
1σ
2σ

εK
excluded 
by KL→µµ

excl. by



• Flavor and CP violation in LR mixing of squarks

W±

t t

�, Z

s d

u, d u, d
Z

fW±

ũi ũi

Chargino Z penguin

[ME,Mishima,Ueda,Yamamoto’16]Chargino Z penguin

SM SUSY

M2
d̃
= diag(m2

q̃) +m2
q̃

✓
�LL �LR

�RL �RR

◆

ij

V = (TU )i3HuũiLt̃
⇤
R

(H†i
 !
DµH)(qi�

µqj)

(H†i⌧a
 !
DµH)(qi⌧

a�µqj)

)

(�uLR)ij =

v2p
2
(TU )⇤ij

m2
q̃



[ME,Mishima,Ueda,Yamamoto’16]Chargino Z penguin

xq̃W̃ = m

2
q̃/m

2
W̃

• Flavor and CP violations in δLR, δRL 

• Not suppressed by mEW/mSUSY if δLRδRL is fixed 

• ε’/ε can be explained if δLRδRL is large

H0(x): loop function w/ s d

Z

fW±

t̃R

c̃L ũL
× ×

How large can δLRδRL (i.e. ε’/ε) be?

�L ' (�uLR)
⇤
13(�

u
LR)23H0(xq̃W̃ )

(✏0/✏)NP / �
⇣
Im�L + c2W

s2W
Im�R

⌘



• δLR,RL are constrained by vacuum stability condition 

• large trilinear coupling spoils stability of EW vacuum 

⇒ ‘tunneling’ to dangerous (charge/color breaking) vacuum

V

EW

CCB

Hu, ũiL, t̃R

Stability of EW vacuum

V = (TU )i3HuũiLt̃
⇤
R(�uLR)ij =

v2p
2
(TU )⇤ij

m2
q̃

⇒



• decay rate per unit volume   [Coleman’77] 

• bounce action (cf. WKB calculation of tunneling rate) 

• lifetime must be larger than present age of universe

Vacuum decay rate

�/V = Ae�B/~ [1 +O(~)]

@2�2
B � V 0(�B) = 0

(B =) SE =

Z
d

4
x


1

2
(@�B)

2 + V (�B)

�

ΦB: solution of                                    w/ b.c.

B & 400A~(1TeV)4 ⇒

⇒ upper bound on trilinear coupling



Require vac lifetime to be longer than age of universe
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Severer in heavy SUSY

Upper bound on δLR
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ε’/ε discrepancy is explained for

mW̃ = mq̃

= 1TeV

= 2TeV

= 3TeV

mq̃ . 4–6TeV

[ME,Mishima,Ueda,Yamamoto’16]

ε’/ε limited by 
vac stability

How large can SUSY scale be?

Maximum SUSY contribution to ε’/ε
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ũL

×

×
t̃R

Other constraints: εK
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KL→µµ
• General Z contribution 

⇒ loosely constrained 

• chargino box 

⇒ decouple ~δ4/msoft2 

(cf. ⇔ ε’/ε ~ δ2)
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Figure 1. The NP contributions to ∆S = 2 process. The black bubble denotes the ver-
tices in Eq. (2.4) originating from the dimension-6 effective operators: OL and OR. The
white bubble with “SM” denotes the SM flavor-changing Z interaction. Subfigures (b)–(e)
correspond to the interference contributions between the NP and SM. A contribution from
G0-exchange diagram is negligible because it receives a suppression factor by the external
momentum, so that we omit it here.

where the right-hand side is [15]

(ϵK)
Z
1 = −4.26× 107 Im∆L Re∆L, (ϵK)

Z
2 = −4.26× 107 Im∆R Re∆R,

(ϵK)
Z
3 = 2.07× 109 Im∆L Re∆R, (ϵK)

Z
4 = 2.07× 109 Im∆R Re∆L. (2.7)

In these expressions, renormalization group corrections and long-distance contribu-
tions are included [25]. In addition, one must take account of the interference terms
between the SM and NP contributions (Figs. 1 (b)–(e)),

(ϵK)
Z
5 = −4.26× 107 Im∆SM

L Re∆L, (ϵK)
Z
6 = −4.26× 107 Im∆LRe∆

SM
L ,

(ϵK)
Z
7 = 2.07× 109 Im∆SM

L Re∆R, (ϵK)
Z
8 = 2.07× 109 Im∆R Re∆SM

L . (2.8)

Here, the SM contribution, ∆SM
L , is generated by radiative corrections. At the one-loop

level, it is calculated as

∆SM
L =

g3λt

8π2cW
C̃

(
m2

t

m2
W

, µ

)
, ∆SM

R = 0, (2.9)

where cW = cos θW , λi ≡ V ∗
isVid with the CKMmatrix Vij, and µ is the renormalization

scale.#4 In this letter, the CKMfitter result [24] is used for the CKM elements,
unless otherwise mentioned. The loop function is#5

C̃(x, µ) = C(x) +∆C(x, µ). (2.10)

#4 In order to introduce how significant the interference contributions are, we ignore the renormal-
ization group corrections to the dimension-6 operators above the electroweak scale, which is out of
scope of this letter.
#5 The loop function C̃(x, µ) is consistent with the result in Ref. [26].
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• direct production: future collider, e.g., 100TeV? 

• CP-violating Zds coupling induces 

•                    is sensitive to CP violation

s d

u, d u, d
Z

fW±

ũi ũi

ε’/ε

s d

Z

fW±

ũi ũi

⌫ ⌫

KL ! ⇡0⌫⌫̄

KL ! ⇡0⌫⌫̄

KL ! ⇡0⌫⌫̄

cf. CP|⇡0i = �|⇡0i, CP|⌫⌫̄i = �|⌫⌫̄i

How to test the scenario?



• Observables 

• Correlation is negative if either ΔL or ΔR dominates 

⇒ (Wino-like) chargino contributes only to ΔL

Negative correlation between ε’/ε & KL→π0νν

(✏0/✏)NP / �
⇣
Im�L + c2W

s2W
Im�R

⌘

B(KL ! ⇡0⌫⌫̄) / [Im(SM+�L +�R)]
2

s d

Z

fW±

ũi ũi

⌫ ⌫



• Branching ratio 

• SM prediction 

• KOTO experiment @ J-PARC 

- collect O(100) events (SM) 

- target: ~10% uncertainty of SM 
⇒ Probe deviations > ~10% 

3 CKM inputs from tree-level observables 9

X
t1.2 %

|V
cb

|

7.0 %

�

7.1 %

|V
ub

|

14.9 %

other1.0 %

B(KL ! ⇡0⌫⌫̄)

Figure 1: Error budgets for the branching ratio observables B(K+ ! ⇡+⌫⌫̄) and B(KL !
⇡0⌫⌫̄). The remaining parameters, which each contribute an error of less than 1%, are

grouped into the “other” category.

In order to obtain the values of "K , S KS , �Ms,d and of the branching ratios
for Bs,d ! µ

+

µ

� we use the known expressions collected in [16]. The “bar” on
the Bs ! µ

+

µ

� branching ratio, B(Bs ! µ

+

µ

�), denotes an average over the two
mass-eigenstates, as measured by experiment, rather than an average over the two
flavour-states, which di↵ers in the Bs system [59–61].

In Table 2 we show the results for the K

+ ! ⇡

+

⌫⌫̄ and KL ! ⇡

0

⌫⌫̄ branching
ratios and other observables, for three choices of the pair (|Vub|, |Vcb|) corresponding
to the exclusive determination (17), the inclusive determination (18) and our average
(19). We use (20) for � in each case. We observe:

• The uncertainty in B(K+ ! ⇡

+

⌫⌫̄) amounts to more than 10% and has to
be decreased to compete with future NA62 measurements, but finding this
branching ratio in the ballpark of 15 ⇥ 10�11 would clearly indicate NP at
work.

• On the other hand, consistency with B(Bs ! µ

+

µ

�) would imply the K

+ !
⇡

+

⌫⌫̄ branching ratio to be in the ballpark of 7 ⇥ 10�11. In such a case the
search for NP in this decay will be a real challenge and the simultaneous
measurement of KL ! ⇡

0

⌫⌫̄ will be crucial.

• The values of S KS are typically above the data but only in the case of the
inclusive determinations of both |Vcb| and |Vub| is a new CP phase required.

• The accuracy on the SM prediction for �Ms and �Md is far from being
satisfactory. Yet, the prospects of improving the accuracy by a factor of two
to three in this decade are good.

3.2 Correlations between observables

Correlations between K+ ! ⇡+⌫⌫̄ and Bq ! µ+µ�

From inspection of the formulae for the branching ratios for K

+ ! ⇡

+

⌫⌫̄ and
Bs,d ! µ

+

µ

� , each of which in particular depends on |Vcb|, we derive the following

B(KL ! ⇡0⌫⌫̄)
exp

< 5.1⇥ 10�8

KL→π0νν

B(KL ! ⇡0⌫⌫̄) / [Im(SM+�L)]
2

B(KL ! ⇡0⌫⌫̄)SM = (3.0± 0.2)⇥ 10�11
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• positive deviation achieved when mU > mD (⇔ chargino) 

• sizable (>10%) deviation if SUSY particles are light 
e.g., slepton ~300GeV, Wino~1.5TeV, squark ~ 3TeV; εK tuned 

⇒ LHC direct search

Compared w/ gluino-box scenario: K→πνν

χ̃−
sL

dL

L̃

ν

ν

Q̃

χ̃−

g̃sL

dL

Ũ

uR

uR

Q̃

g̃

ε’: KL→ππ KL→π0νν
�̃�

sL

dL

L̃

�

�

Q̃

�̃�

Figure 4 – Dominant contribution to K+ ! ⇡+⌫⌫̄ and KL ! ⇡0⌫⌫̄ in the MSSM scenario of Refs.5,6. eL denotes
a charged slepton. Neutralino diagrams sum to a smaller contribution.

The (positive) sign of the MSSM contribution to ✏0K implies

sgn
⇥B(KL ! ⇡0⌫⌫) � BSM(KL ! ⇡0⌫⌫)

⇤
= sgn (mŪ � mD̄).

Thus a precise measurement of B(KL ! ⇡0⌫⌫) will tell whether the right-handed up squark is
heavier or lighter than the right-handed down squark.
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• New 2.8–2.9σ discrepancy in ε’/ε 

• Revisit SUSY contributions 

• Gluino-box contribution with large isospin violation can 
explain anomaly for squarks are lighter than ~6TeV 

• Chargino contributions to Z penguin can explain anomaly 
if SUSY scale is lower than 4-6TeV 

• Then, KL→π0νν is predicted to be lower than ~60% of SM

Summary



Introduction Model-independent analysis Implications for NP models Conclusions NP implications of b ! s measurements

Theory callenges in exclusive semi-leptonic decays
Perturbative & parametric uncertainties are under control. Main issues:

Form factors

I Systematic improvement
possible: lattice, light-cone sum
rules (LCSR); New results!

I Cross-check: heavy quark limit
+ corrections (not for BRs!)
(see previous talk)

Hadronic, non-FF corrections

I In particular “charm loop” at
low q2 and broad cc̄
resonances at high q2:
Dominant uncertainty and
currently only educated guess

[Khodjamirian et al. 1006.4945, Jäger and

Camalich 1212.2263, Lyon and Zwicky

1406.0566])David Straub (Universe Cluster) 4

Flavor candidates of NP signal

• Muon g-2: >3σ, lattice for light-by-light cont. 

• B→K*ll: >3σ in P5’ angular distribution 
- may underestimate charm loop 

• RK(*)=Γ(B→K(*)µµ)/Γ(B→K(*)ee): >2σ 

- LHCb: challenging to identify electrons 
- electron rate looks unclear 

• RD(*)=Γ(B→D(*)τν)/Γ(B→D(*)lν): >3σ 

- deviation mostly by BaBar ⇒  tau identification? 

- latest LHCb result is consistent with SM 

• CP violation in Kaon decays

had

charm

Not explained



Backup slide



• First discovery of CP violation was made in KL→ππ decay 

- CP violation in oscillation: “indirect CP violation” 
- Nobel prize in 1980 (Cronin and Fitch) 

• CPV explained by postulating a third family of quarks 

- Nobel prize in 2008 by discovery of CPV in B system 

• Direct CP violation discovered in KL→ππ decay 

• Many progresses in perturbative and lattice calculations 
- first lattice computation of ε’

[Christenson,Cronin,Fitch,Turlay’64]

[Kobayashi,Maskawa’73]

[NA31,KTeV,NA48,’90-99]

[RBC-UKQCD’15]

What’s new in Kaon? — History of CP violation
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Figure 2. Composition of ImA0, ImA2 and ✏0K/✏K with respect to the operator basis. We
take µ = 1.3 GeV. In subfigure (c), the right (left) side of the dashed line represents positive
(negative) contributions.

guins contribute |0.2–0.7| ⇥ 10�4#3 to ✏0K/✏K , which rather small compared with the
QCD-penguin and QED-penguin contributions (see Figure 2(c)). Even if we add this
contribution as +0.7⇥ 10�4 to the central value (to the higher-order uncertainty) of
✏0K/✏K , the discrepancy still persists at 2.7 (2.8) �.

In Fig. 2 we show the composition of ImA0, ImA2 and ✏0K/✏K with respect to the
operator basis. We observe that the positive dominant contribution to ✏0K/✏K comes
from Q6 while Q9 is subdominant. The dominant negative contribution comes from
Q8 while Q4 is subdominant. Remarkably, their sum almost cancels at next-to-leading
order. This leads to an extremely small central value of the Standard Model prediction
for ✏0K/✏K .

Although the results of the Wilson coe�cients and the B parameters by them-
selves are slightly di↵erent when compared to the result of Ref. [14], the products are
well consistent#4. The main di↵erence between this reference and our analysis is in
the subleading contributions. In Ref. [14], the hadronic matrix elements hQ3(µ)i0,
hQ5(µ)i0 and hQ7(µ)i0 are set to be 0 as central values, while we have evaluated them
from the lattice data. The numerical di↵erence in ✏0K/✏K is ⇠ �1 ⇥ 10�4. We also
find that the contribution of O(↵2

EM/↵2
s) terms, which has not been considered in

the literature so far, only contributes to ✏0K/✏K as little as �0.08 ⇥ 10�4. This term,
however, will be relevant in new-physics models with TeV-scale isospin violation.

#3The sign depends on the sign of the hadronic matrix element. The preliminary lattice cal-
culation of h⇡|Q8g|Ki [46] and calculations in the chiral quark model [47–49] imply that a con-
tribution to ✏0K/✏K is positive at the leading order. However, next-to-leading order contributions
to h(⇡⇡)I=0|Q8g|K0i are expected to mess up the leading order estimate because of a parametric
enhancement / 1/Nc ·m2

K/m2
⇡ [50, 51].

#4 Indeed, the values of y6B
(1/2)
6 and y8B

(3/2)
8 are in good agreement with Ref. [14].
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Supersymmetric explanation of CP violation in K→ππ decays
/20

The Isospin amplitude can be decomposed into Wilson coefficients (Ci ) 
and hadronic matrix elements (<Qi>)

QCD PG 
(LLRR)

EW PG 
(LLRR)

QCD PG 
(LLLL)

Positive contribution

Negative 
contribution

Kaon & CP violation:4

AI=0,2 = h(⇡⇡)I=0,2|H|�S|=1
e↵ |K0i

=
X

i

Cih(⇡⇡)I=0,2|Qi|K0i ⌘
X

i

CihQiiI=0,2

✏0K/✏K

Composition of         
with respect to the  
operator basis

Qi are four-fermi operators

EW PG 
(LLLL)

✏0K/✏K

[TK, Nierste, Tremper 16’]
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Im A0 Im A2



with a ratio Re A0/Re A2 ⇡ 22! This feature is called �I = 1/2 rule, because I changes by half
a unit in KL,S ! (⇡⇡)I=0.

The master equation for ✏0K/✏K (see e.g. Ref. 10) reads:

✏0K
✏K

=
!+p

2|✏expK |Re Aexp
0

⇢
Im A2

!+
�
⇣
1 � ⌦̂e↵

⌘
Im A0

�
. (7)

Here !+ ' ReA2
ReA0

= (4.53 ± 0.02) · 10�2 is determined from the charged counterparts of Re A0,2

and ⌦̂e↵ = (14.8 ± 8.0) · 10�2 quantifies isospin breaking. One also takes |✏expK | and Re Aexp
0

from experiment, as indicated. The theoretical challenge is the calculation of Im A0,2 with non-
perturbative methods. Within the SM Im A0 is dominated by gluon penguins, with roughly 2/3
stemming from the matrix element h(⇡⇡)I=0|Q6|K0i (with the operator Q6 of Eq. (2)), while
about 3/4 of the contribution to Im A2 stems from h(⇡⇡)I=2|Q8|K0i. Lattice-gauge theory
has h(⇡⇡)I=2|Q8|K0i (and thereby Im A2) under good control for some time 11, while reliable
lattice calculations of h(⇡⇡)I=0|Q6|K0i have become possible only recently7. Using these matrix
elements from lattice QCD we find 4

✏0K
✏K

= (1.06 ± 4.66Lattice ± 1.91NNLO ± 0.59IV ± 0.23mt) ⇥ 10�4, (8)

a value which is 2.8 � below the experimental result in Eq. (4). The various sources of errors are
indicated by the subscripts: The largest uncertainty stems from the hadronic matrix elements
calculated with lattice QCD. The next error is the perturbative uncertainty from the unknown
next-to-next-to-leading (NNLO) QCD corrections. “IV” denotes strong-isospin violation (stem-
ming e.g. from mu 6= md) and the last error comes from the error in mt.

This result, obtained with a novel compact solution of the renormalization group equations,
agrees with the one in Ref. 10. The quoted lattice results are consistent with earlier analytic
calculations in the large-Nc “dual QCD” approach 12. Thus lattice gauge theory is currently
starting to resolve a long-standing controversy about Im A0 between the large-Nc

12 and chiral
perturbation theory13 communities. While the latter method can reproduce the large-Nc values,
it can likewise easily accomodate the experimental range in Eq. (4).

3 ✏0K in the MSSM

The large factor 1/!+ multiplying ImA2 in Eq. (7) renders ✏0K/✏K especially sensitive to new
physics in the �I = 3/2 decay K ! (⇡⇡)I=2. This feature makes ✏0K/✏K special among all
FCNC processes. However, it is di�cult to place a large e↵ect into ✏0K without overshooting ✏K :
The SM contributions to both quantities depend on the CKM combination ⌧ in Eq. (5) as

✏0 SMK / Im ⌧ and ✏NP
K / Im ⌧2. (9)

In new-physics scenarios ⌧ is replaced by some new �S = 1 parameter � and the new-physics
contributions scale as

✏0NP
K / Im � and ✏NP

K / Im �2. (10)

If new-physics enters through a loop with super-heavy particles, the only chance to have a
detectable e↵ect in ✏0K is a scenario with |�| � |⌧ |. Thus if ✏0NP

K ⇠ ✏0 SMK one expects ✏NP
K � ✏SMK ,

in contradiction with the experimental value. Thus large e↵ects in ✏0K from loop-induced new
physics are seemingly forbidden. Many studies of ✏0K indeed involve new-physics scenarios with
tree-level contributions to ✏0K

14, in which the requirement |�| � |⌧ | can be relaxed.
The MSSM has the required ingredients to explain ✏0K in Eq. (4) without conflict with ✏K

despite � � ⌧ . Moreover, this is possible with squark and gluino masses in the range 3–7TeV,
far above the reach of the LHC. The enhancement of ✏0K is achieved with “Trojan penguin”

Status of standard model prediction

matrix 
element

strong 
isospin 
violation



Why is correlation negative? 

• Observables 

• Correlation is negative if either ΔL or ΔR dominates 

⇒ (Wino-like) chargino contributes only to ΔL 

• ΔL ~ ΔR to enhance ε’/ε and B(KL→π0νν)   [Buras et.al.’15-16] 

⇒ Gluino can generate both ΔL and ΔR, but constrained by εK

Enhance ε’/ε and KL→π0νν

(✏0/✏)NP / �
⇣
Im�L + c2W

s2W
Im�R

⌘

B(KL ! ⇡0⌫⌫̄) / [Im(SM+�L +�R)]
2


