

アクシオン探索の現状とこれから

青木 新

(Arata Aoki)

神戸大学 宇宙論研究室

w/早田次郎,正木愛美

2017.10.11

@京都大学素粒子論研究室

アクシオンを特徴づける2つのスケール

"アクシオン"

QCDアクシオン

· "Strong CP problem" 解決のために導入

[Peccei & Quinn (1977), Weinberg (1978), Wilczek (1978)]

・非摂動効果:QCDインスタントン $(\Lambda \sim \Lambda_{QCD} \sim 100 \text{ MeV})$

$$m_a \simeq \frac{\Lambda_{\rm QCD}^2}{f_a} \simeq 6 \times 10^{-6} \,\mathrm{eV}\left(\frac{10^{12} \,\mathrm{GeV}}{f_a}\right)$$

Axion-Like Particles (ALPs)

・ 質量 m_a と崩壊定数 f_a は独立なパラメータ

アクシオンの相互作用

NGB —> 相互作用は*f_a*で抑制 カイラル対称性の破れで生成 —> 擬スカラー

 $g_{a\gamma\gamma} = \frac{\alpha}{2\pi f_a} c_{a\gamma\gamma}$ ($c_{a\gamma\gamma} = \mathcal{O}(1)$: モデル依存)

アクシオンの相互作用

NGB —> 相互作用は*f_a*で抑制 カイラル対称性の破れで生成 —> 擬スカラー

QCDアクシオンの場合 ("Strong CP problem"の解決)

$$\mathcal{L}_{\theta} = \frac{\alpha_s}{8\pi} \frac{\phi}{f_a} G\tilde{G}$$

中性子の電気双極子モーメント(EDM)を誘起
$$d_n \sim 10^{-16} \left(\frac{\phi(t)}{f_a} \right) e \, {\rm cm}$$

CASPEr (Cosmic Axion Spin Pression Experiment)

アクシオンの相互作用

NGB —> 相互作用は*f_a*で抑制 カイラル対称性の破れで生成 —> 擬スカラー

fifth force:スピン依存

$$V_{s_i s_j}(r) \sim v_{s_i s_j}(r) \frac{g_{ai} g_{aj}}{r} e^{-m_a r}$$
 : 制限は弱い

アクシオンの相互作用

NGB —> 相互作用は*f_a*で抑制 カイラル対称性の破れで生成 —> 擬スカラー

Einstein方程式

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

エネルギー運動量テンソル

$$T_{\mu\nu} = \phi_{,\mu}\phi_{,\nu} - \left[\frac{1}{2}g^{lphaeta}\phi_{,lpha}\phi_{,eta} + V(\phi)\right]g_{\mu
u}$$

※ 重力理論は一般相対論を仮定

(axion in modified gravity : Aoki & Soda [1601.03904, 1703.03589])

アクシオンのパラメータ空間

※ QCDアクシオン
$$m_a \simeq 6 \times 10^{-6} \,\mathrm{eV} \left(\frac{10^{12} \,\mathrm{GeV}}{f_a} \right)$$

$$g_{a\gamma\gamma} = \frac{\alpha}{2\pi f_a} c_{a\gamma\gamma}$$

X

• • •

X

地上観測実験

CAST (CERN Axion Solar Telescope)

IAXO (International AXion Observatory) : Next generation

ALPS (Any Light Particle Search) @ DESY

天体物理学・宇宙論からの制限

$$g_{a\gamma\gamma}B$$
への制限:磁場のモデルに依存

・ 天体の冷却:相互作用が大きいと天体からのエネルギー散逸が大きすぎる $g_{a\gamma\gamma} \lesssim 6.6 \times 10^{-11} \, {
m GeV^{-1}} \, {
m for} \, m_a \lesssim 100 \, {
m keV}$

SN1987a:ニュートリノと同時に光子が観測されなかった $g_{a\gamma\gamma} \lesssim 5.3 \times 10^{-12} \text{GeV}^{-1}$ for $m_a \lesssim 4.4 \times 10^{-11} \text{ eV}$ $(B_{\text{Milky Way}} \sim \mu \text{G})$

・ ガンマ線バースト:円偏光が観測されていない

$$g_{a\gamma\gamma}B = 3 \times 10^{-2} \left(\frac{g_{a\gamma\gamma}}{10^{-11} \,\mathrm{GeV}^{-1}}\right) \left(\frac{B}{\mathrm{nG}}\right) \mathrm{Mpc}^{-1} \lesssim 10^{-4} \,\mathrm{Mpc}^{-1}$$

[Masaki, Aoki & Soda (2017)]

※銀河間磁場についてはほとんど何も分かっていない

 $(m, g_{a\gamma\gamma})$ への制限

X

Black Hole Superradiance

スカラー場がKerr BHから回転エネルギーを引き抜きBHを不安定化 $GM \sim m_a^{-1} \quad [GM_\odot \sim (10^{-10} \,\mathrm{eV})^{-1}]$

Kerr BHの質量と回転パラメータから m_a への制限

※ 軽いboson場に対する一般的な制限

アクシオン暗黒物質

ー様等方宇宙におけるスカラー場
$$\phi(t)$$

 $\ddot{\phi} + 3H\dot{\phi} + m^2\phi = 0$
 $H = \dot{a}/a$: Hubble parameter
現在の値: $H_0 \sim 10^{-33}$ eV

(i)
$$H > m \quad \phi(t) = \phi_i$$

(ii) $H < m \quad \phi(t) = \frac{\phi_0}{a^{3/2}} \cos(mt)$
エネルギー密度: $\rho = \frac{1}{2}\dot{\phi}^2 + \frac{1}{2}m^2\phi^2 = \frac{1}{2}m^2\phi_0^2a^{-3} = \frac{\rho_0}{a^3}$
圧力: $p = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}m^2\phi^2 = \frac{\rho_0}{a^3}\cos(2mt)$

 $m \gg H$ なら $\langle p \rangle = 0$

> "重い"アクシオンはCDM-like

アクシオンDMの残存量

残存量は (m_a, f_a) & $\phi_i \ge f_a \leq H_I$ で決まる

(i) $f_a > H_I$: pre-inflation / broken scenario

 $heta_i = \phi_i / f_a$:現在の宇宙でひとつの値・free parameter

※ 微調整しないなら $\phi_i \sim f_a$

(ii) $f_a < H_I$: post-inflation / unbroken scenario

$$\langle \theta_i^2 \rangle = \pi^2 / 3 \quad (\theta_i \in [-\pi, \pi])$$

(θ_i はfree parameterではない)

QCDアクシオンの残存量

QCDアクシオンの場合 (m_a, f_a) は独立ではない

Axion Haloscope

Ultralight Axion (ULA)

On the hypothesis that cosmological dark matter is composed of ultra-light bosons

 $Lam Hui^*$

Department of Physics, Columbia University, New York, NY 10027

Jeremiah P. Ostriker[†]

Department of Astronomy, Columbia University, New York, NY 10027 and Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544

> Scott Tremaine[‡] and Edward Witten[§] Institute for Advanced Study, Princeton, NJ 08540

Many aspects of the large-scale structure of the universe can be described successfully using cosmological models in which $27 \pm 1\%$ of the critical mass-energy density consists of cold dark matter (CDM). However, few—if any—of the predictions of CDM models have been successful on scales of ~ 10 kpc or less. This lack of success is usually explained by the difficulty of modeling baryonic physics (star formation, supernova and black-hole feedback, etc.). An intriguing alternative to CDM is that the dark matter is an extremely light ($m \sim 10^{-22} \text{ eV}$) boson having a de Broglie wavelength $\lambda \sim 1 \text{ kpc}$, often called fuzzy dark matter (FDM). We describe the arguments from particle physics that motivate FDM, review previous work on its astrophysical signatures, and analyze several unexplored aspects of its behavior. In particular, (i) FDM halos or sub-halos smaller than about $10^7 (m/10^{-22} \text{ eV})^{-3/2} M_{\odot}$ do not form, and the abundance of halos smaller than a few

$m\sim 10^{-22}\,{ m eV}\,$ のスカラーDM:Fuzzy DM [Hu et.al. (2000)]

ULAはFuzzy DMの候補 ※ QCDアクシオンはCDM

冷たい暗黒物質(CDM)とその問題点

宇宙論的距離スケール $: 1 \text{ pc} \simeq 3 \text{ XE} = 3 \times 10^{16} \text{ m}$

CDMの小スケール問題と解決方法

CDM は銀河スケールの構造を作りすぎてしまう.

- "Missing Satellites": 銀河系の伴銀河の数
- "Cusp-Core":銀河内 DM の密度分布

→ 理論と観測の一致のためには、何らかの「圧力」が必要.

銀河スケール問題の解決方法

- バリオンの寄与 (星間ガスや超新星爆発)
 *バリオンが少ない矮小銀河でも問題
- Self-Interacting DM *大きな自己相互作用 $(\sigma/m \gtrsim 0.1 \, \mathrm{cm}^2 \cdot g^{-1})$ が必要
- Fuzzy DM: 軽いスカラー場 (波動性による圧力)

[Hu, Barkana, & Gruzinov (2000)]

Fuzzy DMとJeans不安定性

DM のエネルギー密度揺らぎ $\delta = \delta ho / ar{ ho}$ の成長

$$\ddot{\delta} - \left(4\pi G \bar{\rho} - k^2 c_s^2\right) \delta = 0$$
, $(c_s :$ **音速** $)$.
重力 > **圧力** : 不安定 (δ 成長) \Leftrightarrow **重力** < **圧力** : 安定

● スカラー場:スケール(波数 k)に依存した音速 c_s

$$c_{\rm s}^2 = \frac{k^2}{4m^2}$$

Jeans スケール (重力 = 圧力)

$$k_{
m J} \sim rac{1}{30\,{
m kpc}} \left(rac{m}{10^{-22}\,{
m eV}}
ight)^{1/2}$$

k < *k*_J (大スケール): CDM と同じ振舞い
 k > *k*_J (小スケール): 構造が "ぼやける"

CMBからFDMへの制限

 $m_{\phi} > 10^{-24} \, \mathrm{eV} \, \mathbf{t} \, \mathrm{CDM} \, \mathbf{b} \, \mathbf{\Sigma}$ 別がつかない.

アクシオンの圧力振動と重力ポテンシャル

• アクシオン場: Klein-Gordon eq.

$$(\Box - m^2)\phi = 0$$
.

• 第ゼロ近似解 : $m \sim 10^{-22}$ eV $\sim (1\,\mathrm{pc})^{-1} \gg k \sim (10\,\mathrm{kpc})^{-1}$

 $\phi = \phi_0 \cos(mt) \; .$

● エネルギー密度と圧力

$$egin{aligned} &
ho = rac{1}{2} \dot{\phi}^2 + rac{1}{2} m^2 \phi^2 = rac{1}{2} m^2 \phi_0^2 \equiv
ho_{\mathsf{dm}} \ , \ &
ho = rac{1}{2} \dot{\phi}^2 - rac{1}{2} m^2 \phi^2 =
ho_{\mathsf{dm}} \cos(2mt) \ . \end{aligned}$$

太陽系近傍の DM エネルギー密度:

 $ho_{
m dm}\simeq 0.3\,{
m GeV/cm^3}$.

パルサータイミング観測によるFDM探索

圧力の振動が重力ポテンシャルを励起 (Einstein eq.)

$$\delta \Phi = \frac{\rho_{\rm dm}}{8m^2} \cos(2mt) \; .$$

(*計量:
$$ds^2 = -(1+2\Psi)dt^2 + (1-2\Phi)d\vec{x}^2$$
)

- 重力ポテンシャルの変化 = 時空の変化
- パルサーからのパルス信号のズレとして観測できる。

$$\begin{split} \delta \Phi_{\text{amp}} &= \frac{\rho_{\text{dm}}}{8m^2} = 5 \times 10^{-18} \left(\frac{10^{-22} \,\text{eV}}{m}\right)^2 \,, \\ f &= \frac{2m}{2\pi} = 5 \times 10^{-8} \,\text{Hz} \left(\frac{m}{10^{-22} \,\text{eV}}\right) \,. \end{split}$$

*パルサー:正確な周期の電磁パルスを発する天体(中性子星)

パルサー観測によるFDM検出可能性

重力波干渉計を用いたFDM探索 [Aoki & Soda 2016]

重力波干渉計の概念図

重力波干渉計でFDMは検出できる?

- アクシオンの圧力の振動は等方的
- 干渉計の2本の腕は同じだけ伸び縮み
- 干渉縞は変化しない

→ 干渉計でアクシオン DM の振動は検出できない?

• 太陽系は銀河のなかを $v \sim 300 \text{ km/s} = 10^{-3} c$ で運動 $\rightarrow \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{r}$

FDMによる重力波干渉計の信号

• 空間計量のゆらぎ δg_{ij} (Lorentz 変換):

$$\delta g_{ij} = \frac{\rho_{\rm dm}}{8m^2} v_i v_j \cos(2mt)$$

(*速度 v_i からテンソルを作るので v_iv_j に比例)

アクシオンの信号:

$$s = lpha \cdot rac{
ho_{\sf dm} v^2}{8m^2} \cos(2mt) \; .$$

$$(\alpha \equiv (\hat{\mathbf{v}} \cdot \hat{\mathbf{x}})^2 - (\hat{\mathbf{v}} \cdot \hat{\mathbf{y}})^2$$
: アンテナパターン)

• 信号の振幅・周波数

$$s_{\text{amp}} = \frac{\rho_{\text{dm}} v^2}{8m^2} = 5 \times 10^{-24} \left(\frac{v}{10^{-3}}\right)^2 \left(\frac{10^{-22} \,\text{eV}}{m}\right)^2 ,$$

$$f = \frac{2m}{2\pi} = 5 \times 10^{-8} \,\text{Hz} \left(\frac{m}{10^{-22} \,\text{eV}}\right) .$$

FDMの信号と重力波干渉計の感度曲線

まとめと展望

電磁気

- ・ 直接探索のターゲットはQCDアクシオン
- ・ QCD axion DMに手が届きかけている (ADMX)
- ・ 天体物理・宇宙論からの制限には磁場の理解が必要

重力

- ・ QCD axionはCDM, ULAはFDM
- 重力相互作用はaixon DMモデルを棄却できる
- 10⁻²⁴ eV < m_a < 10⁻¹⁸ eV を調べるのは宇宙論的に面白い
 (CMB)
 (BH)

フェルミオン(電子)

物性を利用したテーブルトップの実験