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The worldvolume theory of M2-branes was not known
until recently.

The theory should be a 3D CFT with no adjustable \

coupling, but people could not construct such a CFT
\With sufficient amount of supersymmetries.

J

ABJM thCOI‘y (Aharony-Bergman-Jafferis-Maldacena "08)

‘N =6 U(IN) X U(N) super Chern-Simons theory\
with two bifundamental hypermultiplets

_Chern-Simons levels are chosen to be k1 = —k2 = k)

The theory describes the low energy effective theory of
the worldvolume theory of N M2-branes probing
a C* /7, singularity.

k = 1 : M2-branes in flat space?



The worldvolume theory of M5-branes is still mysterious.
(There may not be a covariant Lagrangian description.)

Two descriptions of BPS D2-D4 bound states

e

(Diaconescu ’96)

In the worldvolume theory of
D2-branes, the bound states

/ are described as solutions of the
D2 Nahm equations (Nahm data).

| I
.

D4 Nahm
In the worldvolume theory of transformatio

D4-branes, the bound states are J
described as monopole solutions. <




It would be very interesting if one could promote this
picture to M-theory:.

Two descriptions of BPS M2-M5 bound states

Xrg v .’L‘()'/
T T In the worldvolume theory of

- M2-branes (ABJM theory), the

/ bound states are described as
M2 solutions of the BPS equations.

/ —> o X S

M5 analog of Nahm
In the worldvolume theory of | ¢ransformation?
M5-branes, the bound states J

should be given as some solutions.«



BPS equations in the ABJM theory (Terashima '08)

(Gomis,

Rodriguez-Gomez,

[Ya p— YbeTYa’ — YaYbTYb] Van Ramsdonk

and Verlinde ’08)

Y?%(s) (a =1,2): N x N complex matrices
s : a real coordinate Y® = e
Automorphism
Y - Y =A% UY VT
U,V € SUN), (A%)e€SU(2), e eU(1)

Y’ again satisfy the above equations



[\We argue that the BPS equations are classically integrable}

The BPS equations admit a Lax representation

A = [A, B]
0 Y1l 4 AY?
A(s;A) = ( y1lt _ \—ly2t O )
ALY Yy 2T 4 \Y2Yy 1T O
B(s;A) = O AY Y2 4 z-1y2ty!

A € C : the spectral parameter



Involution structures

[{A,I‘} —0, [B,T] :o]

BV

M*(A) := M(=2"HT  “starinvolution”

Another useful property

o .,
B=\—A
O




Auxiliary linear problem

* The Lax equation is regarded as the compatibility condition
of the following auxiliary linear problem:

A(s; A)P(s5A) = n(A)P(s; A)
B(s; M)Y(s52) = —tp(s;A)

e A
For a system with Lax representation, there are several

powerful techniques to restrict the form of P (s; )
\and construct a class of general solutions.

Y

4 N
There is an even better way to construct solutions:
this is done by making use of the relation between

Kthe BPS equations and the Nahm equations. )




Nahm equations

[TI — iEIJKTJTKJ

T! (I =1,2,3) : N X N hermitian matrices

* Relation between the BPS equations and the Nahm equations
T! := (6!)ap YY1, T, := (o) e Y?TY®

o! (I =1,2,3) : Pauli matrices

a D
It Y are solutions to the BPS equations,

_both T/ and T satisfy the Nahm equations.
(Nosaka-Terashima ’12)




Lax representation for the Nahm equations (Hitchin °83)
Ao = [Aaa Ba]
A = 3 1 crp2 1 1 crp2
a =15+ (Ta _ZTa) R 5 (Ta_I_ZTa)

1 2 i 1 | 2
(Ta ZTa) T 2\ (Ta T ’LTa)

N | >~

The above Lax forms are related to those of the BPS equations
in a remarkably simple way:

A 0 B 0
2 1 _ 1
=0 4) = (T 5)
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We assume that A has 2N linearly independent eigenvectors
and express the linear problem for the BPS equations as

AV =V¥D

BY = —¥
1w _(H O
v=ale %) 2=(0 %)

H = diag(n1,...,nnN)

Due to the relation between the Lax representations, ¥,

automatically give solutions to the linear problems for the
Nahm equations

AW, =W, H?
B W, = —W,_

with a common eigenvalue matrix H?
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We can use the relation the other way around:

Prepare a pair of Nahm data T, sharing the same eigenvalues

and compute eigenvectors ¥, for the linear problem.

1 : .
Then ¥ = 7 < gl EZEJ ) gives a solution
2 T X2

to the linear problem for the BPS equations

and the operator A for the BPS equations is expressed as

O o, HN ' w*
( T, HN| ' o, ) WV )

if the following conditions are satisfied:

[aa; PN | = }

HNl — N2H
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Recall that the operator A for the BPS equations is expressed as

A — ( O Y+ AY? )
T\ YT \ly 0,

The solutions Y %(s) to the BPS equations are thus obtained as
1 2 —1
Y' 4+ AY? =0 HN, 05
* Solutions of the Nahm equations are well studied (Ercolani-Sinha 89)
(see also the textbook by Manton-Sutcliffe '04)

* It is straightforward to compute the eigenvectors

* The only nontrivial point we have to consider is the condition

{aajz I HNG | = }
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Semi-infinite solutions with N = 2

e The Nahm data

C 0'1 C 0'2

+t'1 T? = + t21
sinh(x — zo) 2 2 *  sinh(x — xy) 2 %
3 c o

tanh(x — o) 2

Tl

3

+ 31,

T = cs, c>0 ol : Pauli matrices

x1 = 0, Ty = —I, I1>0 t e R
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[88—; G HN; | = (ﬂ

- | @@y O -

cosh?l 4sinh?l

This is solved as

1 ¢ 2 ¢ 3 ¢
i = ; niy, t° = R ns, t° = nsg
2sinhl 2 sinhl 2 tanh
with
(ny1,n2,n3) = (sin 0 cos ¢, sin O sin ¢, cos 0)
4 )
V1 C sinh(x + 1) cos g e*? sinh [ sin g
- \/2 sinh I sinh « sinh(x 4 1) 0 sinh  cos g et®

0

v2 _ \/ C sinh x sin 3 0
~ V 2sinhisinhx sinh(x + 1) \ sinhl cos g e*® sinh(x + 1) sin g

-




The most general solution with N = 2

* The semi-infinite solution in the last slide can be expressed as

, 1 .0 .0, ” 0 . ” 0
Y = —( fisin—0" + fosin—10° 4+ fze*?cos —o° — fpe'® cos — 15
2 2 2 2 2
1 : 0 : 0 0 0
Y? = — e*® cos — ol — fae*® cos — i0? — fasin — 0> — fosin — 1
5 (fl 5 J2 5 VE! 5 Jo 5 12

FL= fy = csinhl
SR 2 sinh « sinh(z + 1)’

cosh(x +1/2) _sinh(w +1/2)

87 cosh(l/2) J1, 0~ sinh(l/2)

1

e Note that fi(8) are real functions and satisfy

fi = fifufi

where the values of %, j, k, [ are taken to be all distinct.
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¢ One can check that matrices of the form

Yl

Y2
\

2

1 ) )
— e'? cos — ol — f,e*? cos — 1o
. (f1 ot — fae® cos )

0

0

0. ,

1 0 . 0 . 0
(fl sin 2 o' + fasin 2 io? + fze*? cos B o3 — foe'® cos 2 12>

0

7]
— f3 sin — 0% — fo sin — 12>
2 2 P

~

with any real functions fi($) satisfying

fi=Fifuf)

are solutions of the BPS equations.

A sufhiciently general solution is given by

4 )
f = Yit1(u) | m Y1(us)V2(us)s(us)da(us)
Y 9 (u) V201 91 (s + w)9 (Ul — u)
- J
Pir1(uw) := i1 (u, 1) (:=0,1,2,3)
S — Sp 1
] so € R, 0 < ue < —, w1 € R>o, T € 1R5o
2(.01 2

17



The solution is defined over the region

— Uy < U < Uy

and fi diverge at each boundary of the region.

~

~
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Reduction in connection with the periodic Toda chain

* Let us make an ansatz of Y %(s) as follows:

[(Yl)mn — gm(s)ém,na (Yz)mn — hn(s)ém,n—l—lj
(m,n=1,...,N)

The BPS equations become
[gm — (h?ﬂn_l — h?n) dm hm — (g$n+1 — gfn) hm]

If we introduce

Ay = gm—l—lhma T 5= ! Vs
b,, := g?n — hfn, b,, := gfn — h?zn_l,

Am,y b satisfy (and the same is true for Gm, by )

(. B . B o o
Kam = G (bm+1 — bm), by, = —2(a; — am_l).]

These are the equations for the periodic Toda chain!
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Summary

* We have shown that the BPS equations in the ABJM theory
is classically integrable.

* The integrable structure of the BPS equations is closely
related to that of the Nahm equations.

* By making use of this fact, we have formulated an efficient
way of constructing solutions of the BPS equations.

* By way of illustration we have constructed the most general
solution describing two M2-branes.
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Outlook

* What is the structure of the moduli space of the solutions?

* Are there any other integrable BPS equations?

* What is the analog of the Nahm construction?

* What is the role of integrability in the theory of
MS5-branes and in the whole M-theory?
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