Precise determination of charm and bottom quark masses

チャーム及びボトムクォーク質量の精密決定

Y. Sumino (Tohoku Univ.)

☆Plan of talk

- 1. Motivation
- 2. Current status and History [Particle Data Group]
- 3. Theoretical analysis methods and Results Sum rules, Quarkonium spectrum, Inclusive *B* decays
- 4. Summary

Motivation for precise determination of m_b and m_c

Input parameters for precision flavor physics

LHC_b, Belle II e.g. $\Gamma_b \propto m_b^5$, b, c-hadron spectroscopy

• Constraints on GUT, BSM for flavor origins

e.g. m_b/m_{τ} ratio in SU(5) GUT

My personal motivation is more basic...

Why and How do we measure quark masses?

$$\mathcal{L}_{\text{QCD}}\left(\alpha_{s}, m_{q}\right) = \sum_{\substack{q=u,d,s,\\c,b,t}} \overline{\psi_{q}} \left(i\gamma^{\mu}D_{\mu} - m_{q}\right)\psi_{q} - \frac{1}{4}G^{a}_{\mu\nu}G^{\mu\nu a}$$

M. Gell-Mann

Why and How do we measure quark masses?

$$\mathcal{L}_{\text{QCD}}(\alpha_s, m_q) = \sum_{\substack{q=u,d,s,\\c,b,t}} \overline{\psi_q} \left(i\gamma^{\mu} D_{\mu} - m_q \right) \psi_q - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu a}$$

A question: Quark mass increases or decreases by strong interaction?

M. Gell-Mann

Particle Data Group 2016

С

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= \frac{2}{3} e$ Charm = +1

c-QUARK MASS

The *c*-quark mass corresponds to the "running" mass m_c ($\mu = m_c$) in the $\overline{\rm MS}$ scheme. We have converted masses in other schemes to the

VALUE (GeV)				DOCUMENT ID		TECN
1.27	±0.03	OUR EVALUATI	ON	See the ideog	ram b	elow.
1.246	± 0.023		1	KIYO	16	THEO
1.2715	5 ± 0.0095	5	2	CHAKRABOR.	.15	LATT
1.288	± 0.020		3	DEHNADI	15	THEO
1.348	± 0.046		4	CARRASCO	14	LATT
1.26	± 0.05	± 0.04	5	ABRAMOWICZ	Z13C	COMB
1.24	± 0.03	$+0.03 \\ -0.07$	6	ALEKHIN	13	THEO
1.282	± 0.011	± 0.022	7	DEHNADI	13	THEO
1.286	± 0.066		8	NARISON	13	THEO
1.159	± 0.075		9	SAMOYLOV	13	NOMD
1.36	± 0.04	± 0.10	10	ALEKHIN	12	THEO
1.261	± 0.016		11	NARISON	12A	THEO
1.278	± 0.009		12	BODENSTEIN	11	THEO
1.28	$+0.07 \\ -0.06$		13	LASCHKA	11	THEO
1.196	± 0.059	± 0.050	14	AUBERT	10A	BABR
1.28	± 0.04		15	BLOSSIER	10	LATT
1.279	± 0.013		16	CHETYRKIN	09	THEO
1.25	± 0.04		17	SIGNER	09	THEO

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= -\frac{1}{3}e$ Bottom = -1

b-QUARK MASS

The first value is the "running mass" $\overline{m}_b(\mu = \overline{m}_b)$ in the MS scheme, and the second value is the 1S mass, which is half the mass of the $\Upsilon(1S)$

MS MASS (GeV)	15 MASS (GeV)	DOCUMENT ID	TECN
4.18 +0.04 -0.03 OUR EV	ALUATION of MS Mass.	See the ideogram below.	
4.66 +0.04 OUR EVA	ALUATION of $1S$ Mass.	See the ideogram below.	
4.197±0.022	4.671 ± 0.024	¹ KIYO 16	THEO
4.183±0.037	4.656 ± 0.041	² ALBERTI 15	THEO
$4.193 \substack{+0.022 \\ -0.035}$	$4.667 \substack{+0.024 \\ -0.039}$	³ BENEKE 15	THEO
4.176±0.023	4.648 ± 0.026	⁴ DEHNADI 15	THEO
4.07 ±0.17	4.53 ± 0.19	⁵ ABRAMOWICZ14A	HERA
4.201 ± 0.043	4.676 ± 0.048	⁶ AYALA 14A	THEO
4.21 ±0.11	4.69 ± 0.12	⁷ BERNARDONI 14	LATT
$4.169 \!\pm\! 0.002 \!\pm\! 0.008$	$4.640 \pm 0.002 \pm 0.009$	⁸ PENIN 14	THEO
4.166±0.043	4.637 ± 0.048	⁹ LEE 130	LATT
4.247±0.034	4.727 ± 0.039	¹⁰ LUCHA 13	THEO
4.236 ± 0.069	4.715 ± 0.077	¹¹ NARISON 13	THEO
4.213 ± 0.059	4.689 ± 0.066	¹² NARISON 13A	THEO
4.171 ± 0.009	4.642 ± 0.010	¹³ BODENSTEIN 12	THEO
4.29 ±0.14	4.77 ± 0.16	¹⁴ DIMOPOUL 12	LATT
$4.235 \!\pm\! 0.003 \!\pm\! 0.055$	$4.755 \pm 0.003 \pm 0.058$	¹⁵ HOANG 12	THEO
4.177 ± 0.011	4.649 ± 0.012	¹⁶ NARISON 12	THEO
$4.18 \begin{array}{c} +0.05 \\ -0.04 \end{array}$	$4.65 \substack{+0.06 \\ -0.04}$	¹⁷ LASCHKA 11	THEO
$4.186 \pm 0.044 \pm 0.015$	$4.659 \pm 0.050 \pm 0.017$	¹⁸ AUBERT 10A	BABR
4.164 ± 0.023	4.635 ± 0.026	¹⁹ MCNEILE 10	LATT
4.163 ± 0.016	4.633 ± 0.018	20 CHETYRKIN 09	THEO
4.243±0.049	4.723 ± 0.055	²¹ SCHWANDA 08	BELL

Particle Data Group 2016

С

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= \frac{2}{3} e$ Charm = +1

c-QUARK MASS

The *c*-quark mass corresponds to the "running" mass m_c ($\mu = m_c$) in the $\overline{\rm MS}$ scheme. We have converted masses in other schemes to the

b

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= -\frac{1}{3}e$ Bottom = -1

b-QUARK MASS

The first value is the "running mass" $\overline{m}_b(\mu = \overline{m}_b)$ in the <u>MS</u> scheme, and the second value is the 1S mass, which is half the mass of the $\Upsilon(1S)$

Particle Data Group 2016

С

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= \frac{2}{3} e$ Charm = +1

c-QUARK MASS

The *c*-quark mass corresponds to the "running" mass m_c ($\mu = m_c$) in the $\overline{\rm MS}$ scheme. We have converted masses in other schemes to the

b

$$I(J^P) = 0(\frac{1}{2}^+)$$

Charge $= -\frac{1}{3}e$ Bottom = -1

b-QUARK MASS

The first value is the "running mass" $\overline{m}_b(\mu = \overline{m}_b)$ in the <u>MS</u> scheme, and the second value is the 1S mass, which is half the mass of the $\Upsilon(1S)$

Representative quark mass definitions in perturbative QCD

Marquard, Smirnov, Smirnov, Steinhauser

(only UV div. is subtracted)

$$\Sigma_q(m^2) \sim \int d^D k \left. \frac{m}{2p.k + k^2} \frac{1}{k^2} \right|_{p=(m,\vec{0})}$$
$$\sim \frac{m}{\varepsilon} + \text{finite}$$

 m_{bare}

Shifman, Vainshtein, Zakharov

Moments of *R*-ratio

Sum rules

$$\mathcal{M}_n = \int_{s_0}^{\infty} ds \left. \frac{R_Q(s)}{s^{n+1}} = \frac{12\pi^2}{n^2} \left(\frac{\partial}{\partial q^2} \right)^n \Pi_Q(q^2) \right|_{q^2 = 0}$$

$$Q = b \text{ or } c$$

$$\gamma \xrightarrow{q} \Pi_Q(q^2) \longrightarrow \gamma$$

$$\mathcal{M}_n^{\exp} = \mathcal{M}_n^{\mathrm{th}}(\mathrm{NNNLO})$$

with $Q_c = 2/3$ and $z = q^2/(4m_c^2)$ where $m_c = m_c(\mu)$ is the $\overline{\text{MS}}$ charm quark mass at the scale μ .

Shifman, Vainshtein, Zakharov

Moments of *R*-ratio

Sum rules

$$\mathcal{M}_n = \int_{s_0}^{\infty} ds \left. \frac{R_Q(s)}{s^{n+1}} = \frac{12\pi^2}{n^2} \left(\frac{\partial}{\partial q^2} \right)^n \Pi_Q(q^2) \right|_{q^2 = 0}$$

$$Q = b \text{ or } c$$

$$\gamma \xrightarrow{q} \Pi_Q(q^2) \longrightarrow \gamma$$

$$\mathcal{M}_n^{\exp} = \mathcal{M}_n^{\mathrm{th}}(\mathrm{NNNLO})$$

Relativistic vs. non-relativistic sum rules

Heavy quarkonium states $(t\bar{t}, b\bar{b}, c\bar{c}, b\bar{c})$

Unique system: Properties of individual hadrons predictable in pert. QCD

Two theoretical foundations for computing higher-order corr. systematically

- EFT (pNRQCD, vNRQCD)
- Threshold expansion

Pineda, Soto, Brambilla, Vairo Luke, Manohar, Rothstein

Beneke, Smirnov

Computation of full spectrum up to NNNLO

Kiyo, YS: 1408.5590

$$\mathcal{L}_{\text{pNRQCD}} = S^{\dagger} (i\partial_t - \widehat{H}_S)S + O^{a\dagger} (iD_t - \widehat{H}_O)^{ab}O^b + g S^{\dagger} \vec{r} \cdot \vec{E}^a O^a + \cdots$$

S, O^a : color singlet and octet composite-state fields

Energy levels given by poles of the full propagator of S in pNRQCD.

Scale dependence

$\overline{m}_b, \overline{m}_c$ determination

Kiyo, Mishima, YS

 $\overline{m}_{c}^{\text{ave}} = 1246 \pm 2 \ (d_{3}) \pm 4 \ (\alpha_{s}) \pm 23 \ (\text{h.o.}) \text{ MeV}$

PDG value $\overline{m}_c = 1275 \pm 25 \text{ MeV}$

 $\overline{m}_{b}^{\text{ave}} = 4197 \pm 2 \ (d_3) \ \pm 6 \ (\alpha_s) \ \pm 20 \ (\text{h.o.}) \pm 5 \ (m_c) \ \text{MeV}$

PDG value $\overline{m}_b = 4.18 \pm 0.03 \text{ GeV}$

b-QUARK MS MASS (GeV)

renormalon ~ $\Lambda_{\rm QCD} \cdot \left(\Lambda_{\rm QCD} r_{1S}\right)^2$

Simultaneous determination of $|V_{cb}|$ and $m_b^{MS}(m_b^{MS})$ from inclusive semileptonic B decays

Observables in inclusive $B \rightarrow X_c \ell \nu$ decays

$$\langle E_{\ell}^{n} \rangle = \frac{1}{\Gamma_{E_{\ell} > E_{\text{cut}}}} \int_{E_{\ell} > E_{\text{cut}}} E_{\ell}^{n} \frac{d\Gamma}{dE_{\ell}} dE_{\ell},$$

$$\langle m_{X}^{2n} \rangle = \frac{1}{\Gamma_{E_{\ell} > E_{\text{cut}}}} \int_{E_{\ell} > E_{\text{cut}}} m_{X}^{2n} \frac{d\Gamma}{dm_{X}^{2}} dm_{X}^{2},$$

 $\Gamma_{\rm sl} = \Gamma_0 \left[1 + a^{(1)} \frac{\alpha_s(m_b)}{\pi} + a^{(2,\beta_0)} \beta_0 \left(\frac{\alpha_s}{\pi}\right)^2 + a^{(2)} \left(\frac{\alpha_s}{\pi}\right)^2 \right]$

 $+\left(-\frac{1}{2}+p^{(1)}\frac{\alpha_s}{\pi}\right)\frac{\mu_{\pi}^2}{m_{\tau}^2}+\left(g^{(0)}+g^{(1)}\frac{\alpha_s}{\pi}\right)\frac{\mu_G^2(m_b)}{m_{\tau}^2}$

 $m_{\rm X}$: invariant hadronic mass

$$\mu_{\pi}^{2} = \frac{1}{2M_{B}} \langle \bar{B} | \bar{b}_{v} (i\vec{D})^{2} b_{v} | \bar{B} \rangle$$
$$\mu_{G}^{2} = -\frac{1}{2M_{B}} \langle \bar{B} | \bar{b}_{v} \frac{g_{s}}{2} G_{\mu\nu} \sigma^{\mu\nu} b_{v} | \bar{B} \rangle$$

Observables are mostly sensitive to $\approx m_b - 0.8 m_c$ Input $\overline{m}_{c}(3 \text{ GeV}) = 0.986(13) \text{ GeV}$

+ $d^{(0)} \frac{\rho_D^3}{m_i^3} - g^{(0)} \frac{\rho_{\rm LS}^3}{m_i^3}$ + higher orders,

Alberti, et al

OPE in $1/m_b$ expansion

Fit experimental data of the observables and determine $\mu_{\pi}^2, \rho_D^3, \mu_G^2, \rho_{\text{LS}}^3, |V_{cb}|, \overline{m}_b$.

Results:

- χ^2 /d.o.f. ≈ 0.4
- $|V_{cb}| = (42.21 \pm 0.78) \times 10^{-3},$
 - c.f. Determination from exclusive $B \rightarrow D^* \ell \nu$ decays $|V_{cb}| = (39.04 \pm 0.49_{exp} \pm 0.53_{lat} \pm 0.19_{QED}) \times 10^{-3}$

• $\overline{m}_b \equiv m_b^{\overline{\text{MS}}}(m_b^{\overline{\text{MS}}}) = 4183 \pm 37 \text{ MeV}$

<u>Summary</u>

• Current theoretical analyses can extract the $\overline{\text{MS}}$ masses \overline{m}_b and \overline{m}_c consistently with ~30 MeV accuracy from different observables.

Relativistic/Non-relativistic sum rules, Quarkonium 1S energy levels, Inclusive observables in semileptonic *B* decays, …

• Theoretical tools: pert. QCD, EFT, OPE, lattice QCD, …

Higher-order computations, renormalons vs. non-pert. matrix element

<u>Summary</u>

• Current theoretical analyses can extract the $\overline{\text{MS}}$ masses \overline{m}_b and \overline{m}_c consistently with ~30 MeV accuracy from different observables.

Relativistic/Non-relativistic sum rules, Quarkonium 1S energy levels, Inclusive observables in semileptonic E WEIGHTED AVERAGE

ŊÅ.

有効理論におけるOPE

高いエネルギースケール $P \gg \Lambda_{\rm QCD}$ を含む物理量

$$egin{aligned} A(P) &= g_1(\mu/P) ig\langle n \, | \, \mathcal{O}(x) \, | \, n \,
angle + rac{g_2(\mu/P)}{P^2} ig\langle n \, | \, \partial_lpha \mathcal{O}(x) \partial^lpha \mathcal{O}(x) \, | \, n \,
angle \ &+ rac{g_3(\mu/P)}{P^4} ig\langle n \, | \, \partial_lpha \partial_eta \mathcal{O}(x) \partial^lpha \partial^eta \mathcal{O}(x) \, | \, n \,
angle + \cdots \end{aligned}$$

 $\mathbf{A} E$

 $\Lambda_{\rm QCD}$

 \boldsymbol{P}

μ

Representative quark mass definitions in perturbative QCD

Marquard, Smirnov, Smirnov, Steinhauser

 m_{bare}

Pole mass m_{pole} = energy of a quark at rest (= pole position of quark propagator) $\frac{1}{p^2 - m_{\text{pole}}^2}$

 $\overline{\text{MS}} \max m_{\overline{\text{MS}}}(m_{\overline{\text{MS}}}) = \text{ quark mass (a param.)}$ in \mathcal{L}_{QCD} renomalized in $\overline{\text{MS}}$ scheme (only UV div. is subtracted)

$$\Sigma_q(m^2) \sim \int d^D k \left. \frac{m}{2p.\,k + k^2} \frac{1}{k^2} \right|_{p=(m,\vec{0})}$$
$$\sim \frac{m}{\varepsilon} + \text{finite}$$

Representative quark mass definitions in perturbative QCD

Marquard, Smirnov, Smirnov, Steinhauser

Pole mass m_{pole} = energy of a quark at rest (= pole position of quark propagator) $\frac{1}{p^2 - m_{\text{pole}}^2}$

 $\overline{\text{MS}} \max m_{\overline{\text{MS}}}(m_{\overline{\text{MS}}}) = \text{ quark mass (a param.)}$ in \mathcal{L}_{QCD} renomalized in $\overline{\text{MS}}$ scheme (only UV div. is subtracted)

$$\begin{split} \Sigma_{q}(m^{2}) &\sim \int d^{D}k \left. \frac{m}{2p.k + k^{2}} \frac{1}{k^{2}} \right|_{p=(m,\vec{0})} - \int d^{D}k \frac{\partial}{\partial k_{\mu}} \left\{ k_{\mu} \frac{m}{(D-4)(k^{2}-m^{2})^{2}} \right\} \\ &= \frac{4m^{3}}{D-4} \int d^{D}k \frac{1}{(k^{2}-m^{2})^{3}} + \int d^{D}k \left\{ \frac{m}{2p.k + k^{2}} \frac{1}{k^{2}} \right|_{p=(m,\vec{0})} - \frac{m}{(k^{2}-m^{2})^{2}} \right\} \\ &\sim \frac{m}{\varepsilon} + \text{finite} \\ \end{split}$$

Sum rules

[Shifman, Vainshtein, Zakharov '78]

Consider moments:

$$\mathcal{M}_n = \int_{s_0}^{\infty} ds \, \frac{R_b(s)}{s^{n+1}} = \frac{12\pi^2}{n!} \left(\frac{\partial}{\partial q^2}\right)^n \Pi_b(q^2) \Big|_{q^2=0} \,,$$
$$\mathcal{M}_n^{\exp} = \mathcal{M}_n^{\mathsf{th}}$$

Larger n:

- + Lower sensitivity to unknown high-energy continuum
- + Higher sensitivity to m_b
- Larger non-perturbative effects

Bottomonium spectroscopy

Based on Kiyo, YS (Plot made by G. Mishima)

Postdictions or predictions?

• Fine and hyperfine splittings of charmonium/bottomonium reproduced. Two exceptions around 2003: Recksiegel, Y.S.; Kniehl, Penin, charmonium hyperfine splitting $[\Psi(2S) - \eta_c(2S)]$ Pineda, Smirnov, Steinhauser bottomonium hyperfine splitting $\Upsilon(1S) - \eta_b(1S)$ Both are solved in favor of pert. QCD predictions. Slides from Skwarnicki's plenary talk at Lepton-Photon 2003

consistent

$$\begin{split} H_{S}^{(d)} &= \frac{\hat{\vec{p}}^{2}}{m} + V_{S}^{(d)}(r), \qquad H_{O}^{(d)} = \frac{\hat{\vec{p}}^{2}}{m} + V_{O}^{(d)}(r), \\ V_{S}^{(d)}(r) &= -C_{F} \frac{\alpha_{s}}{r} (\bar{\mu}r)^{2\epsilon} A(\epsilon), \qquad V_{O}^{(d)}(r) = \left(\frac{C_{A}}{2} - C_{F}\right) \frac{\alpha_{s}}{r} (\bar{\mu}r)^{2\epsilon} A(\epsilon), \\ A(\epsilon) &= \frac{\Gamma(\frac{1}{2} - \epsilon)}{\pi^{\frac{1}{2} - \epsilon}}. \end{split}$$

Regularization needed to deal with $\delta(\vec{r})$ in commutation relations.

$$\begin{split} V_S^{(d)}(r) &\to -C_F \frac{\alpha_s}{r} (\bar{\mu}r)^{2(\epsilon+u)} A(\epsilon), \\ V_O^{(d)}(r) &\to \left(\frac{C_A}{2} - C_F\right) \frac{\alpha_s}{r} (\bar{\mu}r)^{2(\epsilon+u)} A(\epsilon). \end{split}$$

pNRQCD Lagrangian

 $Q\bar{Q}$ composite fields

 $S(\vec{X}, \vec{r}; t)_{\sigma \overline{\sigma}}, \quad O^{a}(\vec{X}, \vec{r}; t)_{\sigma \overline{\sigma}}$
singlet octet

$$\mathcal{L}_{\text{pNRQCD}} = S^{\dagger} (i\partial_t - \widehat{H}_S)S + O^{a\dagger} (iD_t - \widehat{H}_O)^{ab}O^b + g S^{\dagger} \vec{r} \cdot \vec{E}^a O^a + g O^{a\dagger} \vec{r} \cdot \vec{E}^a S + \cdots$$

Color electric field $\vec{E}^a = -\vec{\nabla}A_0^a - \partial_t \vec{A}^a - gf^{abc}A_0^b \vec{A}^c$ at position \vec{X} , originating from multipole exp. of $A_{\mu}(\vec{X} \pm \vec{r}/2)$ in \vec{r} .

 \hat{H}_{S} , \hat{H}_{O} : Quantum mechanical Hamiltonian for singlet and octet states

$$(\widehat{H}_S)_{LO} = \frac{\overrightarrow{p}^2}{m} - C_F \frac{\alpha_S}{r}, \qquad (\widehat{H}_O)_{LO} = \frac{\overrightarrow{p}^2}{m} + \left(\frac{C_A}{2} - C_F\right) \frac{\alpha_S}{r}$$

$$\implies \beta \sim \frac{p}{m} \sim \frac{1}{mr} \sim \alpha_S \qquad (\text{in the c.m. frame})$$

$$\left(\widehat{H}_{S}\right)_{LO}=\frac{\overrightarrow{p}^{2}}{m}-C_{F}\frac{\alpha_{S}}{r},$$

$$\left(\widehat{H}_{S}\right)_{NLO} = -C_{F}\frac{\alpha_{S}}{r} \cdot \left(\frac{\alpha_{S}}{4\pi}\right) \cdot \{\beta_{0} \log\left(\mu'^{2}r^{2}\right) + a_{1}\},\$$

$$\begin{split} \left(\hat{H}_{S}\right)_{NNLO} &= -\frac{\vec{p}^{4}}{4m^{3}} - C_{F}\frac{\alpha_{s}}{r} \cdot \left(\frac{\alpha_{s}}{4\pi}\right)^{2} \cdot \left\{\beta_{0}^{2} \left[\log^{2}\left(\mu'^{2}r^{2}\right) + \frac{\pi^{2}}{3}\right] + \left(\beta_{1} + 2\beta_{0}a_{1}\right)\log\left(\mu'^{2}r^{2}\right) + a_{2}\right\} \\ &+ \frac{\pi C_{F}\alpha_{s}}{m^{2}}\delta^{3}(\vec{r}) + \frac{3C_{F}\alpha_{s}}{2m^{2}r^{3}}\vec{L} \cdot \vec{S} - \frac{C_{F}\alpha_{s}}{2m^{2}r}\left(\vec{p}^{2} + \frac{1}{r^{2}}r_{i}r_{j}p_{j}p_{i}\right) - \frac{C_{A}C_{F}\alpha_{s}^{2}}{2mr^{2}} \\ &- \frac{C_{F}\alpha_{s}}{2m^{2}}\left\{\frac{\vec{S}^{2}}{r^{3}} - 3\frac{\left(\vec{S} \cdot \vec{r}\right)^{2}}{r^{5}} - \frac{4\pi}{3}\left(2\vec{S}^{2} - 3\right)\delta^{3}(\vec{r})\right\} \end{split}$$

 $(\widehat{H}_S)_{NNNLO}$ = known (Wilson coeffs. include IR div.)

Kniehl, Penin, Smirnov, Steinhauser (*a*₃: Anzai, Kiyo, YS; Smirnov, Steinhauser)

Physics Predictions

At NNLO (~2000)

- Global level structure of bottomonium is reproduced.
 Brambilla, Y.S., Vairo
- Fine and hyperfine splittings of charmonium/bottomonium reproduced. Two exceptions in ~2003: Recksiegel, Y.S.; Kniehl, Penin, charmonium hyperfine splitting $[\Psi(2S) - \eta_c(2S)]$ Pineda, Smirnov, Steinhauser bottomonium hyperfine splitting $\Upsilon(1S) - \eta_b(1S)$ Solved in favor of pert. QCD predictions.

At NNNLO

<u>Summary</u>

• Current theoretical analyses can extract the $\overline{\text{MS}}$ masses \overline{m}_b and \overline{m}_c consistently at ~30 MeV accuracy from different observables.

Relativistic/Non-rel. sum rules, Quarkonium 1S energy levels, Inclusive observables in semileptonic *B* deq

Predictable observables in pert. QCD

$$\sum_{q,g} |q,g\rangle\langle q,g| = \sum_{hadr.} |hadr.\rangle\langle hadr.| = 1$$
testable hypothesis

(a) Inclusive observables (hadronic inclusive) ... insensitive to hadronization

Inclusive cross sections/decay widths

e.g.
$$R(E) \equiv \frac{\sigma(e^+e^- \rightarrow hadrons; E)}{\sigma(e^+e^- \rightarrow \mu^+\mu^-; E)}$$

• Distributions of non-colored particles, $\ell, \gamma, W, H, \cdots$

(b) Observables of heavy quarkonium states (only individual hadronic states)

• spectrum, leptonic decay width, transition rates

What's quark mass?

クォークはハドロン中に confine されているため単独で取り出すことは出来ない。したがって 単独のクォークの質量というものを直接測定することもできない筈である。ではそのような現実 世界を、クォークとグルーオンの言葉で書かれた QCD 理論はどのように説明し、クォークの質 量とはどのように定義され、また決定されているのだろうか。——実際のところ、現在のチャー ムクォークとボトムクォークの質量の決定精度は、Particle Data Group (PDG) によると共に 30–40 MeV 程度である。これは典型的なハドロン化スケール Λ_{QCD} ≈ 300 MeV と比べて 10 倍 ほど小さい。それはつまり、様々なハドロンによって異なる「ハドロン化の影響」を剥ぎ取った上 で、各クォーク固有の質量が上記精度で consistent に決定できているということを意味する。こ の講演では、QCD による現在の理解に基づく精密なクォーク質量の定義と描像を解説し、最先端 の研究におけるチャームクォークとボトムクォーク質量の幾つかの決定方法について、各々の決 定精度の限界を定めている要因なども含めてレヴューする。