What is the gravitational theory that string theory predicts?
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Einstein Double Field Equations [1]

Core idea: string theory predicts its own gravity rather than GR

In General Relativity the metric g, is the only geometric and gravitational field, whereas in string
theory the closed-string massless sector comprises a two-form potential 5,;;, and the string dilaton ¢ in
addition to the metric g,,,,. Furthermore, these three fields transform into each other under T-duality.
This hints at a natural augmentation of GR: upon treating the whole closed string massless sector as
stringy graviton fields, Double Field Theory [3, 4] may evolve into ‘Stringy Gravity’. Equipped with an
O(D, D) covariant differential geometry beyond Riemann [5], we spell out the definitions of the stringy
Einstein curvature tensor and the stringy Energy-Momentum tensor. Equating them, all the equations
of motion of the closed string massless sector are unified into a single expression [1],

1
GAp = 7TAB

which we dub the Einstein Double Field Equations.

¢ Built-in symmetries & Notation:

—O(D, D) T-duality

— DFT diffeomorphisms (ordinary diffeomorphisms plus B-field gauge symmetry)
— Twofold local Lorentz symmetries, Spin(1, D—1) x Spin(D—1,1)

= Two locally 1nertial frames exist separately for the left and the right modes.

Index Representation Metric (raising/lowering indices)
01
AB,--- M, N,--- O(D, D) vector TAB =

10

D,q,- - Spin(1, D—1) vector Npq = diag(— 4+ +--- +)

a, 3, Spin(1, D—1) spinor Conp; (W) = CcypC—!

D,q, - Spin(D—1,1) vector Npg = diag(+ — — -+ —)

a, B, Spin(D—1,1) spinor 0@5’ () = cAPC—1

The O(D, D) metric J 4 divides doubled coordinates into two: 24 = (Ty,x"),04 = (OF,0y).

¢ Doubled-yet-gauged spacetime:

The doubled coordinates are ‘gauged’ through a certain equivalence relation, A ~ 24 + A4, such that each
equivalence class, or gauge orbit in RD+D, corresponds to a single physical point in RP [6]. This implies a
section condition, 0 A(?A = 0, which can be conveniently solved by setting oF = 0.

e Geometric notation for DFT or Stringy gravity

Integral measure e~ 2d (weight one scalar density)

Generalized metric

Hyn =HNM Hi"HuN Tin = T s

Projectors Pop=Ppa=5(Jap+Hap). Pap=Pps=3(Tap — Hap)
PyPPt =pPyC,  PAPPRC=P,C,  PyPPRY =0
Christoffel symbols ~ Tcap = 2 (POGPP) yp +2 (15[ APPyF P ADPB]E) 9p Ppc
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Covariant derivatives PACPBD VcoVp, PACPBD VoVp, pABY AV, pABy AVB
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VAT AB — (on-shell)

Semi-covariant derivative
Compatibility
Scalar curvature
Ricci curvature

Einstein curvature

Variational property
Energy-Momentum tensor

Conservation V AGAB =0 (off-shell),

e The most general form of the DFT-metric is classified by two non-negative integers (n,n) [7]
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where 1 <1 <n, 1<7,1<nand
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Strings become chiral and anti-chiral over n and n directions: X ZLa_|_ZC'LL =0, X 28_:1:“ = 0.

Restricting to the (0, 0) Riemannian background, the Einstein Double Field Equations reduce to
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which imply the conservation law, V 4 = 0, given explicitly by

1 A 1 _
VIK 1) = 2000 K )+ SHME g = 30,T0 =0, V(e 2K,,) =0,

The Einstein Double Field Equations also govern the dynamics of other non-Riemannian cases, (n,n) # (0, 0),
where the Riemannian metric, g, cannot be defined [8]. Restricted to the D = 4 (0, 0) Riemannian case, one
may analyze the most general spherical regular solution [1] and their cosmological applications [9].

Stringy Newton Graivty with /7 —flux [2]
Weak field approximation of EDFESs

Linearizing the metric g,,,, = 7, + h,,, around a flat Minkowskian background with trivial /7-flux and dilaton
¢ using the gauge 0,h";, — %@Lh/’ p+ 20,0 = 0 and as well as the scale assumption
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we obtain the following linearized EDFEs
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These imply the following linearized conservation equations,
1 1
VP Ky =0, VK () + 2Hu Kipg) = 20uTi0) = 0,
and the linearized geodesic equation has the form,

Non-relativistic limit: String theory augmentation of Newton Gravity

In taking the non-relativistic limit, we focus on the Newton potential which is the only quantity directly rele-
vant to the particle dynamics,

O = —5c?hy % =—-Vb.

We then identify all the quantities which can affect the Newton potential: the mass density p, the stringy
current density K, and B-field/H-flux vectors B, H, as follows

K = 2\/563 (K[OH’ K[OZ]? K[OS]) ,

B = %C (B1o, B2g, B3p), H:=V xB = ﬁ (Ho2s, Hos1, Horo) -

Crucially, {p, K, ®, H} forms an ‘autonomy’ of closed relations, i.e. Stringy Newton Gravity:

p = 2c*Kqy,

V0 =4rGp+H - -H, V xH=41GK V-K=0, V-H=0.

The Newton potential is fully determined by both the mass density and the stringy current density,
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In analogy to the magnetization in electrodynamics, we introduce the notion of stringization for the stringy
current density K which is divergence free, K(¢,x) = V Xs(t, x). The corresponding B, H are,
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H = 4nGs(t, x) + G/dgx’ = 4nGs(t,x) — GV (L, x) ,
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in which it/ = é%i:‘ and P, is a stringy scalar potential,
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Clearly, VX H = 417GV xs. Far away from a localized source, |x| >> |X’ , we observe a stringy dipole,

3x (}A(S@)) — S@) | S(t) — /dgx s(t’ X) .
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Examples of Stringy Newton gravity with /1 -flux

e Uniformly ‘stringized’ sphere of radius a, with constant p and s

)
@S:%s-x, H:%s p+16gG\S]2 for x| <a
3 3 (feq) = P (t7X> = < 2
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¢ Dirac monopole type

00 - 2
B—Gq/ !/ x X=X H = Go— S peps = Gq
X
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where the path should not cross the point of x. It resembles dark matter halos.
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