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Introduction

– Surely, General Relativity is based on Riemannian geometry, where the only geometric and
gravitational field is the Riemannian metric, gµν . Other fields are meant to be extra matter.

– However, string theory suggests to put a two-form gauge potential, Bµν , and a scalar dilaton,
φ, on an equal footing along with the metric:

They form the closed string massless (NS-NS) sector, being ubiquitous in all string theories,

ˆ
dDx

√
−ge−2φ

(
Rg + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν
)

where H = dB .

This action hides O(D,D) symmetry of T-duality which transforms g,B, φ into one another. Buscher 1987

– T-duality hints at a natural extension of GR where the entire closed string massless sector,
{g,B, φ}, constitutes the gravitational multiplet.

Double Field Theory (DFT), initiated by Siegel 1993 & Hull, Zwiebach 2009-2010 and further
developed over the last decade, turns out to give the O(D,D) completion of GR or a novel
form of ‘pure gravity’.

Jeong-Hyuck Park http://park.sogang.ac.kr Sabbiatocal visitor to YITP working on DFT and Bose gas



Introduction

– Surely, General Relativity is based on Riemannian geometry, where the only geometric and
gravitational field is the Riemannian metric, gµν . Other fields are meant to be extra matter.

– However, string theory suggests to put a two-form gauge potential, Bµν , and a scalar dilaton,
φ, on an equal footing along with the metric:

They form the closed string massless (NS-NS) sector, being ubiquitous in all string theories,

ˆ
dDx

√
−ge−2φ

(
Rg + 4∂µφ∂

µ
φ− 1

12 HλµνHλµν
)

where H = dB .

This action hides O(D,D) symmetry of T-duality which transforms g,B, φ into one another. Buscher 1987

– T-duality hints at a natural extension of GR where the entire closed string massless sector,
{g,B, φ}, constitutes the gravitational multiplet.

Double Field Theory (DFT), initiated by Siegel 1993 & Hull, Zwiebach 2009-2010 and further
developed over the last decade, turns out to give the O(D,D) completion of GR or a novel
form of ‘pure gravity’.

Jeong-Hyuck Park http://park.sogang.ac.kr Sabbiatocal visitor to YITP working on DFT and Bose gas



Take-home message of this talk would be

• DFT = O(D,D) completion of GR : the pure gravitational theory that string theory predicts.

• DFT assumes the whole closed-string massless (NS-NS) sector as the gravitational multiplet.

The O(D,D) Symmetry Principle then fixes its coupling to extra matter unambiguously.

• The previous Lagrangian itself is identified as a scalar curvature in novel differential geometry,

Rg + 4∂µφ∂µφ− 1
12 HλµνHλµν ⇒ S(0) : Pure Gravity

• The EOM of {g,B, φ} are unified into a single master formula,

GAB = 8πGTAB : Einstein Double Field Equations

which is the O(D,D) completion of Einstein Field Equations, as A,B are O(D,D) indices.

⇒ Stringy Newton Gravity : ∇2Φ = 4πGρ+ H·H , ∇·H = 0 , ∇×H = 4πG K .

• Further, taking O(D,D) covariant field variables as its truely fundamental constituents,
DFT can accommodate not only conventional supergravity but also various non-Riemannian
gravities where string becomes chiral, e.g. Newton–Cartan, Carroll, or Gomis–Ooguri.

• The theory appears to be defined on ‘doubled-yet-gauged spacetime’: the doubled
coordinates are gauged such that a gauge orbit corresponds to a single physical point.
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Plan

I. Classification of DFT-geometries in terms of two non-negative integers, (n, n̄).

II. Doubled-yet-gauged spacetime and sigma models.

III. Review of covariant derivatives, ∇A, and curvatures, S(0), SAB , GAB in DFT.

IV. Derivation of the Einstein Double Field Equations, GAB = 8πGTAB ,

GAB := 4V[A
pV̄B]

q̄Spq̄ − 1
2JABS(0) , ∇AGAB = 0 ,

TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0) , ∇AT AB = 0 .

V. Physical Implications
– D = 4 spherical solution : ‘stringy star’ c.f. Schwarzschild geometry
– O(D,D) completion of the Friedmann equations
– Stringy Newton Gravity (large c limit)

This talk is an overview of speaker’s collaborative works over the last decade, thanks to
Stephen Angus (2), Kevin Morand (3), Kyungho Cho (5), Thomas Basile, Shinji Mukohyama, Yuho Sakatani,
Euihun Joung, Guilherme Franzmann, ... as well as earlier Imtak Jeon (8), Kanghoon Lee (8).
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Notation

Index Representation Metric (raising/lowering indices)

A,B, · · · ,M,N, · · · O(D,D) vector JAB =


0 1

1 0



p, q, · · · Spin
(
1,D−1

)
L vector ηpq = diag(−+ + · · ·+)

α, β, · · · Spin
(
1,D−1

)
L spinor Cαβ , (γp)T = CγpC−1

p̄, q̄, · · · Spin
(
D−1, 1

)
R vector η̄p̄q̄ = diag(+−− · · ·−)

ᾱ, β̄, · · · Spin
(
D−1, 1

)
R spinor C̄ᾱβ̄ , (γ̄p̄)T = C̄γ̄p̄C̄−1

• Further, the O(D,D) metric, JAB , decomposes the doubled coordinates into two parts,

xA = (x̃µ, xν) , ∂A = (∂̃µ, ∂ν) .

where µ, ν are D-dimensional curved indices.

• The twofold local Lorentz symmetries, Spin
(
1,D−1

)
L × Spin

(
D−1, 1

)
R , indicate two distinct locally

inertial frames for the left and right moving sectors ⇒ Unification of IIA and IIB.
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Closed-string massless sector as ‘Gravitational Fields’

The gravitational fields consist of the DFT-dilaton, d , and DFT-metric, HMN :

HMN = HNM , HK
LHM

NJLN = JKM .

Combining JMN and HMN , we get a pair of symmetric projection matrices,

PMN = PNM = 1
2 (JMN +HMN ) , PL

M PM
N = PL

N ,

P̄MN = P̄NM = 1
2 (JMN −HMN ) , P̄L

M P̄M
N = P̄L

N ,

which are orthogonal and complete,

PL
M P̄M

N = 0 , PM
N + P̄M

N = δM
N .

Further, taking the “square roots" of the projectors,

PMN = VM
pVN

qηpq , P̄MN = V̄M
p̄V̄N

q̄ η̄p̄q̄ ,

we get a pair of DFT-vielbeins satisfying their own defining properties,

VMpV M
q = ηpq , V̄Mp̄V̄ M

q̄ = η̄p̄q̄ , VMpV̄ M
q̄ = 0 ,

or equivalently
VM

pVNp + V̄M
p̄V̄Np̄ = JMN .
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Solution to the defining relation, HMN = HNM , HK
LHM

NJLN = JKM ?

HMN =

 g−1 −g−1B

Bg−1 g − Bg−1B

 or HMN = JMN =

 0 1

1 0



The left one is well-known: it contains a Riemannian metric and reduces DFT to SUGRA.

The right one is a flat background which admits no Riemannian nor SUGRA interpretation.

Thus, DFT describes not only Riemannian SUGRA but also non-Riemannian novel geometries.
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Classification Kevin Morand & JHP 1707.03713

The most general form of the DFT-metric, HMN = HNM , HK
LHM

NJLN = JKM , is
characterized by two non-negative integers, (n, n̄), 0 ≤ n + n̄ ≤ D:

HAB =

 Hµν −HµσBσλ + Yµi X i
λ − Ȳµı̄ X̄ ı̄λ

BκρHρν + X i
κYνi − X̄ ı̄κȲνı̄ Kκλ − BκρHρσBσλ + 2X i

(κBλ)ρYρi − 2X̄ ı̄(κBλ)ρȲρı̄



=

 1 0

B 1


 H Yi (X i )T − Ȳı̄(X̄ ı̄)T

X i (Yi )
T − X̄ ı̄(Ȳı̄)T K


 1 −B

0 1


i) Symmetric and skew-symmetric fields : Hµν = Hνµ, Kµν = Kνµ, Bµν = −Bνµ ;

ii) Two kinds of zero eigenvectors: with i, j = 1, 2, · · · , n & ı̄, ̄ = 1, 2, · · · , n̄,

HµνX i
ν = 0 , Hµν X̄ ı̄ν = 0 , KµνYνj = 0 , Kµν Ȳν̄ = 0 ;

iii) Completeness relation: HµρKρν + Yµi X i
ν + Ȳµı̄ X̄ ı̄ν = δµν .

• The trace isHA
A = 2(n − n̄) which is O(D,D) invariant.

• The coset is O(D,D)
O(t+n,s+n)×O(s+n̄,t+n̄)

with dimensions D2 − (n − n̄)2 as Nambu–Goldstone moduli.
Berman-Blair-Otsuki, Cho-JHP 2019
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κYνi − X̄ ı̄κȲνı̄ Kκλ − BκρHρσBσλ + 2X i

(κBλ)ρYρi − 2X̄ ı̄(κBλ)ρȲρı̄
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Classification Kevin Morand & JHP 1707.03713

I. (n, n̄) = (0, 0) corresponds to the Riemannian case or Generalized Geometry à la Hitchin :

HMN ≡

 g−1 −g−1B

Bg−1 g − Bg−1B

, e−2d ≡
√
|g|e−2φ Giveon, Rabinovici, Veneziano ’89, Duff ’90

II. Generically, on worldsheet, string becomes chiral and anti-chiral over the n and n̄ dimensions:

X i
µ ∂+xµ(τ, σ) ≡ 0 , X̄ ı̄µ ∂−xµ(τ, σ) ≡ 0 ,

as we shall see shortly.

Non-Riemannian examples include

• (1, 0) Newton-Cartan gravity (ds2 = −c2dt2 + dx2, lim
c→∞

g−1 is finite & degenerate)

• (1, 1) Gomis-Ooguri non-relativistic string Melby-Thompson, Meyer, Ko, JHP 2015, Blair 2019

• (D−1, 0) ultra-relativistic Carroll gravity

• (D, 0) is uniquely given byH = J : maximally non-Riemannian with trivial coset, O(D,D)
O(D,D) .

This is the completely O(D,D)-symmetric vacuum of DFT with no moduli, c.f. Siegel’s chiral string.

“Spacetime emerges after SSB of O(D,D), identifying {g,B} as Nambu–Goldstone boson moduli. "
Berman, Blair, and Otsuki 2019

Further, taken as an internal space, it gives a ‘moduli-free’ (Scherk-Schwarz twistable) Kaluza-Klein
reduction of pure DFT to heterotic DFT : Heterotic string has higher dimensional non-Riemannian origin.

Cho, Morand, JHP 2018
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Section condition

• Diffeomorphisms are generated by “generalized Lie derivative": Siegel 1993

L̂ξTA1···An := ξB∂BTA1···An + ωT ∂Bξ
BTA1···An +

n∑
i=1

(∂Ai ξB − ∂BξAi )TA1···Ai−1
B

Ai+1···An ,

where ωT is the weight, e.g. δe−2d = ∂B(ξBe−2d ), δVAp = ξB∂BVAp + (∂AξB − ∂BξA)V B
p .

• For consistency of closure, the so-called ‘section condition’ should be imposed: ∂M∂
M = 0.

From ∂M∂
M = 2∂µ∂̃µ, the section condition can be easily solved by letting ∂̃µ = 0.

The general solutions are then generated by the O(D,D) rotation of it.

• The section condition is mathematically equivalent to a certain translational invariance:

Φs(x) = Φs(x + ∆) , ∆M = Φt∂
M Φu ,

where Φs,Φt ,Φu ∈
{

d ,HMN , ξ
M , ∂Nd , ∂LHMN , · · ·

}
, arbitrary functions appearing in DFT,

and ∆M is said to be derivative-index-valued. JHP 2013

I ‘Physics’ should be invariant under such shifts of the doubled coordinates.
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Doubled-yet-gauged coordinates, (D + D)× (1− 1/2) JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• If we solve the section condition by letting ∂̃µ ≡ 0, and further choose ∆M = cµ∂M xµ, we note(
x̃µ , xν

)
∼
(
x̃µ + cµ , xν

)

• Then, O(D,D) rotates the gauged directions and hence the section.
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Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• In DFT, the usual coordinate basis of one-forms, dxA, is not covariant:

Neither diffeomorphic covariant,

δxM = ξM , δ(dxM ) = dxN∂Nξ
M 6= dxN (∂Nξ

M − ∂MξN )

Nor invariant under the coordinate gauge symmetry,

dxM −→ d
(
xM + ∆M) 6= dxM .

⇒ The naive contraction with the DFT metric, dxMdxNHMN , is not an invariant scalar,

and thus cannot lead to any sensible definition of the ‘proper length’ in DFT.
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DxM is covariant:
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If we set ∂̃µ ≡ 0, we have AM = Aλ∂M xλ = (Aµ , 0), DxM = (dx̃µ − Aµ , dxν) .
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Doubled-yet-gauged coordinates, (D + D)× (1− 1/2) JHP 1304.5946

Doubled coordinates, xM = (x̃µ, xν), are gauged through an equivalence relation,

xM ∼ xM + ∆M (x) ,

where ∆M is derivative-index-valued.

Each equivalence class, or gauge orbit in RD+D , corresponds to a single physical point in RD .

• With DxM = dxM −AM , it is possible to define the ‘proper length’ through a path integral,

Proper Length := − ln
[ ˆ
DA exp

(
−
ˆ √

DxM DxNHMN

)]
.

– For the (0, 0) Riemannian DFT-metric, with ∂̃µ ≡ 0, AM = (Aµ, 0), and from

DxM DxNHMN ≡ dxµdxνgµν +
(
dx̃µ − Aµ + dxρBρµ

) (
dx̃ν − Aν + dxσBσν

)
gµν

after integrating out Aµ, the proper length reduces to the conventional one,

Proper Length =⇒
ˆ √

dxµdxνgµν(x) .

– Since it is independent of x̃µ, indeed it measures the distance between two gauge orbits, as desired.
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Doubled-yet-gauged sigma models

The definition of the proper length readily leads to ‘completely covariant’ actions:

I. Particle action Ko-JHP-Suh 2016

Sparticle =

ˆ
dτ 1

2 e−1Dτ xM Dτ xNHMN (x)− 1
2 m2e

II. String action Hull 2006, Lee-JHP 2013, Arvanitakis-Blair 2017

Sstring = 1
4πα′

ˆ
d2
σ − 1

2

√
−hhij Di x

M Dj x
NHMN (x)− εij Di x

MAjM

With the (0, 0) Riemannian DFT-metric plugged, after integrating out the auxiliary fields,

the above actions reduce to the conventional ones:

Sparticle ⇒
ˆ

dτ 1
2 e−1ẋµẋνgµν − 1

2 m2e ,

Sstring ⇒ 1
2πα′

ˆ
d2σ − 1

2

√
−hhij∂i xµ∂j xνgµν + 1

2 ε
ij∂i xµ∂j xνBµν + 1

2 ε
ij∂i x̃µ∂j xµ .

III. κ-symmetric Green-Schwarz doubled-yet-gauged superstring, unifying IIA & IIB JHP 2016

SGS = 1
4πα′

ˆ
d2
σ − 1

2

√
−hhij ΠM

i ΠN
j HMN − εij Di x

M (AjM − iΣjM
)
,

where ΠM
i := Di xM − iΣM

i and ΣM
i := θ̄γM∂iθ + θ̄′γ̄M∂iθ

′.
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On the other hand, upon a generic (n, n̄) non-Riemannian backgrounds,

the auxiliary gauge potential decomposes into three parts:

Aµ = KµρHρνAν + X i
µYνi Aν + X̄ ı̄µȲνı̄ Aν .

– The first part appears quadratically, which leads to Gaussian integral.

– The second and third parts appear linearly, as Lagrange multipliers, to prescribe

i) Particle freezes over the (n + n̄) dimensions

X i
µ ẋµ ≡ 0 , X̄ ı̄µ ẋµ ≡ 0 .

Remaining orthogonal directions are described by a reduced action:

Sparticle ⇒
ˆ

dτ 1
2 e−1 ẋµ ẋνKµν − 1

2 m2e .

ii) String becomes chiral over the n dimensions and anti-chiral over the n̄ dimensions

X i
µ

(
∂αxµ + 1√

−h
εα
β∂βxµ

)
≡ 0 , X̄ ı̄µ

(
∂αxµ − 1√

−h
εα
β∂βxµ

)
≡ 0 .

Sstring ⇒ 1
2πα′

ˆ
d2σ − 1

2
√
−hhij∂i x

µ∂j x
νKµν + 1

2 ε
ij∂i x

µ∂j x
νBµν + 1

2 ε
ij∂i x̃µ∂j x

µ .
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Comment: Relation to Graded Poisson Geometry Basile-Joung-JHP 1910.13120

• In 2016, Deser and Sämann formulates the generalized Lie derivative using a graded Poisson bracket:[
T (x, θ) ,

[
pAθ

A, ξBθ
B}} = L̂ξT (x, θ) , [F ,G} := ∂F

∂xA
∂G
∂pA
− ∂F
∂pA

∂G
∂xA − (−1)deg(F ) ∂F

∂θA
∂G
∂θA

where T (x, θ) = 1
p! TC1C2···Ap (x)θC1θC2 · · · θCp .

• Recently, we have identified this graded Poisson bracket as the Dirac bracket in the Hamiltonian
formulation of the Faddeev–Popov doubled-yet-gagued particle action,

SF.P. =

ˆ
dτ 1

2 e−1Dτ xADτ xBHAB(x)− 1
2 m2e + kAAA + k(e − 1) + 1

2 θAθ̇
A +

2∑
α=1

1
2ϑαϑ̇

α
,

where θA = BA + CA and CA is the derivative-index-valued ghost for the coordinate gauge symmetry,

1
2 θAθ̇

A = BAĊA + 1
2

d
dτ

(
CABA

)
.

Further, intringuingly, the bc ghost system for the worldline diffeomorphisms has also O(1, 1) symmetry,

ϑ1 = ϑ2 = b , ϑ2 = ϑ1 = c ,
2∑
α=1

1
2ϑαϑ̇

α = bċ + 1
2

d
dτ (cb) .

• Requiring target-spacetime DFT-diffeomorphisms on the wave function subject to Hamiltonian constraint,(
p̂AHAB(x̂)p̂B + m2

)
Ψ(x̂)|0〉 = 0 , p̂A = −i~∂A =⇒ − i~∇A ,

one can obtain quantum corrections to the classical action, analogously to the Fradkin–Tseytlin term,

S~ =

ˆ
dτ 1

2 e−1
(

Dτ xA − i~eHAC
∂Cd

)(
Dτ xB − i~eHBD

∂Dd
)
HAB − 1

2 m2e .
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Einstein Double Field Equations

GAB = 8πGTAB

where A,B are O(D,D) indices

Jeong-Hyuck Park http://park.sogang.ac.kr Sabbiatocal visitor to YITP working on DFT and Bose gas



Semi-covariant formalism Imtak Jeon, Kanghoon Lee, & JHP 2010, 2011

• Semi-covariant derivative :

∇CTA1A2···An := ∂CTA1A2···An − ωT ΓB
BCTA1A2···An +

n∑
i=1

ΓCAi
BTA1···Ai−1BAi+1···An ,

for which the ‘DFT-Christoffel’ connection can be uniquely fixed,

ΓCAB =2(P∂C PP̄)[AB]
+2
(

P̄[A
D P̄B]

E−P[A
D PB]

E
)
∂D PEC−

4
D−1

(
P̄C[AP̄B]

D +PC[APB]
D
)(
∂D d+(P∂E PP̄)[ED]

)

by demanding compatibility with {JAB ,HAB , d}, torsionless condition, and projection property,

∇APBC = ∇AP̄BC = ∇Ad = 0 , L̂∂ξ = L̂∇ξ ⇔ Γ[ABC] = 0 , (P + P̄)ABC
DEF ΓDEF = 0 ,

where multi-indexed projectors are

PABC
DEF := PA

DP[B
[E PC]

F ] + 2
PM

M−1
PA[BPC]

[E PF ]D , same for P̄ABC
DEF with PAB ↔ P̄AB .

– In particular, DFT-Killing equations can be defined from

L̂∇ξ HAB = 8P̄(A
[CPB)

D]∇CξD , L̂∇ξ d = − 1
2∇Aξ

A
.

– There are no normal coordinates where ΓCAB would vanish point-wise: Equivalence Principle is broken for
string (i.e. extended object), but recoverable when coupled to point particle (or scalar field).
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Semi-covariant formalism Imtak Jeon, Kanghoon Lee, & JHP 2010, 2011

• Semi-covariant Riemann curvature :

SABCD = S[AB][CD] = SCDAB := 1
2

(
RABCD + RCDAB − ΓE

ABΓECD
)
, S[ABC]D = 0 ,

where RABCD denotes the ordinary “field strength”, RCDAB=∂AΓBCD−∂BΓACD+ΓAC
E ΓBED−ΓBC

E ΓAED .

By construction, it varies as ‘total derivative’,

δSABCD = ∇[AδΓB]CD +∇[CδΓD]AB ,

which is useful for Lagrangian variation, i.e. action principle.

• Semi-covariant ‘Master’ derivative :

DA := ∂A + ΓA + ΦA + Φ̄A = ∇A + ΦA + Φ̄A .

The two spin connections are determined in terms of the DFT-Christoffel connection,

ΦApq = V B
p∇AVBq , Φ̄Ap̄q̄ = V̄ B

p̄∇AV̄Bq̄ ,

by requiring the compatibility with the vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .
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The two spin connections are determined in terms of the DFT-Christoffel connection,

ΦApq = V B
p∇AVBq , Φ̄Ap̄q̄ = V̄ B

p̄∇AV̄Bq̄ ,

by requiring the compatibility with the vielbeins,

DAVBp = ∇AVBp + ΦAp
qVBq = 0 , DAV̄Bp̄ = ∇AV̄Bp̄ + Φ̄Ap̄

q̄V̄Bq̄ = 0 .
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Anomaly is under control through the six-indexed projectors

• Semi-covariance:

δξ
(
∇CTA1···An

)
= L̂ξ

(
∇CTA1···An

)
+

n∑
i=1

2(P+P̄)CAi
BDEF∂D∂EξF TA1···Ai−1BAi+1···An ,

δξSABCD = L̂ξSABCD + 2∇[A

(
(P+P̄)B][CD]

EFG∂E∂F ξG

)
+ 2∇[C

(
(P+P̄)D][AB]

EFG∂E∂F ξG

)
.

• This is due to

δξΓCAB = L̂ξΓCAB + 2
[
(P + P̄)CAB

FDE − δ F
C δ D

A δ E
B

]
∂F∂[DξE ] .

Ideally one might desire to cancel these red-colored anomalies by adding extra terms to ΓCAB .

But, since

δHAB = (PδHP̄)AB + (P̄δHP)AB , δξ(∂CHAB) = L̂ξ(∂CHAB) + 8P̄(A
DPB)

E∂C∂[DξE ] ,

it is impossible to construct such compensating terms out of the derivatives of HAB .

• However, we can easily project out the anomalies.
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Complete covariantization: fixing the O(D,D) coupling to matter

– Tensors:

PC
D P̄A1

B1 · · · P̄An
Bn∇DTB1···Bn =⇒ DpTq̄1 q̄2···q̄n ,

P̄C
DPA1

B1 · · ·PAn
Bn∇DTB1···Bn =⇒ Dp̄Tq1q2···qn ,

DpTpq̄1 q̄2···q̄n , Dp̄Tp̄q1q2···qn ; DpDpTq̄1 q̄2···q̄n , Dp̄Dp̄Tq1q2···qn .

– Yang-Mills:

Fpq̄ := FABV A
pV̄ B

q̄ where FAB := ∇AWB −∇BWA − i [WA,WB ] .

– Spinors, ρα, ψαp̄ :

γ
pDpρ , Dp̄ρ , γ

pDpψq̄ , Dp̄ψ
p̄
,

– RR sector, Cαᾱ :

D±C := γ
pDpC ± γ(D+1)Dp̄Cγ̄ p̄

, (D±)2 = 0 =⇒ F := D+C ( RR flux ) .

– Curvatures:

Spq̄ := SABV A
pV̄ B

q̄ ( Ricci ) , S(0) := (PACPBD − P̄AC P̄BD)SABCD ( scalar ⇒ ‘pure’ DFT ) .
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O(D,D) coupling to other superstring sectors or the Standard Model

• D = 10 Maximally Supersymmetric DFT Jeon-Lee-JHP-Suh 2012 [Full order construction]

Ltype II = e−2d
[

1
8 S(0) + 1

2 Tr(FF̄) + i ρ̄Fρ′ + iψ̄p̄γqF γ̄p̄ψ′q + i 1
2 ρ̄γ

pDpρ− i 1
2 ρ̄
′γ̄p̄Dp̄ρ

′

−iψ̄p̄Dp̄ρ− i 1
2 ψ̄

p̄γqDqψp̄ + iψ̄′pDpρ′ + i 1
2 ψ̄
′p γ̄q̄Dq̄ψ

′
p

]
which unifies IIA & IIB SUGRAs, and Gomis-Ooguri gravity as different solution/parametrization sectors.

• O(4, 4) coupling to the D = 4 Standard Model, Kangsin Choi & JHP 2015

LSM = e−2d



1
16πGN

S(0)

+
∑
V Tr(Fpq̄Fpq̄) +

∑
ψ ψ̄γ

aDaψ +
∑
ψ′ ψ̄

′γ̄āDāψ
′

−HAB(DAφ)†DBφ − V (φ) + yd q̄·φ d + yu q̄·φ̃ u + ye l̄ ′·φ e′



? Every single term above is completely covariant, w.r.t. O(D,D), DFT-diffeomorphisms, and

twofold local Lorentz symmetries. Leptons are for Spin(1, 3) and quarks are for Spin(3, 1) ?!!
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Derivation of EDFE from General Covariance 1/2 Angus-Cho-JHP 1804.00964

• Henceforth, we consider a general DFT action coupled to matter fields, Υa,

Action =

ˆ
Σ

e−2d
[

1
16πG S(0) + Lmatter

(
Υa,DAΥb

) ]
,

and seek the variation of the action induced by all the fields, d ,VAp, V̄Ap,Υa .

Note δVAp = (P̄ + P)A
BδVBp = V̄Aq̄ V̄ Bq̄δVBp + (δVB[pV B

q])VA
q . The 2nd term is a local Lorentz rotation

and can be absorbed into δΥa. Thus, only the projected variation, V̄ B
q̄δVBp = −V B

pδV̄Bq̄ , appears.

– Firstly, the ‘pure’ DFT part transforms, up to total derivatives ('), as

δ
(

e−2d S(0)

)
' 4e−2d

(
V̄ Bq̄

δVB
pSpq̄ − 1

2 δd S(0)

)
.

– Secondly, the variation of the matter part,

δ
(

e−2d Lmatter

)
' −2e−2d

(
V̄ Aq̄

δVA
pKpq̄ − 1

2 δd T(0) − 1
2 δΥa

δLmatter

δΥa

)
naturally defines

Kpq̄ :=
1
2

(
VAp

δLmatter

δV̄A
q̄
− V̄Aq̄

δLmatter

δVA
p

)
, T(0) := e2d ×

δ
(

e−2d Lmatter

)
δd

.
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Derivation of EDFE from General Covariance 2/2 Angus-Cho-JHP 1804.00964

• Combining the two results, the variation of the action reads

δAction =

ˆ
Σ

e−2d
[

1
4πG V̄ Aq̄δVA

p(Spq̄ − 8πGKpq̄)− 1
8πG δd(S(0) − 8πGT(0)) + δΥa

δLmatter

δΥa

]
.

• Specifically when the variation is generated by diffeomorphisms, we have δξΥa = L̂ξΥa and

V̄ Aq̄δξVA
p = V̄ Aq̄L̂ξVA

p = 2D[AξB]V̄ Aq̄V Bp , δξd = − 1
2 e2d L̂ξ

(
e−2d) = − 1

2DAξ
A .

• The Diffeomorphic General Covariance of the Action then implies

0 =

ˆ
Σ

e−2d
[

1
8πG ξ

BDA
[
4V[A

pV̄B]
q̄(Spq̄ − 8πGKpq̄)− 1

2JAB(S(0) − 8πGT(0))
]

+ δξΥa
δLmatter

δΥa

]
.

This gives the O(D,D) completion of Einstein curvature, JHP-Rey-Rim-Sakatani 2015

GAB := 4V[A
pV̄B]

q̄Spq̄ − 1
2JABS(0) , DAGAB = 0 (off-shell) ,

the O(D,D) completion of Energy-Momentum tensor, Angus-Cho-JHP 2018

TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0) , DAT AB = 0 (on-shell) ,

and hence, the O(D,D) completion of Einstein Field Equations, GAB = 8πGTAB .
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Examples of TAB := 4V[A
pV̄B]

q̄Kpq̄ − 1
2JABT(0)

• Scalar field,

Lϕ = − 1
2H

MN∂Mϕ∂Nϕ− V (ϕ) , Kpq̄ = ∂pϕ∂q̄ϕ , T(0) = −2Lϕ .

• Spinor field,

Lψ = ψ̄γpDpψ + mψψ̄ψ , Kpq̄ = − 1
4 (ψ̄γpDq̄ψ −Dq̄ψ̄γpψ) , T(0) ≡ 0 .

• RR sector,

LRR = 1
2 Tr(FF̄) , Kpq̄ = − 1

4 Tr(γpF γ̄q̄F̄) , T(0) = 0 .

• Fundamental string: with Di yM = ∂i yM −AM
i (doubled-yet-gauged),

e−2d Lstring = 1
4πα′

ˆ
d2σ

[
− 1

2

√
−hhij Di yM Dj yNHMN (y)− εij Di yMAjM

]
δD(x − y(σ)

)
,

Kpq̄ = 1
4πα′

ˆ
d2σ
√
−hhij Di yM Dj yN VMpV̄Nq̄ e2d(x)δD(x − y(σ)

)
, T(0) = 0 .

– More examples include Yang-Mills, point particle, Green-Schwarz superstring, etc. 1804.00964
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DFT = O(D,D) completion of GR

I One single master formula unifies all the EOMs of the whole massless NS-NS sector,

GAB = 8πGTAB : Einstein Double Field Equations (EDFEs)

which is naturally consistent with our central idea that DFT treats the closed-string massless
sector as the geometrical graviton multiplet.

• The (0, 0) Riemannian parametrization reduces EDFEs to

Rµν + 25µ(∂νφ)− 1
4 HµρσHν

ρσ = 8πGK(µν) ,

e2φ5ρ
(

e−2φHρµν
)

= 16πGK[µν] ,

R + 42φ− 4∂µφ∂
µ
φ− 1

12 HλµνHλµν = 8πGT(0) .

• EDFEs should also govern the dynamics of generic (n, n̄)

non-Riemannian geometries, including Newton–Cartan,
Carroll, Gomis–Ooguri, etc.
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Non-Riemannian (n, n̄) sectors in DFT Kyoungho Cho & JHP 1909.10711

• After ∂̃µ ≡ 0, the semi-covariant formalism naturally induces a ‘upper-indexed’ covariant
derivative for the undoubled ordinary diffeomorphisms and GL(n)× GL(n̄) local rotations,

D
µ = Hµρ∂ρ + Ωµ + Υµ + Ῡµ ,

Ωµνλ = − 1
2∂λHµν − Hρ[µ∂ρHν]σKσλ − Hρ[µ∂ρYν]

i X i
λ − Hρ[µ∂ρȲν]

ı̄ X̄ ı̄λ

+
(

2Hρ[µYν]
i ∂[τX i

ρ] − 2Hρ[µȲν]
ı̄ ∂[τ X̄ ı̄ρ]

)(
Yτj X j

λ − Ȳτ̄ X̄ ̄λ
)
,

Υµ i
j = −2HµρYσj ∂[ρX i

σ] , Ῡµ ı̄̄ = −2HµρȲσ̄ ∂[ρX̄ ı̄σ] .

• For (0, 0), it reduces to Dµ = gµν5ν , while for generic (n, n̄) it enables us to expandˆ
e−2d S(0) =

ˆ
e−2d

[
RΩ + 4KµνD

µd Dνd − 1
12 HλρHµσHντHλµνHρστ − HλµνHλρ

(
Yµi D̂

νX i
ρ − Ȳµı̄ D̂

ν X̄ ı̄ρ
)]

• This might have provided the action principle for each non-Riemannian gravity with fixed

(n, n̄), but it cannot produce the full EDFE, since δHAB may involve (n, n̄)→ (n − 1, n̄ − 1).

? Our conclusion is that the various non-Riemannian gravities should be better identified

as different solution sectors of DFT rather than viewed as independent theories.

– Milne-shift as well as GL(n)× GL(n̄) invariant H-flux has been also identified:

Ĥλµν := HλρHµσHντHρστ + 6Hρ[λYµi D
ν]X i

ρ − 6Hρ[λȲµı̄ D
ν]X̄ ı̄ρ .
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ı̄ X̄ ı̄λ
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(

2Hρ[µYν]
i ∂[τX i

ρ] − 2Hρ[µȲν]
ı̄ ∂[τ X̄ ı̄ρ]
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Yτj X j
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Physical implications
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Spherical solution to D = 4 EDFEs Angus-Cho-JHP 1804.00964

Stringy ‘star’ of radius, rc : GAB =


8πGTAB for r ≤ rc (spherical)

0 for r > rc

• Outside the star, r ≥ rc, the vacuum geometry is known Burgess-Myers-Quevedo ’94

e2φ = γ+

(
r−α
r+β

) b√
a2+b2 + γ−

(
r+β
r−α

) b√
a2+b2 , H(3) = h sinϑ dt ∧ dϑ ∧ dϕ ,

ds2 = e2φ

[
−
(

r−α
r+β

) a√
a2+b2 dt2 +

(
r+β
r−α

) a√
a2+b2 {dr2 + (r − α)(r + β)dΩ2}]

having four parameters, {α, β, a, h}, while b2 = (α+ β)2 − a2 and γ± = 1
2 (1±

√
1− h2/b2).

If b = h = 0, it reduces to Schwarzschild geometry.

• Inside the star, EDFEs fix all the constants, {α, β, a, h}, in terms of TAB , for example

a =

ˆ rc

0
dr
ˆ π

0
dϑ
ˆ 2π

0
dϕ e−2d

[
1

4πHrϑϕH rϑϕ + 2G
(
Kr

r + Kϑϑ + Kϕϕ − Kt
t − T(0)

)]
.

Various components of TAB enrich the spherical geometry of DFT, beyond Schwarzschild.
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Spherical solution to D = 4 EDFEs Angus-Cho-JHP 1804.00964

• In terms of Areal Radius, R : ds2 = gttdt2 + gRRdR2 + R2dΩ2, the Newton potential reads

Φ = − 1
2 (1 + gtt ) = −MG

R +

(
2b2−h2+2ab

√
1−h2/b2

a2+b2−h2+2ab
√

1−h2/b2

)(
MG
R

)2
+ · · ·

where the ellipses denote higher order terms in MG
R which is ‘dimensionless’, and

MG = 1
2

(
a + b

√
1− h2/b2

)
=

ˆ ∞
0

dr
ˆ π

0
dϑ
ˆ 2π

0
dϕ e−2d

(
−2GKt

t + 1
8π

∣∣HtϑϕH tϑϕ
∣∣) .

That is to say, DFT modifies GR for small R
MG . In particular, it can be repulsive.

• Intriguingly, the dark energy and matter problems arise from small R
MG observations:

The observations of stars/galaxies far away may reveal the short-distance nature of gravity.

The repulsive force at short distance may explain the accelerating expansion of Universe?

• Since B-field does not couple to particle geodesics, from the mass formula above, we might
speculate that electric H-flux is dark matter, while Kt

t represents ordinary matter (baryonic).
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Cosmology S. Angus, K. Cho, G. Franzmann, Shinji Mukohyama & JHP 1905.03620

I O(D,D) completion of the Friendamann equations:

8πG
3
ρe2φ +

h2

12a6
= H2 − 2

(
φ′

N

)
H +

2
3

(
φ′

N

)2

+
k
a2

4πG
3

(ρ + 3p)e2φ +
h2

6a6
= −H2 −

H′

N
+

(
φ′

N

)
H −

2
3

(
φ′

N

)2

+
1
N

(
φ′

N

)′
8πG

3

(
ρe2φ −

1
2

T(0)

)
= −H2 −

H′

N
+

2
3N

(
φ′

N

)′
which imply the conservation equation,

ρ
′ + 3NH(ρ + p) + φ

′T(0)e
−2φ = 0 .

Here most general cosmological (homogeneous, isotropic, & Riemannian) ansatzes have been adopted:

ρ :=
(
−K t

t + 1
2 T(0)

)
e−2φ , p :=

(
K r

r − 1
2 T(0)

)
e−2φ , H(3) = hr2√

1−kr2
sinϑ dr ∧ dϑ ∧ dϕ .

∗ This gives an enriched and novel framework beyond typical
string cosmology, enjoying two equation-of-state parameters,
w = p/ρ (conventional) and λ = T(0)e

−2φ/ρ (new).

In particular, de Sitter is unnatural as incompatible with DFT
C.C. term, e−2d ΛDFT. It might be an artifact of GR.

c.f. Swampland a la Vafa
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Stringy Newton Gravity with H-flux Kyoungho Cho, Kevin Morand & JHP 1912.13220

It is straightforward to take the weak field approximation and non-relativistic limit of the D = 4

EDFEs, GAB = 8πGTAB , to obtain the string theory extention of Newton Gravity,

∇2Φ = 4πGρ+ H·H , ∇·H = 0 , ∇×H = 4πG K ,

• Not only the mass density ρ ∝ K00 but also the current density K ∝ (K[01],K[02],K[03]) is

intrinsic to matter. Sourcing H ∝ (H[023],H[031],H[012]), K is nontrivial if the matter is ‘stringy’.

• Since K is divergenceless, we may introduce the notion of ‘stringization’ , analogous to

magnetization, and note the ‘stringy dipole’,

K = ∇× s ; H ' G
3x̂ (x̂·S(t))− S(t)

|x|3
, S(t) =

ˆ
d3x s(t , x) .

• H contributes quadratically to the Newton potential, but otherwise is decoupled from the point
particle dynamics nor electromagnetism (light),

-x = −∇Φ , Sphoton =

ˆ
d4x − 1

4

√
−ge−2φgµρgνσFµνFρσ .

⇒ H-flux behaves like a dark matter.
⇒ Light does not merely follow a null geodesic if φ is nontrivial.
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Concluding Remark

DFT = O(D,D) completion of GR

GAB = 8πGTAB

EDFE as the master formula for massless NS-NS & non-Riemannian geometry.

• c →∞ limit: ∇2Φ = 4πGρ+ H·H , ∇·H = 0 , ∇×H = 4πG K

– H-flux as dark matter?

– Repulsive gravitational force for small R
MG as dark energy?

– Are leptons and quarks distinct kinds of spinors for Spin(1, 3)× Spin(3, 1)?

– O(D,D) Symmetry Principle: O(D,D) can be broken only spontaneously but
never explicitly. Is this true in Nature?
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ありがとうございま
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