Equivalence of the field theory approach and the microscopic approach to the topological insulators in odd dimensions

T. Onogi (Osaka Univ.)

arXiv:1903.11852

with H. Fukaya, S. Yamaguchi (Osaka U), X. Wu (Ariel U)

July 17, 2019, Seminar @ Dept. of Phys. Kyoto U.

1. Introduction

Topological insulator is interesting (particularly to lattice theorists)

Interesting physics from non-trivial topology Bulk: insulator Surface: metal (Bulk-Edge correspondence)

Figure from Tokura et al. Nature Reviews Physics vol 1, 126 (2019)

Close relationship to domain-wall fermion
 New knowledge of topological matter
 new hints to lattice fermions by Domain-wall fermion
 example: Gapped symmetric phase by 4-fermi interaction
 Chiral gauge theory on the lattice

Characterizaton of topological insulator

Microscopic approach

TKNN formula Thouless, Kohmoto, . Nightingale, . den Nijs

Field theory approach

K. Ishikawa 1984, H. So 1985, Golterman, Jansen, Kaplan 1993

- Study the wavefunction of free fermion
- Applied to various different free systems (higher dim, higher symmetry)
- Looks rather technical (at least to me)
- > Applicable only to free fermion systems

- Study the effective action with gauge field
- Conceptually simple : bulk-edge correspondence =anomaly cancellation
- > Applicable also to interacting fermion systems

Question

Two topological characterizations are identical?

In some specific cases, yes.

How generally identical and why?

We prove the equivalence for general Hamiltonians bilinear in fermion in D=2+1 and D=4+1 dimensions.

Outline

✓□ 1. Introduction

- 2. Review of the microscopic approach
- 3. Review of the field theory approach
- 4. Equivalence for general Hamiltonian
 - 1. The Setup and outline of the proof
 - 2. Fermion-loop expression \rightarrow Winding number expression
 - 3. Winding number expression \rightarrow TKNN formula
- 5. Summary

2. Review of the microscopic approach

Anomalous Hall effect

2+1 dim system with Parity Violation

Hall current perpendicular to Electric field

$$\langle j_x \rangle_E = \sigma_{xy} E_y$$

Hall conductivity can be expressed by topological quantity using

- 1) Kubo formula from perturbation theory
- 2) Formulae in quantum mechanics

Electron states under electric field (perturbation theory)

$$|n\rangle_E = |n\rangle + \sum_{m \neq n} |m\rangle \frac{\langle m|eE_yy|n\rangle}{E_n - E_m}$$

 $|n\rangle$: eigenstate in free theory $|n\rangle_E$: perturbed state

Hall current under the electric field

$$\langle j_x \rangle_E \equiv \sum_{n, E_n < 0} \langle n |_E \frac{-ev_x}{L^2} | n \rangle_E$$

Kubo formula

$$\sigma_{xy} = -\frac{ie^2}{L^2} \sum_{\vec{p}} \sum_{a} \sum_{b \neq a} \epsilon^{ij} \frac{\langle a, \vec{p} | v_i | b, \vec{p} \rangle \langle b, \vec{p} | v_j | a, \vec{p} \rangle}{\left(E_a(\vec{p}) - E_b(\vec{p})\right)^2}$$

 $n \Rightarrow (a, \vec{p})$ $[y, H] = iv_y$

where we have used

- Translational invariance:
- Heisenberg equation:

- a: band label,
 - \vec{p} : bloch momentum

Derivation of Useful formula from

$$\begin{aligned} v_i &= \frac{\partial}{\partial p^i} H(\vec{p}) \\ H(\vec{p}) |a, \vec{p}\rangle &= E_a(\vec{p}) |a, \vec{p}\rangle \\ \langle a, \vec{p} | b, \vec{p}\rangle &= 0 \qquad (a \neq b) \end{aligned}$$

$$\langle a, \vec{p} | v_i | b, \vec{p} \rangle = (E_a(\vec{p}) - E_b(\vec{p})) \langle a, \vec{p} | \frac{\partial}{\partial p^i} | b, \vec{p} \rangle \quad (a \neq b)$$

Combining with Kubo formula and defining $A_i^{(a)}(\vec{p}) \equiv -i\langle a, \vec{p} | \frac{\partial}{\partial p^i} | a, \vec{p} \rangle$

Berry connection

Chern number c_1 !

TKNN formula

 $\sigma_{xy} = \frac{e^2}{L^2} \sum_{\vec{p}} \sum_{a} \epsilon^{ij} \frac{\partial}{\partial p^i} \mathcal{A}_j^{(a)}(\vec{p})$ $= \frac{e^2}{2\pi} \int \frac{d^2 p}{2\pi} \sum_{\vec{r}} \epsilon^{ij} \frac{\partial}{\partial p^i} \mathcal{A}_j^{(a)}(\vec{p})$

3. Review of field theory approach

Effective gauge action

Integrating out massive fermions in 3-dimensions

$$S_{\text{eff}}(A) \equiv \ln \left[\int \mathcal{D}\psi \mathcal{D}\bar{\psi}e^{-\int \bar{\psi}(D+m)\psi} \right]$$

Well-known example

Parity anomaly S. Deser, R. Jackiw, S. Templeton 1982, N. Redlich 1984

$$S_{\text{eff}}(A) = ic_{cs}S_{cs}(A) + \cdots$$
$$S_{cs}(A) \equiv \int d^3x \ \epsilon^{\mu\nu\lambda}A_{\mu}\partial_{\nu}A_{\lambda} \qquad c_{cs} = -\frac{1}{8\pi}\frac{m}{|m|}$$

Parity violation of fermion induces Chern-Simons action

Anomalous Hall conductivity from Chern-Simons action

$$S_{\rm eff}(A) = ic_{cs} \int d^3x \ \epsilon^{\mu\nu\lambda} A_{\mu} \partial_{\nu} A_{\lambda}$$

Hall conductivity is given by the Chern-Simons coupling c_cs

$$\begin{aligned} \langle j_i \rangle &\equiv \frac{\partial}{\partial A_i} S_{\text{eff}}(A) \\ &= 2c_{cs} \epsilon^{i\nu\lambda} \partial_{\nu} A_{\lambda} = 2c_{cs} \epsilon^{ij} E_j \end{aligned}$$

$$\sigma_{xy} \propto c_{cs}$$

Expression of Chern-Simons coupling

 $c_{cs}\,\,{\rm can}\,\,{\rm be}\,\,{\rm obtained}\,\,{\rm by}\,\,{\rm differentiating}\,{\rm S}_{\rm eff}$ with gauge fields and its momentum

$$c_{cs} = -\frac{\epsilon_{\alpha_0\beta_1\alpha_1}}{2!3!} \left(\frac{\partial}{\partial q_1}\right)_{\beta_1} \\ \times \int d^3 x_1 e^{iq_1x_1} \left.\frac{\delta^2 S_{\text{eff}}(A)}{\delta A_{\alpha_0}(x_0)\delta A_{\alpha_1}(x_1)}\right|_{A=0,q=0,x_0=0}$$

Current-Current correlator

fermion 1-loop diagram

Fermion 1-loop diagram

Assuming multi-photon vertex does not contribute True for continuum theory and Wilson fermion on the lattice

$$c_{cs} = \frac{\epsilon^{\alpha_0 \beta_1 \alpha_1}}{2 \cdot 3!} \left(\frac{\partial}{\partial q_1}\right)_{\beta_1} \int \frac{d^3 p}{(2\pi)^3} Tr \left[S(p)\Gamma^{(1)}_{\alpha_0}[q_1; p - q_1]S(p - q_1)\Gamma^{(1)}_{\alpha_1}(-q_1; p)\right]$$

 $\Gamma^{(1)}_{\mu}[q;p]$: fermion-fermion-photon vertex

p: incoming fermion momentum,q: incoming photon momentum

Assuming derivative of vertex function does not contribute True for continuum theory and Wilson fermion on the lattice

$$c_{cs} = -\frac{\epsilon^{\alpha_0\beta_1\alpha_1}}{2\cdot 3!} \int \frac{d^3 p}{(2\pi)^3} Tr\left[S(p)\Gamma^{(1)}_{\alpha_0}[0;p]\frac{\partial S(p)}{\partial p^{\beta_1}}\Gamma^{(1)}_{\alpha_1}(0;p)\right]$$

Ward-Takahashi identity
$$\Gamma^{(1)}_{\mu}[0;p] = -i \frac{\partial S^{-1}(p)}{\partial p^{\mu}}$$

$$c_{cs} = -\frac{\epsilon^{\alpha_0\beta_1\alpha_1}}{2\cdot 3!} \int \frac{d^3 p}{(2\pi)^3} \text{Tr} \left[S(p)\partial_{\alpha_0} S^{-1}(p)S(p)\partial_{\beta_1} S^{-1}(p)S(p)\partial_{\alpha_1} S^{-1}(p) \right]$$

"Winding number" expression of Chern-Simons coupling

K. Ishikawa 1984, H. So 1985 Golterman, Jansen, Kaplan 1993

> Topological in S(p) has no singularity (true for gapped system)

Solution Winding number of a map $T^3 \rightarrow S^3$ for Wilson fermion

4. Equivalence for general Hamiltonian

Fukaya, T.O., Yamaguchi, Xi arXiv:1903.11852

4-1. The Setup

2-1. The Setup

Gapped fermion system in D=2n+1 dimensions.

Fermions on 2n dim lattice with continuous time in Euclidean space

$$S_E = \int dt \sum_{\vec{r}} \psi^{\dagger}(t, \vec{r}) \left[\frac{\partial}{\partial t} + iA_0 + H(\vec{A}) \right] \psi(t, \vec{r})$$

 $H(\vec{A})\Big|_{\vec{A}=0}$: translational inv. \Rightarrow band structure

 ψ, ψ^{\dagger} can have many internal DOF ightarrow Many bands

No particular structure is assumed such as relativistic fermion, or Wilson fermion,

Nv Valence bandsNc Conduction bandsΔ: Gap

Energy eigenstates for fixed \vec{p}

Outline of the proof

4-2 Chern-Simons level \rightarrow Winding number

2-2. Fermion-loop expression \rightarrow Winding number expression

$$S_{\text{eff}}(A) = \dots + ic_{cs}S_{cs}(A) + \dots$$
$$S_{cs}(A) = \int d^{2n+1}x\epsilon_{\alpha_0\beta_1\alpha_1\dots\beta_n\alpha_n}A_{\alpha_0}\partial_{\beta_1}A_{\alpha_1}\dots\partial_{\beta_n}A_{\alpha_n}$$

 C_{cs} can be obtained by differentiating the effective action as

$$c_{cs} = \frac{(-i)^{n+1} \epsilon_{\alpha_0 \beta_1 \alpha_1 \cdots \beta_n \alpha_n}}{(n+1)! (2n+1)!} \left(\frac{\partial}{\partial q_1} \right)_{\beta_1} \cdots \left(\frac{\partial}{\partial q_n} \right)_{\beta_n} \\ \times \prod_{i=1}^n \int d^{2n+1} x_i e^{iq_i x_i} \left. \frac{\delta^{n+1} S_{\text{eff}}(A)}{\delta A_{\alpha_0}(x_0) \delta A_{\alpha_1}(x_1) \cdots \delta A_{\alpha_n}(x_n)} \right|_{A=0, q_i=0}$$

Fermion 1-loop diagram with n+1 external photons

For general Hamiltonian,

Feynman rule can have fermion-fermion-multiphoton vertices

→ 1-loop n-point function from several diagrams in general.

D=2+1 case

$$c_{\rm cs} = -\frac{(-i)^2 \epsilon_{\alpha_0 \beta_1 \alpha_1}}{2! 3!} \int \frac{d^3 p}{(2\pi)^3} \left(\frac{\partial}{\partial q_1}\right)_{\beta_1} \\ \left\{ {\rm Tr} \left[S_F(p) \Gamma^{(2)}[-q_1, \alpha_0; q_1, \alpha_1; p] \right] \\ + {\rm Tr} \left[S_F(p-q_1) \Gamma^{(1)}[-q_1, \alpha_0; p] S_F(p) \Gamma^{(1)}[q_1, \alpha_1; p-q_1] \right] \right\} \Big|_{q_1=0}$$

Naively, simplest Ward-Takahashi identity reduce the fermion loop expression into winding number expression

$$\partial_{\mu} S_F^{-1}(p) = -i \Gamma_{\mu}(k, p) \mid_{k=0}$$

K. Ishikawa 1984, H. So 1985, Golterman, Jansen, Kaplan 1993

However, two new contributions in general case

- 1. Multi-photon vertex contribution \rightarrow non-zero
- 2. Momentum derivative of the vertex function \rightarrow non-zero

corrections to the winding number expression!

New Ward-Takahashi identities

Gauge invariant lattice action can be formally expanded by infinite series of covariant derivatives.

Example:
$$\psi^{\dagger}(t, \vec{x}) e^{i \int_{\vec{x}}^{\vec{x}+a\vec{\mu}} d\vec{r}' \cdot \vec{A}(\vec{r}')} \psi(t, \vec{x}+a\vec{\mu}) = \psi^{\dagger}(t, \vec{x}) \sum_{n=0}^{\infty} \frac{a^n}{n!} \left(D^n_{\mu} \psi \right)(t, \vec{x})$$

Therefore, formally action can be expressed as

$$S = \int dt \sum_{\vec{x}} \sum_{n=0}^{\infty} \psi^{\dagger}(t, \vec{x}) M_{\mu_1 \cdots \mu_n} (D_{\mu_1} \cdots D_{\mu_n} \psi)(t, \vec{x})$$

Same coefficient M appear in propagator and vertices

Formal expansions of propagator and vertices

Using the coefficients M,

$$S_F^{-1}(p) = \sum_{n=0}^{\infty} M_{\mu_1 \cdots \mu_n} \prod_{i=1}^n (ip_{\mu_i})$$

$$\Gamma^{(1)}[k,\mu;p] = -i\sum_{n=1}^{\infty}\sum_{a=1}^{n}M_{\mu_{1}\cdots\mu_{a-1}\mu\mu_{a+1}\cdots\mu_{n}}\prod_{i=1}^{a-1}\left(i(p+k)_{\mu_{i}}\right)\prod_{i=a+1}^{n}\left(ip_{\mu_{i}}\right)$$

 $\Gamma^{(2)}[k,\mu;l,\nu;p]$

$$= -i^{2} \sum_{\substack{n=1 \ a,b=1 \\ a$$

$$-i^{2}\sum_{n=1}^{\infty}\sum_{\substack{a,b=1\\a$$

New Ward-Takahashi identity

The formal expression reproduces usual Ward-Takahashi identities.

In addition, one also obtains the following 2nd order W-T identity

$$\frac{\partial^2 \Gamma^{(1)}[k,\mu;p]}{\partial k_{\nu} \partial p_{\lambda}} \bigg|_{k=0} = \left. \frac{\partial \Gamma^{(2)}[k,\mu;0,\lambda;p]}{\partial k_{\nu}} \right|_{k=0} = \left. \frac{\partial \Gamma^{(2)}[0,\lambda;l,\mu;p]}{\partial l_{\nu}} \right|_{l=0}$$

1st derivative of the two-photon vertex with respect to momentum is related to 2nd derivative of the single photon vertex.

Correction terms to 1-loop expression is shown to be total derivatives and vanish.

Using these Ward-Takahashi identities, one can rewrite the integrand X as

$$X = \left[\epsilon^{\alpha_0 \beta_1 \alpha_1} \frac{\partial}{\partial p_{\alpha_0}} \operatorname{Tr} \left(2S_F(p) \frac{\partial \Gamma^{(1)}[q_1, \alpha_1; p)}{\partial q_{\beta_1}} \right) \Big|_{q=0} \right] \\ + \epsilon^{\alpha_0 \beta_1 \alpha_1} \left(S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_0}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\beta_1}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_1}} \right)$$

Therefore, additional contributions add up to a total derivative.

Thus, for general Hamiltonian, we obtain

$$c_{\rm cs} = \frac{(-i)^2 \epsilon_{\alpha_0 \beta_1 \alpha_1}}{2! 3!} \int \frac{dp_0}{2\pi} \int_{\rm BZ} \frac{d^2 p}{(2\pi)^2} \\ \times \operatorname{Tr} \left[S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_0}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\beta_1}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_1}} \right]$$

D=4+1 case

Chern-Simons coupling is obtained from 3-point 1-loop diagrams.

For general Hamiltonian,

[diagram with a 3-photon vertex],

[diagrams with a two-photon vertex + a single photon vertex], [diagram with 3 single-photon vertices] can contribute.

$$c_{cs} = -\frac{(-i)^{3}\epsilon_{\alpha_{0}\beta_{1}\alpha_{1}\beta_{2}\alpha_{2}}}{3!5!} \int \frac{d^{5}p}{(2\pi)^{5}} \left(\frac{\partial}{\partial q_{1}}\right)_{\beta_{1}} \left(\frac{\partial}{\partial q_{2}}\right)_{\beta_{2}} \\ \left\{ \operatorname{Tr} \left[S_{F}(p) \cdot \Gamma^{(3)}[-(q_{1}+q_{2}),\alpha_{0};q_{1},\alpha_{1};q_{2},\alpha_{2};p] \right] \\ + 2\operatorname{Tr} \left[S_{F}(p-q_{2})\Gamma^{(2)}[-(q_{1}+q_{2}),\alpha_{0};q_{1},\alpha_{1};p]S_{F}(p)\Gamma^{(1)}[q_{2},\alpha_{2};p-q_{2}] \right] \\ + \operatorname{Tr} \left[S_{F}(p+q_{1}+q_{2})\Gamma^{(2)}[q_{1},\alpha_{1};q_{2},\alpha_{2};p]S_{F}(p)\Gamma^{(1)}[-(q_{1}+q_{2}),\alpha_{0};p+q_{1}+q_{2}] \right] \right\}, \\ + 2\operatorname{Tr} \left[S_{F}(p+q_{1})\Gamma^{(1)}[q_{1},\alpha_{1};p]S_{F}(p)\Gamma^{(1)}[q_{2},\alpha_{2};p-q_{2}] S_{F}(p-q_{2})\Gamma^{(1)}[-(q_{1}+q_{2}),\alpha_{0};p+q_{1}] \right] \right\} \Big|_{q_{1}=q_{2}=0}$$

Also, momentum derivative of vertex functions do not vanish.

However, one can derive new 3rd order WT-identity from formal expansion of the action in terms of covariant derivatives as

$$\frac{\partial^2 \Gamma^{(3)}[q,\mu;r,\nu;s,\lambda;p]}{\partial q_{\alpha} \partial r_{\beta}} \bigg|_{q,r,s=0} = \left. \frac{\partial^3 \Gamma^{(2)}[q,\mu;r,\nu;p]}{\partial q_{\alpha} \partial r_{\beta} \partial p_{\lambda}} \right|_{q,r=0}$$

Using previous 2nd order WT-identity and new 3rd order WT-identity

One can show correction terms cancel and c_cs is given by winding number expressions as

$$c_{\rm cs} = -\frac{(-i)^3 \cdot 2}{3!5!} \int \frac{d^5 p}{(2\pi)^5} \epsilon_{\alpha_0\beta_1\alpha_1\beta_2\alpha_2} \times \operatorname{Tr} \left[S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_0}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\beta_1}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_1}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\beta_2}} S_F(p) \frac{\partial S_F^{-1}(p)}{\partial p_{\alpha_2}} \right].$$

4-3 Winding number \rightarrow TKNN formula

This part was essentially already given by Qi, Hughes, Zhang, Phys. Rev. B78, 195424, 2008

Idea : Evaluate the winding number expression as follows

1. Rewrite the fermion propagator using eigenstates

$$S(p) = \sum_{\alpha} |\alpha, \vec{p}\rangle \frac{1}{ip^0 + E_{\alpha}(\vec{p})} \langle \alpha, \vec{p} |$$

2. Continuously deform only the eigenvalues to degenerate flat band

$$E_{\alpha}(\vec{p})(<0) \longrightarrow E_{v} = \text{constant}$$
$$E_{\alpha}(\vec{p})(>0) \longrightarrow E_{c} = \text{constant}$$
$$|a\rangle \ (a = 1, \cdots, N_{v}) : \text{valence bands}$$
$$|\dot{a}\rangle \ (\dot{a} = 1, \cdots, N_{c}) : \text{conduction bands}$$

3. Carry out momentum integral over p^0

Step 1

Inserting complete set of energies eigenstates, one obtains

$$c_{\rm cs} = \frac{n!(-i)^{n+2}}{(n+1)!(2n)!} \int \frac{d^{2n}p}{(2\pi)^{2n}} J$$

$$J = \sum_{\alpha_1, \cdots, \alpha_{2n}} \epsilon^{i_1 i_2 \cdots i_{2n}} \int \frac{dp^0}{2\pi} \frac{\langle \alpha_1 | \partial_{i_1} H | \alpha_2 \rangle \langle \alpha_2 | \partial_{i_2} H | \alpha_3 \rangle \cdots \langle \alpha_{2n} | \partial_l H | \alpha_1 \rangle}{(ip^0 + E_{\alpha_1})^2 (ip^0 + E_{\alpha_2}) \cdots (ip^0 + E_{\alpha_{2n}})}$$

Step 2

Continuously deform Hamiltonian by changing only the eigenvalues keeping the gap to degenerate flat band.

$$H(\vec{p}) \equiv \sum_{a=1}^{N_v} E_a(\vec{p}) |a(\vec{p})\rangle \langle a(\vec{p})| + \sum_{b=1}^{N_c} E_b(\vec{p}) |\dot{b}(\vec{p})\rangle \langle \dot{b}(\vec{p})|$$
$$H_{\text{new}}(\vec{p}) = E_v \sum_{a=1}^{N_v} |a(\vec{p})\rangle \langle a(\vec{p})| + E_c \sum_{b=1}^{N_c} |\dot{b}(\vec{p})\rangle \langle \dot{b}(\vec{p})|$$

Useful formulae

$$\begin{split} \langle a(\vec{p}) | \partial_{\mu} H(\vec{p}) | b(\vec{p}) \rangle &= 0, \qquad \langle \dot{a}(\vec{p}) | \partial_{\mu} H(\vec{p}) | \dot{b}(\vec{p}) \rangle = 0, \\ \langle a(\vec{p}) | \partial_{\mu} H(\vec{p}) | \dot{b}(\vec{p}) \rangle &= (E_c - E_v) \langle a | \partial_{\mu} \dot{b} \rangle, \\ \langle \dot{a}(\vec{p}) | \partial_{\mu} H(\vec{p}) | b(\vec{p}) \rangle &= -(E_c - E_v) \langle \dot{a} | \partial_{\mu} b \rangle, \\ (a, b = 1, \cdots, N_v, \quad \dot{a}, \dot{b} = 1, \cdots, N_c). \end{split}$$

shows that inserted states should be valence and conduction band appearing alternately.

Step 3

p^0 integration can be easily carried out by Cauchy integral

$$J = \sum_{a_1, \cdots, a_n=1}^{N_v} \sum_{\dot{a}_1, \cdots, \dot{a}_n=1}^{N_c} \epsilon^{i_1 j_1 \cdots i_{2n} j_{2n}} (-1)^{n+1} \frac{(2n)!}{(n!)^2} \times \langle a_1 | \partial_{i_1} \dot{a}_1 \rangle \langle \dot{a}_1 | \partial_{j_1} a_2 \rangle \times \cdots \times \langle a_n | \partial_{i_n} \dot{a}_n \rangle \langle \dot{a}_n | \partial_{j_n} a_1 \rangle.$$

Berry connection

Define the Berry connection as

 $\mathcal{A}^{ab} \equiv \mathcal{A}^{ab}_{\mu} dp^{\mu} = -i\langle a|\partial_{\mu}b\rangle dp^{\mu} = -i\langle a|db\rangle$ $\checkmark \qquad \mathcal{F}^{ab} \equiv \left(d\mathcal{A} + i\mathcal{A}\mathcal{A} \right)^{ab}$ N_{η} $= -\langle da|db\rangle + i\sum_{i=1}^{n} (-i)\langle a|dc\rangle(-i)\langle c|db\rangle$ $\mathbf{1} = \sum_{i=1}^{N_v} |c\rangle \langle c| + \sum_{i=1}^{N_c} |\dot{c}\rangle \langle \dot{c}|$ Inserting complete set $\mathcal{F}^{ab} = i \sum^{N_c} \langle a | d\dot{c} \rangle \langle \dot{c} | db \rangle$ This product gives Berry curvature! $\dot{c}=1$

Using
$$\mathcal{F}^{ab} = i \sum_{\dot{c}=1}^{N_c} \langle a | d\dot{c} \rangle \langle \dot{c} | db \rangle$$
 , one can rewrite the integrand J

using only the product of Berry curvature

Inserting this expression into c_cs using J, and using the definition of the Berry curvature one obtains

$$c_{\rm cs} \equiv \frac{k}{(n+1)!(2\pi)^n} = \frac{(-1)^n}{(n+1)!(2\pi)^n} \int_{BZ} \operatorname{ch}_n(\mathcal{A}),$$
$$\operatorname{ch}_n(\mathcal{A}) = \frac{1}{n!} \frac{1}{(2\pi)^n} \operatorname{tr}(\mathcal{F}^n)$$

- This result shows that
- Chern-Simons level in field theory approach and
- Chern number in microscopic approach (TKNN) are identical for general Hamiltonian bilinear in fermion for D=2+1, 4+1 dimensions.

5. Summary

- We have shown microscopic approach (TKNN) and field theory approach give identical topological number for general Hamiltonian bilinear in fermion.
- A series of Ward-Takahashi identities are crucial to show the equivalence.
- No other details beyond gauge symmetry (such as existence of relativistic field theory at low energy) is needed.

- In 4+1 dimensions, there are two independent Chern numbers. However, only a particular Chern number appeared.
- This means that topological classification in microscopic approach may be finer, or those detailed structure may not be robust.
- It would be interesting to see similar equivalence holds or not for other cases such as systems with higher symmetry or systems with interacting fermions.