Two-Higgs-doublet models with gauged U(I) Higgs symmetry

Yuji Omura (TUM)

with P. Ko, C.Yu (KIAS) (arXiv: 1309.7156)

• I discuss Two-Higgs-Doublet models.

Standard Model + One extra Higgs doublet

• I discuss Two-Higgs-Doublet models.

Standard Model + One extra Higgs doublet

motivations are

Many high-energy models predict extra Higgs doublets

SUSY,GUT, flavor symmetric models, etc.

• I discuss Two-Higgs-Doublet models.

Standard Model + One extra Higgs doublet

• motivations are

Many high-energy models predict extra Higgs doublets

SUSY,GUT, flavor symmetric models, etc.

We can discuss interesting physics

Higgs physics (heavy, pseudoscalar, charged scalars predicted.)

dark matter physics (Inert-Doublet model(IDM))

experimental anomalies (top AFB at Tevatron and B->D(*)TV at BaBar) (Ko,YO,Yu;Crivellin, Greub, Kokulu;Fajfer, Kamenik, Nisandzic, Zupan; He,Valencia;Tanaka,Watanabe)

• I discuss Two-Higgs-Doublet models.

Standard Model + One extra Higgs doublet

• motivations are

Many high-energy models predict extra Higgs doublets

SUSY, GUT, flavor symmetric models, etc.

We can discuss interesting physics

Higgs physics (heavy, pseudoscalar, charged scalars predicted.)

dark matter physics (Inert-Doublet model(IDM))

experimental anomalies (top AFB at Tevatron and B->D(*)TV at BaBar) (Ko,YO,Yu;Crivellin, Greub, Kokulu;Fajfer, Kamenik, Nisandzic, Zupan; He,Valencia;Tanaka,Watanabe)

• One big issue of this simple extension is flavor physics

 \rightarrow Higgs symmetry should assigned to distinguish the 2 Higgs doublets

• <u>2HDM with Gauged U(I) Higgs symmetry</u>

(Ko,YO,Yu)

• spontaneous U(1) symmetry breaking realizes explicitly broken Z2 symmetry commonly discussed. (Glashow, Weinberg)

- Some GUTs predict 2HDM with U(I) at low energy (ex) E6 GUT)
- In SUSY, the non-decoupling D-term of U(I)H shifts the upper bound on Higgs mass.

(Batra, Delgado, Kaplan, Tait; Maloney, Pierce, Wacker; Craig, Katz; Liu, Wang; Athron, King, Miller, Moretti, Nevzorov, etc..)

• There are good dark matter candidates. (Stability guaranteed by the remnant symmetry of U(I))

My talk

I introduce type-I and type-II 2HDMs with U(I)H, and discuss phenomenology. (Type-II is inspired by E₆ GUT.)

- Setup of 2HDMs with gauged U(I) Higgs symmetry
- Theoretical and Experimental Constraints
- Higgs Physics
- Dark Matter Physics
- Summary

setup of 2HDMs with gauged U(1) Higgs symmetry

Flavor problem in 2HDM

Simply add one Higgs

 $\overline{Q_{L}^{i}}(y_{dij}^{1}H_{1} + y_{dij}^{2}H_{2})D_{R}^{j} + \overline{Q_{L}^{i}}(y_{uij}^{1}\widetilde{H_{1}} + y_{uij}^{2}\widetilde{H_{2}})U_{R}^{j}$

mass matrix

 $m_i^d \delta_{ij} = (V_L^{d\dagger} y_d^1 \overline{V_R^d})_{ij} \langle H_1 \rangle + (V_L^{d\dagger} y_d^2 \overline{V_R^d})_{ij} \langle H_2 \rangle$

Flavor problem in 2HDM

Simply add one Higgs

$$\overline{Q_L^i}(y_{dij}^1H_1 + y_{dij}^2H_2)D_R^j + \overline{Q_L^i}(y_{uij}^1\widetilde{H_1} + y_{uij}^2\widetilde{H_2})U_R^j$$

mass matrix

$$m_i^d \delta_{ij} = (V_L^{d\dagger} y_d^1 V_R^d)_{ij} \langle H_1 \rangle + (V_L^{d\dagger} y_d^2 V_R^d)_{ij} \langle H_2 \rangle$$

Yukawa coupling

neutral higgs h coupling

$$H_1^{0} = h\cos\alpha - H\sin\alpha, H_2^{0} = h\sin\alpha + H\cos\alpha$$

 $\{(V_L^{d\dagger}y_d^1 V_R^d)_{ij} \cos \alpha + (V_L^{d\dagger}y_d^2 V_R^d)_{ij} \sin \alpha\} h \overline{\hat{D}_L^i} \hat{D}_R^j$

generally flavor changing couplings

• Higgs symmetry solves the flavor problem

minimal flavor violation

If one sector couples with only one Higgs

Type II : $y_{ij}^U \overline{Q_{Li}} \widetilde{H_2} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_2} N_{Rj}$.

diagonal Yukawa of neutral scalars flavor-changing Yukawa of charged Higgs suppressed by CKM

symmetry should be assigned to Higgs and SM fermions

Higgs symmetry solves the flavor problem

minimal flavor violation

If one sector couples with only one Higgs

Type II : $y_{ij}^U \overline{Q_{Li}} \widetilde{H_2} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_2} N_{Rj}$.

diagonal Yukawa of neutral scalars flavor-changing Yukawa of charged Higgs suppressed by CKM

symmetry should be assigned to Higgs and SM fermions

well-known symmetry is Z2 symmetry (Glashow, Weinberg) $Z_2: (H_1, H_2) \rightarrow (+H_1, -H_2) \quad (U_{Rj}, D_{Rj}) \rightarrow (-U_{Rj}, D_{Rj})$

Higgs symmetry solves the flavor problem

minimal flavor violation

If one sector couples with only one Higgs

Type II : $y_{ij}^U \overline{Q_{Li}} \widetilde{H_2} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_2} N_{Rj}$.

diagonal Yukawa of neutral scalars flavor-changing Yukawa of charged Higgs suppressed by CKM

symmetry should be assigned to Higgs and SM fermions

well-known symmetry is Z2 symmetry (Glashow, Weinberg) $Z_2: (H_1, H_2) \rightarrow (+H_1, -H_2) \quad (U_{Rj}, D_{Rj}) \rightarrow (-U_{Rj}, D_{Rj})$

I consider gauged U(I) symmetry, which may be the origin of the Z₂ symmetry

• <u>Scalars in 2HDM</u>

8 scalars =2(eaten by W+/-)+I(eaten by Z)+2(CP-even)+I(CP-odd)+I charged Higgs pair

8 scalars =2(eaten by W+/-)+2(eaten by Z,ZH)+2(CP-even)+0(CP-odd)+1 charged Higgs pair

but ρ -para. requires very small ZH mass.....

8 scalars =2(eaten by W+/-)+2(eaten by Z,Zн)+2(CP-even)+0(CP-odd)+1 charged Higgs pair

but ρ-para. requires very small ZH mass.....

Let me introduce a U(I)H-charged SM singlet (Φ)

10 scalars =2(eaten by W+/-)+2(eaten by Z,ZH)+3(CP-even)+1(CP-odd)+1 charged Higgs pair

→ 3 CP-even, I (heavy) pseudoscalar, I charged Higgs pair, and I extra gauge boson (Zн).

$$H_{i} = \left(\frac{v_{i}}{\sqrt{2}} + \frac{1}{\sqrt{2}}(h_{i} + i\chi_{i})\right), \quad \Phi = \frac{1}{\sqrt{2}}(v_{\Phi} + h_{\Phi} + i\chi_{\Phi}).$$

I0 scalars =2(eaten by W+/-)+2(eaten by Z,Zн)+3(CP-even)+I(CP-odd)+I charged Higgs pair 3 CP-even Higgs

$$\begin{pmatrix} h_{\Phi} \\ h_{1} \\ h_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha_{1} & 0 & -\sin \alpha_{1} \\ 0 & 1 & 0 \\ \sin \alpha_{1} & 0 & \cos \alpha_{1} \end{pmatrix} \begin{pmatrix} \cos \alpha_{2} & -\sin \alpha_{2} & 0 \\ \sin \alpha_{2} & \cos \alpha_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h \\ H \\ h \end{pmatrix}$$
$$m_{h}^{2} + m_{H}^{2} - m_{A}^{2} > 0 \quad \text{in 2HDM wo } \lambda s$$
$$\text{no valid in 2HDM with U(1)}$$

$$H_{i} = \left(\frac{v_{i}}{\sqrt{2}} + \frac{1}{\sqrt{2}}(h_{i} + i\chi_{i})\right), \quad \Phi = \frac{1}{\sqrt{2}}(v_{\Phi} + h_{\Phi} + i\chi_{\Phi}).$$

I0 scalars =2(eaten by W+/-)+2(eaten by Z,Zн)+3(CP-even)+I(CP-odd)+I charged Higgs pair 3 CP-even Higgs

$$\begin{pmatrix} h_{\Phi} \\ h_{1} \\ h_{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha_{1} & 0 & -\sin \alpha_{1} \\ 0 & 1 & 0 \\ \sin \alpha_{1} & 0 & \cos \alpha_{1} \end{pmatrix} \begin{pmatrix} \cos \alpha_{2} & -\sin \alpha_{2} & 0 \\ \sin \alpha_{2} & \cos \alpha_{2} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \tilde{h} \\ H \\ h \end{pmatrix}$$
$$m_{h}^{2} + m_{H}^{2} - m_{A}^{2} > 0 \quad \text{in 2HDM wo } \lambda \text{s}$$
$$\text{no valid in 2HDM with U(I)}$$

I charged Higgs pair

$$\begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix} = \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} G^+ + \begin{pmatrix} -\sin \beta \\ \cos \beta \end{pmatrix} H^-$$
$$m_{H^+}^2 = \frac{\mu \langle \Phi \rangle}{\cos \beta \sin \beta} - \lambda_4 \frac{v^2}{2}$$

CP-odd scalars (2 Goldstone bosons+1 pseudoscalar)

$$\begin{pmatrix} \chi_{\Phi} \\ \chi_{1} \\ \chi_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ \cos \beta \\ \sin \beta \end{pmatrix} G_{1} + \frac{v_{\Phi}}{\sqrt{v_{\Phi}^{2} + (v \cos \beta \sin \beta)^{2}}} \begin{pmatrix} 1 \\ \frac{v}{v_{\Phi}} \cos \beta \sin^{2} \beta \\ -\frac{v}{v_{\Phi}} \cos^{2} \beta \sin \beta \end{pmatrix} G_{2}$$

 $\left(\langle \Phi \rangle = \frac{v_{\Phi}}{\sqrt{2}}\right)$

$$-\frac{v_{\Phi}}{\sqrt{v_{\Phi}^2 + (v\cos\beta\sin\beta)^2}} \begin{pmatrix} \frac{v}{v_{\Phi}}\cos\beta\sin\beta\\ -\sin\beta\\ \cos\beta \end{pmatrix} A$$

pseudoscalar(A) mass

$$m_A^2 = \frac{\mu \langle \Phi \rangle}{\cos\beta\sin\beta} \left(1 + \frac{v^2}{v_{\Phi}^2} \cos^2\beta \sin^2\beta \right)$$

<u>2 Goldstone bosons (G1,G2)</u>

eaten by Z and ZH

Interesting limits

 $v_\Phi
ightarrow \infty$: like broken Z2 symmetric 2HDM

 $v_{\Phi} \rightarrow 0$: mA $\rightarrow \infty$. Effectively no-pseudoscalar(A) model

gauge bosons

$$\mathcal{L}_{H} = \sum_{i=1}^{2} \left| \left(D_{\mu}^{SM} - ig_{H}q_{Hi}\hat{Z}_{H\mu} \right) H_{i} \right|^{2} + \left| \left(\partial_{\mu} - ig_{H}q_{\Phi}\hat{Z}_{H\mu} \right) \Phi \right|^{2}$$

Mass matrix for Z and ZH boson

$$\begin{pmatrix} \hat{M}_Z^2 & \Delta M_{ZZ_H}^2 \\ \Delta M_{ZZ_H}^2 & \hat{M}_{Z_H}^2 \end{pmatrix}$$

$$\hat{M}_{Z}^{2} = \frac{g^{2} + g^{\prime 2}}{4}v^{2} = \frac{g_{Z}^{2}}{4}v^{2}, \ \hat{M}_{Z_{H}}^{2} = g_{H}^{2} \left\{ \sum_{i=1}^{2} (q_{H_{i}}v_{i})^{2} + q_{\Phi}^{2}v_{\Phi}^{2} \right\}$$

$$\Delta M_{ZZ_{H}}^{2} = -\frac{\hat{M}_{Z}}{v}g_{H}\sum_{i=1}^{2}q_{H_{i}}v_{i}^{2}$$

Generally Z and ZH mix

ρ-para. strongly constraints the mixing

 $(\rho_{\rm SM}=1)$

$$\frac{M_W^2}{M_Z^2 c_W^2} = \rho = 1 + \frac{\Delta M_{ZZ_H}^2}{M_{Z0}^2} \xi + O(\xi^2)$$

$$\left(\tan 2\xi = \frac{2\Delta M_{ZZ_H}^2}{\hat{M}_{Z_H}^2 - \hat{M}_Z^2}\right)$$

(We will be back in the next section)

• <u>charge assignments and extra matters for anomaly</u>

Type-I 2HDM

$y_{ij}^U \overline{Q_{Li}} \widetilde{H}_2 U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_2 D_{Rj} + y_{ij}^E \overline{L_i} H_2 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H}_2 N_{Rj}.$

 H_1 does not couple with SM fermions.

We can discuss the anomaly-free charge assignments without extra fermions.

Type	U_R	D_R	Q_L	L	E_R	N_R	H_2
$U(1)_H$ charge	u	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$q_{H_2} = \frac{(u-d)}{2}$
$q_{H_1} \neq 0$	0	0	0	0	0	0	0
$U(1)_{B-L}$	1/3	1/3	1/3	-1	-1	-1	0
$U(1)_R$	1	-1	0	0	-1	1	1
$U(1)_Y$	2/3	-1/3	1/6	-1/2	-1	0	1/2

Interesting physics is dark matter.

Inert-doublet model (IDM) (stability of (H1)0 guaranteed by U(1)н) mainly I talk about fermiophobic Zн

<u>Type-II 2HDM</u>

$$y_{ij}^U \overline{Q_{Li}} \widetilde{H_2} U_{Rj} + y_{ij}^D \overline{Q_{Li}} H_1 D_{Rj} + y_{ij}^E \overline{L_i} H_1 E_{Rj} + y_{ij}^N \overline{L_i} \widetilde{H_2} N_{Rj}.$$

$$- \begin{vmatrix} \mathbf{0} & \mathbf{0} & - \end{vmatrix}$$

require extra chiral fermions

type-II 2HDM with U(I) inspired by E6 GUT

(Lodon, Rosner)

 $E_6 \to \overline{SO(10) \times U(1)_{\psi}} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$		
Q_L^i	3	2	1/6	-1/3	1	-1	-2		
U_R^i	3	1	2/3	2/3	-1	1	2		
D_R^i	3	1	-1/3	-1/3	-1	-3	-1		
L_i	1	2	-1/2	0	1	3	1		
E_R^i		1	-1	0	-1	= 1	2		
N_R^i	1 - 1	1	0	1	-1	5	5		
H_1	1	2	1/2	0	2	2	-1		
H_2	1	2	1/2 (-2	2	4		

Extra fermions (required by the anomaly-free conditions)

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
q_L^i	3	1	-1/3	2/3	-2	2	4
q_R^i	3	1	-1/3	-1/3	2	2	-1
l_L^i	1	2	-1/2	0	-2	-2	1
l_R^i	1	2	-1/2	-1	2	-2	-4
n_L^i	1	1	0	-1	4	0	-5

Mass terms in Type-II 2HDM inspired by E6

 Φ for U(I)H breaking and masses of extra fermions

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_H$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
Φ	1	1	0	1	-4	0	5

 $U(I)H \times U(I)\psi \times U(I)\chi$ symmetric potential

 $y_{ij}^{q}\Phi\overline{q_{L}}^{i}q_{R}^{j}+y_{ij}^{l}\Phi\overline{l_{L}}^{i}l_{R}^{j}+y_{ij}^{n}\overline{n_{L}}^{i}H_{1}^{T}l_{R}^{j}+y_{ij}^{\prime n}\overline{l_{L}}^{i}\widetilde{H}_{2}n_{L}^{cj}+h.c.$

 $\langle \Phi \rangle \neq 0$ induces the masses of the extra <u>extra neutral particles</u> $l_I^T = (\tilde{\nu}_I, \tilde{e}_I)^T \ (I = L, R)$

$$\mathcal{L}_{\nu} = -\frac{1}{2} \begin{pmatrix} \overline{\widetilde{\nu}_{L}^{c}} & \overline{\widetilde{\nu}_{R}} & \overline{n_{L}^{c}} \end{pmatrix} \begin{pmatrix} 0 & m_{\widetilde{e}} & m_{M} \\ m_{\widetilde{e}} & 0 & m_{D} \\ m_{M} & m_{D} & 0 \end{pmatrix} \begin{pmatrix} \widetilde{\nu}_{L} \\ \widetilde{\nu}_{R}^{c} \\ n_{L} \end{pmatrix} + h.c.$$

$$= -\frac{1}{2} \begin{pmatrix} \overline{N_{1}} & \overline{N_{2}} & \overline{N_{3}} \end{pmatrix} \begin{pmatrix} m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3} \end{pmatrix} \begin{pmatrix} N_{1} \\ N_{2} \\ N_{3} \end{pmatrix} \cdot \text{ lightest one is dark matter.}$$

the remnant symmetry
$$U(1)_{\psi} \to Z_2^{\psi}$$
 by Φ, H_i

Comment on SUSY extension

There would be many problems in flavor physics, etc. I do not consider the constraints from this SUSY embedding.

Theoretical and Experimental Constraints

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha)$

experimental and theoretical constraints

 $\tan\beta$

 m_{H^+}

 m_H

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha)$

experimental and theoretical constraints

 $m_h \sim 126 \text{GeV}$

 $|\overline{m_{H^+}} - \overline{m_A}|$

 $|m_{H^+} - m_H|$

 $\sin(\beta - \alpha)$

EWPOs(S,T,U para.) small mass differences required mass relations $m_h^2 + m_H^2 - m_A^2 > 0$, $m_{H^+}^2 - m_A^2 = -\lambda_4 \frac{v^2}{2}$ perturbativity vacuum stability unitarity

 $\tan\beta$

 m_{H^+}

Theoretical constraints

vacuum stability (to avoid unbounded-from-below)

$$\lambda_1 > 0, \ \lambda_2 > 0, \ \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \ \lambda_3 + \lambda_4 > -\sqrt{\lambda_1 \lambda_2}$$

$$\lambda_{\Phi} > 0, \ \lambda_{1} > \frac{\widetilde{\lambda_{1}}^{2}}{\lambda_{\Phi}}, \ \lambda_{2} > \frac{\widetilde{\lambda_{2}}^{2}}{\lambda_{\Phi}}, \ \lambda_{3} - \frac{\widetilde{\lambda_{1}}\widetilde{\lambda_{2}}}{\lambda_{\Phi}} > -\sqrt{\left(\lambda_{1} - \frac{\widetilde{\lambda_{1}}^{2}}{\lambda_{\Phi}}\right)\left(\lambda_{2} - \frac{\widetilde{\lambda_{2}}^{2}}{\lambda_{\Phi}}\right)},$$
$$\lambda_{3} + \lambda_{4} - \frac{\widetilde{\lambda_{1}}\widetilde{\lambda_{2}}}{\lambda_{\Phi}} > -\sqrt{\left(\lambda_{1} - \frac{\widetilde{\lambda_{1}}^{2}}{\lambda_{\Phi}}\right)\left(\lambda_{2} - \frac{\widetilde{\lambda_{2}}^{2}}{\lambda_{\Phi}}\right)}$$

• unitarity bound

Higgs-Higgs scattering amplitudes give the upper bounds on the quartic couplings.

kanemura, kasai, Y.Okada; Akeroyd, Arhrib, Naimi; Ginzburg, Ivanov

ex)
$$V_{\rm SM} = \frac{\lambda}{2} |H|^4 \rightarrow \lambda < 8\pi$$
 in SM

(Ko,YO,Yu)

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha)$

experimental and theoretical constraints

 $m_h \sim 126 \text{GeV}$

 $|\overline{m_{H^+}} - \overline{m_A}|$

 $|m_{H^+} - m_H|$

 $\sin(\beta - \alpha)$

EWPOs(S,T,U para.) small mass differences required mass relations $m_h^2 + m_H^2 - m_A^2 > 0$, $m_{H^+}^2 - m_A^2 = -\lambda_4 \frac{v^2}{2}$ perturbativity vacuum stability unitarity

 $\tan\beta$

 m_{H^+}

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha)$

experimental and theoretical constraints

 $m_h \sim 126 \text{GeV}$ $|m_{H^+} - m_A|$ $|m_{H^+} - m_H|$ EWPOs(S,T,U para.) small mass differences $\sin(\beta - \alpha)$ required $\tan\beta$ exotic top decay $b \rightarrow s\gamma, B \rightarrow \tau \nu$ lower bound from LEP m_{H^+} $m_{H^+} \gtrsim 90 \text{GeV}$ $\frac{1}{\tan\beta} \text{ (type - II)} \textbf{u,c,t}$ \overline{m}_H $1/\tan\beta$ (type – I)

mass relations $m_h^2 + m_H^2 - m_A^2 > 0$, $m_{H^+}^2 - m_A^2 = -\lambda_4 \frac{v^2}{2}$ perturbativity vacuum stability unitarity

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha)$

experimental and theoretical constraints

 $m_h \sim 126 \text{GeV}$ $|m_{H^+} - m_A|$ mass relations $m_h^2 + m_H^2 - m_A^2 > 0$, $m_{H^+}^2 - m_A^2 = -\lambda_4 \frac{v^2}{2}$ $|m_{H^+} - m_H|$ EWPOs(S,T,U para.) perturbativity small mass differences vacuum stability $\sin(\beta - \alpha)$ required unitarity t->H+b (ATLAS) $\tan\beta$ b->s Y (Hermann, Misiak, Steinhauser) $\infty 60$ exotic top decay Data 2012 an 2HDM type I Observed exclusion 95% CI τ+jets Observed +1\0 theory $b \rightarrow s\gamma, B \rightarrow \tau \nu$ Observed -1/7 theory expected exclusion 2011 Observed exclusion 2011 \overline{m}_{H^+} lower bound from LEP 9 ATLAS Preliminary tan m^{max} √s=8 TeV $m_{H^+} \gtrsim 90 \text{GeV}$ Ldt = 19.5 fb⁻¹ exclusion 95% CL 200400 600 800 1000 M_H in GeV ____ m_H 100 110 120 130 140 150 160 type-II m_{H*} [GeV] b u,c,1 $\tan\beta$ (type $m_{H^+} \gtrsim 360 {
m GeV}$ $1/\tan\beta$ (type – I)

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha)$

experimental and theoretical constraints

 $m_h \sim 126 \text{GeV}$ $|m_{H^+} - m_A|$ mass relations $m_h^2 + m_H^2 - m_A^2 > 0$, $m_{H^+}^2 - m_A^2 = -\lambda_4 \frac{v^2}{2}$ $|m_{H^+} - m_H|$ EWPOs(S,T,U para.) perturbativity small mass differences vacuum stability $\sin(\beta - \alpha)$ required unitarity t->H+b (ATLAS) $\tan\beta$ b->s Y (Hermann, Misiak, Steinhauser) exotic top decay Data 2012 an 2HDM type I Observed exclusion 95% CI τ +jets Observed +1\0 theory $b \rightarrow s\gamma, B \rightarrow \tau \nu$ Observed -1/7 theory Expected exclusion 2011 Observed exclusion 2011 \overline{m}_{H^+} 9 lower bound from LEP ATLAS Preliminary tan m^{max} √s=8 TeV $m_{H^+} \gtrsim 90 \text{GeV}$ Ldt = 19.5 fb⁻¹ exclusion 95% CL SM-like Higgs will constrain 200400600 800 1000 M_H in GeV _____ Next section m_H 100 110 120 130 140 150 160 type-II m_{H*} [GeV] heavy Higgs search should be included $m_{H^+} \gtrsim 360 {
m GeV}$

allowed region(90CL) in (type-I) 2HDM with Z₂

(Ko,YO,Yu)

200 300 400 1000 m_A [GeV]

100

parameters in 2HDM with U(I)

 $m_h, m_H, m_A, m_{H^+}, \tan\beta, \sin(\beta - \alpha), \sin(\alpha_1), \sin(\alpha_2), g_H, M_{Z_H}$

additional parameters contribute to EWPOs, and theoretical constraints

<u>tree-level</u>

$$\frac{M_W^2}{M_Z^2 c_W^2} = \rho = 1 + \left(\frac{\Delta M_{ZZ_H}^2}{M_{Z0}^2} \xi + O(\xi^2)\right) \qquad \left(\tan 2\xi = \frac{2\Delta M_{ZZ_H}^2}{\hat{M}_{Z_H}^2 - \hat{M}_Z^2}\right)$$

should be small $(\rho_{\rm SM} = 1.01051 \pm 0.00011)$

$$\left(\tan 2\xi = \frac{2Z_H}{\hat{M}_{Z_H}^2 - \hat{M}_Z^2}\right)$$

extra one-level corrections involving ZH

<u>Z-ZH mixing at one-loop level</u> (in the limit, $\cos \beta \rightarrow 0$ (IDM limit)

$$\langle H_1 \rangle = \frac{v}{\sqrt{2}} \cos \beta$$

 $H_1\,$ only charged under U(I)H

kinetic mixing $U(I)Y \times U(I)H$ (required for renormalization)

$$-\frac{\kappa(\mu)}{2}F_Y^{\mu\nu}F_{H\mu\nu} \to -\frac{\kappa_Z}{2}F_Z^{\mu\nu}F_{H\mu\nu} - \frac{\kappa_\gamma}{2}F_\gamma^{\mu\nu}F_{H\mu\nu}$$

Even if we assume $U(I)Y \times U(I)H$ kinetic mixing is negligible at Mw, the mixing appears because of

 $SU(2)L \times U(1)Y$ breaking effects (mass differences)

$$\kappa_{Z} = \frac{q_{H}g_{H}ec_{W}}{16\pi^{2}s_{W}} \left\{ \frac{1}{3} \ln\left(\frac{m_{A}^{2}}{m_{H^{+}}^{2}}\right) - \frac{1}{6}\frac{m_{A}^{2} - m_{H}^{2}}{m_{A}^{2}} \right\}$$
$$\kappa_{\gamma} = \frac{q_{H}g_{H}e}{16\pi^{2}} \left\{ \frac{1}{3} \ln\left(\frac{m_{A}^{2}}{m_{H^{+}}^{2}}\right) - \frac{1}{6}\frac{m_{A}^{2} - m_{H}^{2}}{m_{A}^{2}} \right\}$$
$$\Delta M_{Z_{H}Z}^{2} = -\frac{q_{H}g_{H}e}{32\pi^{2}s_{W}c_{W}} (m_{A}^{2} - m_{H}^{2})$$

degenerate masses make them disappear

• Z' search

Collider bound depends on the charge assignment

fermiophobic ZH case (SM fermions not charged)

Through the Z-ZH mixing, ZH is produced at the collider

resonance search (CMS,25.2.2013)

bound on Z-ZH mixing

 $\sin\xi \lesssim O(10^{-2}) - O(10^{-3})$

0.01

0.005

0.001

91.1

1000

91.2

Constraints on gH and MZH

fermiophobic Zн

Constraints on gH and MZH

fermiophobic Zн

<u>Е6 Zн</u>

ρ -para. strongly constrain. \rightarrow small gH required.

allowed region in (type-I) 2HDM with U(I)H (K_0, Y_0, Y_u)

CP-even scalar mixing relaxes the bound on the mass differences.

"+" - $|\lambda_{hf\overline{f}}| = |\sin(\beta - \alpha)\cos\alpha_1| > 0.9$ SM-like

In the type-II (inspired by E6), we have extra corrections from the extra fermion loops

Higgs Physics

Higgs search

Higgs Production

Higgs Decay

Signal Strength

$$\mu_j^i = \frac{\sigma(pp \to h)_{2\text{HDM}}^j \text{Br}(h \to i)_{2\text{HDM}}}{\sigma(pp \to h)_{\text{SM}}^j \text{Br}(h \to i)_{\text{SM}}}$$

j : Higgs production i : Higgs production

LHC results

factors from 2HDM

2HDM with U(I)H: $\lambda_{t,b,V} o \lambda_{t,b,V} \cos lpha_1$

Higgs Production

signal strength in 2HDMs

(Ko,YO,Yu)

ATLAS cannot be achieved

type-ll

 $h \rightarrow bb, \tau \tau$ easily enhanced (reduced)

Under constraints from $gg \rightarrow h \rightarrow \gamma\gamma$,ZZ@CMS

(Ko,YO,Yu)

 $(\mu_{gg,\text{CMS}}^{\gamma\gamma} = 0.70_{-0.29}^{+0.33}, \mu_{gg,\text{CMS}}^{ZZ} = 0.86_{-0.26}^{+0.32})$

Type-II will be constrained strongly

If large signal strength is favored, type-I may be excluded.

Dark Matter Physics

dark matter candidates

scalar component in type-I

extra neutral fermion for anomaly-free conditions in type-II

relevant interaction and constraints

dark matter candidates

scalar component in type-I

extra neutral fermion for anomaly-free conditions in type-II

relevant interaction and constraints

dark matter candidates

scalar component in type-l

extra neutral fermion for anomaly-free conditions in type-II

relevant interaction and constraints

direct detection (XENON100,LUX,etc.)

DAMA/Na

DAMA/

CRESST-II (2012)

oGeNT

ENON10 (2011)

20

30 40 50

10-41

10

6 7 8 910

XENON100 (2012)

Expected limit of this run

 $\pm 1 \sigma$ expected

 $\pm 2 \sigma$ expected

"DMS (2010/11) XENON100 (20

300 400

1000

200

SIMPLE (2012)

100

WIMP Mass [GeV/c²]

observed limit (90% CL)

dark matter candidates

scalar component in type-l

extra neutral fermion for anomaly-free conditions in type-II

relevant interaction and constraints

direct detection (XENON100,LUX,etc.)

(LUX)

Dark Matter Candidates in type-I

• In type-I 2HDM, well-known dark-matter model is Inert-doublet model (IDM)

If H1, which does not couple with SM fermions, does not get VEV, scalar component is a good dark matter candidate

$$H_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}} (H_0 + iA) \end{pmatrix}$$

Zn-odd CDM candidate

 $\langle \Phi \rangle \neq 0$ only breaks U(I)H : U(I)H \rightarrow Zn (n = Φ charge)

The mass difference between H0 and A is required by XENON100, etc.

small λ5 is given by higher-dim. ope.

$$\left(\frac{\Phi}{\Lambda}\right)^l (H_1^{\dagger}H_2)^2 + h.c$$

Relic Density vs. Dark Matter in IDM(type-I)

There are two interesting regions: MH₀<126GeV, MH₀>500GeV.

CoGeNT, DAMA, CDMS-II, CRESST-II region are excluded by the invisible decay

Relic Density vs. Dark Matter in IDM with U(1)

$HH \rightarrow ZHZH$ reduce the relic density

Relic Density vs. Dark Matter in IDM with U(1)

$HH \rightarrow ZHZH$ reduce the relic density

Dark Matter Candidates in type-II

• In type-II 2HDM inspired by E6 GUT

neutral particles from the extra leptons

$$l_{I}^{T} = (\widetilde{\nu}_{I}, \widetilde{e}_{I})^{T} \ (I = L, R), \ n_{L}$$
$$\begin{pmatrix} \widetilde{\nu}_{L} \\ \widetilde{\nu}_{R}^{c} \\ n_{L} \end{pmatrix} = (U_{ab}) \begin{pmatrix} N_{L1} \\ N_{L2} \\ N_{L3} \end{pmatrix}$$

lightest NLi is dark matter candidates

stability is guaranteed by (remnant) Z2 symmetry for the extra particles $q_I, l_I, n_L \rightarrow -q_I, -l_I, -n_L \quad (Z_2^{\psi} \times (-1)^{2s})$ $(U(1)_{\psi} \rightarrow Z_2^{\psi})$

annihilation

Relic Density vs. Dark Matter in type-II

mono-jet bound constraints (CMS,2013.3) pp→j,DM,DM

Summary

- 2HDM may be a effective model of High-energy theory, and useful to test the underlying theories.
- I consider 2HDM with U(I)H Higgs symmetry, which might be one of the effective models.
- The U(I) extension solves the flavor problem, and could introduce dark matter candidates. Stability of CDMs guaranteed by the remnant symmetry of U(I)H.
- EWPOs and flavor physics are stringent constraints in 2HDMs with U(1)H. The mixing among the scalars relaxes the bound on the mass differences.
- SM-Higgs search will constrain 2HDMs strongly. Especially, the allowed region for type-II is smaller because of h→bb,ττ tanβ dependence.
- If large signal strength of $gg \rightarrow h \rightarrow \gamma \gamma, ZZ$ is favored, type-I could be excluded.
- In type-I, light CDM (<40GeV) scenario is possible in IDM. h->ZHZH is predicted. Indirect detection of CDM may be interesting.
- The type-II may be embed in E6 GUT. The extra fermions for anomaly-free are CDMs. (In the SUSY, the CDM candidate is super-partner of Higgs and Φ.) Dark matter mass should be around mh/2~63GeV. O(I) Yukawa is required.

signal strength in 2HDMs

(Ko,YO,Yu)

VV fusion

type-ll

 $h \rightarrow bb, \tau\tau$ easily enhanced (reduced)