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・Entangled states

Let’s consider two spins.
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(1)Introduction



The	entanglement	entropy	is	defined	as	a	von-Neumann	entropy		
of							:

Definition	of	Entanglement	Entropy

Entanglement	Entropy	(EE)	is	a	quantification	of		
quantum	entanglement	and		is	defined	as	follows.		

Divide	a	quantum	system	into	two	subsystems	A	and	B	
(represent	a	total	Hilbert	space	as	a	tensor	product	of		
	two	Hilbert	spaces):

Define	the	reduced	density	matrix									by	

H
tot

= H
A

⌦H
B

⇢
A

= Tr
B

⇢
tot

= Tr
B

| i h |

⇢A

SA = �TrA⇢A log ⇢A

⇢A



There	is	a	related	quantity	with	Entanglement	Entropy	called		
(n-th)	Renyi	Entanglement	entropy	(REE)	:

If	we	take	the	limit	of	n	→１、REE	reduces	to	EE:	

It	is	easier	to	compute																than	to	compute	
(We	see	this	in	detail	later).	

S(n)
A =

1

1� n
log TrA⇢

n
A

lim
n!1

S(n)
A = SA

TrA⇢
n
A TrA⇢A log ⇢A



(1)

and																					.	

(2)

and																											.	

Entanglement	Entropy	represents	the	loss	of	quantum	information		
when		we	assume	the	system							.	HB

�i(1) �j(2)

HA HB

S(n)
A = 0

Especially

S(n)
A = log 2

Especially SA = log 2



Entanglement	Entropy	in	QFTs	

We	consider	a	QFT	on	a	d+1	dim.	manifold																.		

We	choose	the	subspace																.	

In	QFTs	,	We	divide	the	total	Hilbert	space	into														
accompanied		with	the	division	of	manifold					into														.		

⇒	Ground	states	of	QFTs	should	have	entanglement	!

h0|�(x)�(y) |0i 6= 0

To	decompose	the	total	Hilbert	space,	



Use	of	Entanglement	Entropy

									Classification	of	quantum	phases.	
				(for	example,	Entanglement	Entropy	detect	a	topological	order)																																															

(2)Relation	with	gravity

[Kitaev-Preskill	05,Levin-Wen	05]

Ryu-Takayanagi	formula:
[Ryu-Takayanagi	06]

SA =
Area(�A)

4GN

E.E.	is	useful	to	characterize	the	quantum	correlation	of	the	states.	

(3)Characterization	of	Excited	states

Global	quenches SA / c · t
SA / c · log tLocal	quenches

[Calabrese-Cardy	05,07]

(1)A	quantum	Order	parameter

・they	are	characterized	by	the	time	dependence．



In	this	talk,	we	consider	the	local	operator	excited	states:

|O(x)i ⌘ O(x) |0i

・Decomposiaon	of	primary	operator	to	Chiral	Vertex	Operator(CVO)	

									(in	2	dim)

CVO
generally	a	primary	operator	is	“Entangled”.

Oa(z, z̄) =
X

bc

 [ abc](z)⌦  ̄[ abc](z̄)

・Time	evoluaon	reflects	these	entanglement	!

or	more	generically	

(single	excitation)

Oa1(x1)Oa2(x2) · · · Oak(xk) |0i (multiple	excitations)



Class	of	2d	CFTs

Raaonal

Non-Raaonal (Holographic	CFTs,	generic	point	of	moduli	of	
CY3s)

・Today	I	will	talk	about	Raaonal	CFTs

(Minimal	Models,	WZW	models)
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Calculation	of	Entanglement	Entropy

We	consider	to	calculate																		instead	of																														.	
Then,	we	can	get	EE	in	the	following	way:

・Replica	method

:Replica	method

First,	we	consider	the	ground	states	cases.

In	the	path	integral	formalism,	the	ground	state	wave	functional		
Ψ can	be	represented	as	follows:

TrA(⇢
n
A) TrA ⇢A log ⇢A

SA = �Tr⇢A log ⇢A =

1

1� n
log TrA⇢

n
A

�����
n=1



x

x
So	we	can	express	the	total	density	matrix																								
as	follows:		

a
b

⇢
tot

= | i h |

[⇢
tot

]
ab

=

τ

τ

⌧ = 1
⌧ = 0

⌧ = �1

⌧ = 1
⌧ = 0

⌧ = �1

| i =
Z ⌧=0

⌧=�1
D� e�S[�] =

h | =
Z ⌧=1

⌧=0
D� e�S[�] =



Now,	we	can	express	the	reduced	density	matrix																					
as	follows:

x

a
b

B A B

⇢A = TrB | i h |

[⇢A]ab =

τ

⌧ = 0



Partition	function	of	the	geometry	of								.	
Final	Result

Finally,		we	can	get	a	representation	of	

in	the	formalism	of	path	integral	as	follows:

a
b

b
c ・・・

k
a

branched	covering	of	spacetime	manifold		
(branched	at	∂A)

TrA⇢
n
A =

⌃n :

= Zn/(Z
n
1 )

Zn : ⌃n

TrA⇢
n
A = Zn/(Z1)

n



Replica	method	for	Local	operator	Excited	states

In	this	case,	the	total	density	matrix	is	given	by	

where						is	the	UV	regulator	for	the	operator.(This	is	not	
equal	to	the	lattice	space.)	

τ	denotes	the	Euclidean	time.	To	compute	the	time	evolution,	
first	we	compute	physical	quantities	considering	τ	as	real	parameter	
and	then	analytically	continue	to	complex	value	.

(⌧e ⌘ �"� it, ⌧l ⌘ �"+ it)

(x : coordinate of space)

(    :cutoff )



We	take	the	coordinate	as																																	.	

τ

Reduced	matrix	for	excited	states	

x1

τ l

−l

τe

Consider	1+1	dim	CFT	on											.	

Then,	the	reduced	matrix	is	represented	as	follows:

AB
a

b B

R2

(⌧, x) 2 R2

[⇢A]ab =

O†(⌧l,�l)

O(⌧l,�l)



Finally,	we	can	express	the														in	terms	of	2n-pt	correlation	
function	on									:	

:the	coordinate	of	the	inserted	local	operator	
	on	the	k-th	sheet	.

AO†
a (w1)Oa (w2 )
x

k =1

O†
a (w2n�1)

Oa (w2n )

O†
a (w3)

Oa (w4 )

��
��
��
��

��
��
��
��

k = n

k = 2

��
��
��

�

��
��
��

�� �

x1

A

TrA⇢
n
A

⌃n

w2k�1, w2k

�S
(n)
A =

1

1� n

h
log hO†

(w1)O(w2) · · ·O†
(w2n�1)O(w2n)i⌃n

�n log hO†
(w1)O(w2)i⌃1

i

�S(n)
A = S(n)

A � S(n)
A (|GSi)
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massless free scalar in 2d

We consider the following (EPR like)operators:

,↵ 2 R.

if we take the operator                                     
we can get a non-trivial value under time evolution.   

O2 =: ei↵� : + : e�i↵� :

If t > l

�S(n)
A = log 2

O2 =: ei↵� : + : e�i↵� :

[Nozaki-TN-Takayanagi 14]

log 2

In	the	case																														(vertex	op)	,		we	find	the	result	is	trivial:O1 =: ei↵� :

�

(n)
S = log 2



We	can	interpret	this	as	follows.

At															,		entangled	(quasi	)	particles	are	created	at																		,	
and	they	are	propagate	with	the	velocity	of	light.																	

If											,	quasi	particles	don’t	leach	at		
entangling	surface	,	so		REE	don’t	change:

If												,	quasi	particles	pass	the		
entangling	surface,	so	the	value	of		
	REE	increase.	

�S(n)
A = 0

t = 0 x = �l

t < l

t > l



In	2d	CFT,	free	boson	is	decomposed		into	chiral	and	anti-chiral		
component:

In	the	case																									,		the	local	operator	excited	state	is		
tensor	product	state:		

Reduced	density	matrix	becomes	pure	state																																			.
On	the	other	hand	,	

This	is	interpreted	as	EPR	state	and	EE	becomes													!log2

�(t, x) = �L(x� t) + �R(x+ t)

O1 =: ei↵� :

O1 |0i = ei↵�L |0Li ⌦ ei↵�R |0Ri
ei↵�L |0Li h0L| e�i↵�L

O2 = ei↵�L |0Li ⌦ ei↵�L |0Ri+ e�i↵�L |0Li ⌦ e�i↵�L |0Ri
⇡ |"iL ⌦ |"iR + |#iL ⌦ |#iR



(4)Results	for	2d	RCFTs		

・n=2	REE

By	conformal	mapping,	we	can	map	2-sheet	Riemann	surface	
to	1	sheet	Riemann	surface																	(complex	plane)	:

θ

z =
p
w =

p
rei

✓
2 (0  ✓  4⇡)

w = x+ i⌧

z

⌃2

⌃1 = C



The orbit of each coordinate

z

O

O

O†

O†

z

O

O

O†

O†time 
evolution

Using SL(2,C ) symmetry 
(Global Conformal Sym)

z

O†(0) O†(1)
O(1)

O(t)

z = 0 ! z = 1

・Holomorphic part

z(t) =
�(l � t) +

p
(l � t)2 + ✏2

2
p

(l � t)2 + ✏2



・Anti-Holomorphic part

O

O

O†

O†

O

O

O†

O†

O†(0) O†(1)
O(1)

O(t)

z̄ z̄

z̄

z = 0 ! z = 0

time 
evolution

z̄(t) =
�(l + t) +

p
(l + t)2 + ✏2

2
p

(l + t)2 + ✏2



Then	,	in	terms	of	conformal	block,	we	find	at	late	time	as	follows:	

where													is	the	fusion	matrix	defined	by

.

Pictorially,				

Fbc[a]



In	this	way,	we	can	show	that	the	late	time	n	=	2	REE	becomes	

In	the	2d	RCFTs	,													is	the	inverse	of	quantum	dimension					:	

Finally,	we	can	write	the	n=2	REE	as	follows:

[Moore-Seiberg	89]

F00[a]



Ga(z, z̄) ' F00[a] · (1� z)�2�a z̄�2�a

※)	The		behavior	

is	peculiar	to	RCFTs	(theory	dependent).

For	example,	in	holographic	CFTs,	we	obtain

Ga(z, z̄) ' z̄�2�a

�S(2)
A ' 4�a log

2t

✏
� log 2

and	the	time	evolution	of	E.E	becomes

(do	not	reach	any	finite	values)

[Asplund-Bernamonti-Galli-Hartman15]

[Caputa-Nozaki-Takayanagi	14]

In	general,	the	behavior	is	less	singular	in																														limit.	(z, z̄) ! (1, 0)



For	generic	n-th	Renyi	entropy,	we	can	apply	the	sequences	of	fusion	rules

1

10

220 30 3 n� 1

n

n0
1

10

20 30 3 n� 1

n

n0
2

1

10

20 30 n� 1

n

n02

1 10

2

20
30 3 n� 1

n

n040

F00[a] + · · ·

+ · · ·+ · · ·(F00[a])
n�1

(F00[a])
n�1

and	derive

�S(n)
A = log da [He-TN-Watanabe-Takayanagi	14]

(thin	line	=	propagaaon	of	Idenaty	operator			)I
(thick	line	=	propagaaon	of	primary	operator								)Oa



・Ising Model case

There are 3 primary fields:       ,      ,     I � ✏

(Identity, Spin op, Energy op)

log d✏ = 0 (no entanglement)

⇒Time evolution of (Renyi) EE  
    for spin op. is given by

t

�SA

l

1

2

log 2

�S(n)
A (t) =

(
0 (t < l),
1
2 log 2 (t > l)

log d� = log

p
2
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(4)Mulaple	excitaaons

insert	two	local	operators:

x

L

l1

l2

A

scattering at  t = l2 � l1
2

A

x

A

t

| i / Oa(�l2)Ob(�l1) |0i
Oa(�l2) Ob(�l1)

[TN, 16]

two	excitaaons	



・Calculation of (Renyi) EE

O†
a (w1)

Oa (w2 )

x
k =1

O†
a (w2n−1)

Oa (w2n )

O†
a (w3)

Oa (w4 )

�!
�!
�!
��

�!
�!
�!
��

k = n

k = 2

�!
�!
��

τ

�!
�!
��

0! L

O†
b(z1)

Ob(z2)

Ob(z4)

O†
b(z3)

O†
b(z2n�1)

Ob(z2n)

For example, we need  8pt function to calculate 2nd Renyi  
⇒ First consider Ising CFT (all correlation function are known)



1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

log d�

2 log d�

t

summaaon	of	consatuaons		
		from	each	operator

�S(2)
A2nd	Renyi	entropy

| i / �(�l2)�(�l1) |0i x

L�(�l2) �(�l1)

l1

l2

A

ex)Ising	model	(arbitrary	n-point	funcaons	are	known)

two	spin	operators

entanglement	doesn’t	change	aper	scaqering



insert	two	local	operators:

x

L

l1

l2

A

scattering at  t = l2 � l1
2

A

x

A

t

| i / Oa(�l2)Ob(�l1) |0i
Oa(�l2) Ob(�l1)

general	RCFT	



The orbit of each coordinate

Fusion transformations for      ’s and      ’s are taken 
separately.  

Oa Ob

After the conformal transformation                              ,z =
p
w =

p
rei

✓
2



1

10

220

Oa Ob

1

10

220 1

10

20 2

F00[a] + · · ·

220

F00[a]

1

10

1

10

20 2

+ · · ·

2
20 1

10

Oa Ob

Oa Ob

F00[b]



Therefore, 2nd Renyi entropy is expressed as the summation of 
contributions from each operator:

�S(2)
A = log da + log db

In the same manner, we can also take the fusion rules 
separately for arbitrary n-th Renyi entropy.  Therefore

�S(n)
A = log da + log db

This can also be generalized to arbitrary number of excitations.



Non rational CFTs

Consider 2nd Renyi Entropy and the following conformal blocks: 

(i)Dominant one in RCFTs
 Coefficient                          generically vanishesF00[a] = 1/da

(cf: Holographic CFTs)

(ii)(iii) Ignored (subleading of   ) in RCFTs
(iii)contains interactions effect between      ’s and      ’s   Oa Ob

and can contribute to the time evolution of (Renyi) EE

→ In this case, we cannot take fusion rules separately

✏



(5)Conclusion

・We	study	the	ame	evoluaon	of	E.E	aper	the	local	operator	excitaaon.

・Time	evoluaon	aper	single	excitaaon	characterizes	the	Raaonal	CFTs		

				and	non-raaonal	CFTs	.

・Time	evoluaon	(or	final	value)	of	entanglement	entropy	aper	the		

				mulaple	excitaaon	can	also	be	wriqen	as	the	summaaon	of	quantum					
				dimensions	in	RCFTs

・In	general	CFTs,	we	expect	that	the	scaqering	effect	appears	aper		

				mulaple	excitaaons



Future	Works

・In	2d	RCFTs,	REE	is	Written	in	terms	of	quantum	dimension.	

		On	the	other		hand,	Topological	Entanglement	Entropy	with		
		anyon	excitation		labeled	by							is	written	in	the	same	form:	

There	is	explicit	relation?

[Kitaev-preskill	05]

・Mulaple	excitaaons	in	Holographic	CFTs	
[with	Caputa	and	Osorio,	work	in	progress]



(5)Conclusion

In	this	talk,	we	studied	the	REE	for	local	operator	excited	states	
in	the	case	of	free	fields	in	various	dim.		and	2d	RCFTs.	

・These	results	suggest	that	the	late	time	EE	for	local	operator		

excited	states	can	detect	the	“degree	of	freedom”	of	local	operators.	

cf)	EE	for	grand	states	can	detect	degree	of	freedom	of	theory.	
					(for	example	central	charge)	

・The	late	time	is	no	changed	under	the	smooth	deformation	of		

subsystem	A	:
“Topological”	quantity	!



Future	problems	

・Holographic	viewpoint	?		

		strong	interaction	→　No	quasi-particle	interpretation

・In	2d	RCFTs,	REE	is	Written	in	terms	of	quantum	dimension.	

		On	the	other		hand,	Topological	Entanglement	Entropy	with		
		anyon	excitation		labeled	by							is	written	in	the	same	form:	

There	is	explicit	relation?

[Kitaev-preskill	05]



What	is	Entanglement	Entropy	?
First	,	we	consider	the	system	with	two	spin.	Its	Hilbert	space	is	
																	.		

First,	we	cosider	the	following	state:	

this	is	not	entangled	.
Next,	we	consider	the	following	state:

This	state	is	not	represented	as	a	tensor	product	state	!

Difinition	of	entangled	state

How	can	we	quantify	entanglement?

Entanglement	Entropy	!

(EPR	state)

(1)Introduction



Size	of	subsystem

(1)small	size	limit													.	

In	this	limit	,	we	find	the	first	law	for	EE	,	
analogy	to	the	first	law	of	thermodynamics:			

(2)large	size	limit																	.		

The	main	theme	of	this	talk	!

[Bhattacharya-Nozaki-Ugajin-Takayanagi	12]
[Blanco-Casini-Hung-Myers	13]

Quite	non-local	limit	.

In	this	talk	,	we	consider	the	subsystem	is	half	plane.



Relation	to	Lorentian	4-pt	functions

In	1+1d	CFTs,	position	dependence	of	4-pt	functions	

is	putted	in	the	cross	ratio	 z = z12z34/z13z24 z̄ = z̄12z̄34/z̄13z̄24	(																																				)

hO(z1, z̄1)O(z2, z̄3)O(z3, z̄3)O(z4, z̄4)i = |z12|�2�|z34|�2�G(z, z̄)

G(z, z̄)Full	expression	of																	contains	the	info.	of	CFT	data
{�i} {Cijk}(										and													)



もっと一般に、任意のRCFT、任意のレプリカ数nで

�S(n)
A = log da + log db

が示せる [TN, 16]

→RCFTでは散乱の前後でエントロピーの変化なし

n ! 1として、von Neumann エントロピーも

�SA = log da + log db


