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(1)Introduction

- Entangled states

Let’s consider two spins. Ha Hp

(1) |4¥) = 1) |T) (no entanglement)
(Yo' (1)a?(2) [) = (¥l (1) [¢) - (V] 07 (2) [¢)

@ W)= —

(W'[o' (1)o7 (2) [¥') = ('] " (1) [¢") - (¥'[ 07 (2) W) # O

non local correlation (consider i=j=z )

(I 1) + 1) ) (entangled)



Definition of Entanglement Entropy

Entanglement Entropy (EE) is a quantification of
quantum entanglement and is defined as follows.

Divide a quantum system into two subsystems A and B
(represent a total Hilbert space as a tensor product of
two Hilbert spaces):

Htot — HA ® HB

Define the reduced density matrix pA by

pa = 1rppiot = Irp \I’> <\I’\

The entanglement entropy is defined as a von-Neumann entropy
of PA:

(" )

Sa=—Trapalogpa

. _J




There is a related quantity with Entanglement Entropy called
(n-th) Renyi Entanglement entropy (REE) :

4 )
n 1 n

31(4) =7 _nlogTrApA

\- /

If we take the limitof n > 1 . REE reduces to EE:

lim Sgn’) = Sy

n—1

It is easier to compute Tr 4 p"; than to compute 1r4p4 log p 4
(We see this in detail later).



Entanglement Entropy represents the loss of quantum information
when we assume the system H,

(1) |¥) = fa Ho
) =) &) . rore
=) pa= 1) (1 and SV =0.  4i() @)

Especially S4 = 0

@ 1) = 2= @)+ 1) 1)

1 n
= pa = (1) (1 + 1) (1) and S5 = log?2.

Especially Sa = log?2



Entanglement Entropy in QFTs

We consider a QFT on a d+1 dim. manifold R x N.

0l ¢(z)o(y) [0) # O

= Ground states of QFTs should have entanglement !

To decompose the total Hilbert space,
We choose the subspace A — N.

In QFTs , We divide the total Hilbert spaceinto H, @ Hp
accompanied with the division of manifold NVinto A U B.

t A




Use of Entanglement Entropy

E.E. is useful to characterize the quantum correlation of the states.

(1)A quantum Order parameter

» Classification of quantum phases.

(for example, Entanglement Entropy detect a topological order)
[Kitaev-Preskill 05,Levin-Wen 05]

(2)Relation with gravity
- Area(ya)

4GN [Ryu-Takayanagi 06]

Ryu-Takayanagi formula: S,

(3)Characterization of Excited states [Calabrese-Cardy 05,07]

Global quenches Sypoxe-t
Local quenches Sa xc-logt

» - they are characterized by the time dependence.



In this talk, we consider the local operator excited states:
0)

or more generically

O(x) |0) }(single excitation)

Ou, (21)Oq, (22) - - Og, (1) |0) (multiple excitations)

* Decomposition of primary operator to Chiral Vertex Operator(CVO)
(in 2 dim)
Ou(z,2) = ) _[e)(2) @ P[] (2)
R

CVO
» generally a primary operator is “Entangled”.

* Time evolution reflects these entanglement !



Class of 2d CFTs

Rational (Minimal Models, WZW models)

Non-Rational (Holographic CFTs, generic point of moduli of

CY3s)

- Today | will talk about Rational CFTs



Contents of this talk

(1)Introduction

(2)How to calculate (Renyi) in QFTs
(3)Results for single excitation in 2d RCFTs
(4)Results for multiple excitation
(5)Conclusion and Future problems



Calculation of Entanglement Entropy

* Replica method

We consider to calculate Tr 4 (p'4 ) instead of Tr4 p4log pa.
Then, we can get EE in the following way:

4 N

1
Sa=—Trpalogpa = — log Trap's| :Replica method

\_ n=1 )

First, we consider the ground states cases.

n the path integral formalism, the ground state wave functional

W) can be represented as follows:




=—00

T
(0] :/ D e Sl = -

=0

So we can express the total density matrix pior = |¥) (¥
as follows:

[,Otot]ab —



Now, we can express the reduced density matrix p4 = Trp |V) (¥
as follows:




Finally, we can get a representation of Tr,p) = E LOALunlPalpe 1041k

a,b,k
in the formalism of path integral as follows:

a o ______ _5 b K

TI-AIOA — b.;— C}‘d_q_—-/—__-a

>, : branched covering of spacetime manifold
(branched at 0A)

= Zn/(Z7)

Zy, : Partition function of the geometry of X, .

Final Result ~

Trapy = Zn/(Z21)"
N\ J




Replica method for Local operator Excited states

In this case, the total density matrix is given by
piot(t) =e e ¢HO(z) |0) (0| O (z)e~cH e
=O(7e, ) [0) (0| O (1, 2) (1. = —e —it, 7, = —€ + it)
(x : coordinate of space)

( € :cutoff)

where £ is the UV regulator for the operator.(This is not
equal to the lattice space.)

T denotes the Euclidean time. To compute the time evolution,
first we compute physical quantities considering t as real parameter
and then analytically continue to complex value .



Reduced matrix for excited states

Consider 1+1 dim CFT on R
We take the coordinate as (7,z) € R?

Then, the reduced matrix is represented as follows:

T

PA]ab =




Finally, we can express the Tt 4 p'4 in terms of 2n-pt correlation
function on 2,

— N

[ASI(I’) =7 ! [log (O (w1)O(w3) - - - OT(an—l)O(wQ’n»En —n log <OT(”‘U1)O(”‘U2)>21]

AS = S - 51016S))

==

OZ (Wy1)s

oA I E— |

(w4;V M=2
/OT(WI . i E /

(W, ) \ @ k=1

S~

W2k —1, W2k :the coordmate of the inserted local operator
on the k-th sheet .
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massless free scalar in 2d

[Nozaki-TN-Takayanagi 14]

In the case (O =: e'? . (vertex op), we find the result is trivial:

[Agn) = log 2 }

We consider the following (EPR like)operators:
Oy =: 9% . 4.7 . 4 cR.

if we take the operator D, —: '*? : 1 : e7P .
we can get a non-trivial value under time evolution.

ﬁ
log2 [-------

If t>1




We can interpret this as follows.

At ¢t = 0 , entangled (quasi) particles are created at * = —[,
and they are propagate with the velocity of light.

If ¢ < [, quasi particles don’t leach at
entangling surface , so REE don’t change:

ASTY =0 B A

If ¢ > [, quasi particles pass the

entangling surface, so the value of i
REE increase.




In 2d CFT, free boson is decomposed into chiral and anti-chiral
component:

¢(t,x) = ¢r(x —t) + dr(x + t)

In the case(D, =: et®? . the local operator excited state is
tensor product state:

O1 |0) = %L |01) ® e**?R |0R)

#Reduced density matrix becomes pure state ¢?®%L 07,) (Og] e tAPL
On the other hand,

Oy = et oL ‘OL> & et oL ‘OR> -+ e lOPL ‘OL> X e oL ‘OR>
~ M @M+ @[5

) This is interpreted as EPR state and EE becomes log2!



(4)Results for 2d RCFTs

* n=2 REE

By conformal mapping, we can map 2-sheet Riemann surface >.-
to 1 sheet Riemann surface X1 = C(complex plane) :

2 = w = \/re'z (0 < 6 < 4r)

ﬁu:x




The orbit of each coordinate

- Holomorphic part

4 2 4 [z
Odfeor
| O ol
et IERET T > >» €@t | - 9--»>
S e LR T T POR EPE il >) <---Q--------. | e -.---?
H E time @l O
@Ti ’@ evolution
i 2

4)
Using SL(2,C ) symmetry
(Global Conformal Sym)

A() = —(l =)+ /(I —t)2 + €2
2,/(I—1)? + €2

O (0)] ey O(1)




- Anti-Holomorphic part

»
------------------

~
----------------

------------------

----------------
L e

Z(t) =

—

=)+ ()2 + €

27/ +1)2 + €2

A

e B
time Of O
evolution
ol
r |2
._.O(t) e > 'O(OO)




Then , in terms of conformal block, we find at late time as follows:

Ga(2,2) = ) _(Caa)*Fa(bl2) Fu(0]2)

b

~ F . FL (0|1 — 2)F,(0
o Foolal Fa(0]1 = 2)Fo(0]2)

~ FQ()[CL] . (1 — Z)_QAGE_ZAG“

where £ [CL] is the fusion matrix defined by

F,(b|1 — z) = ZFbC (c|z) .

Pictorially,

a a Y
NGb S "
a/ \a ;Fbc[} /

/TN



In this way, we can show that the late time n = 2 REE becomes

ASY = —log Fyola).

In the 2d RCFTs , 00 [a] is the inverse of quantum dimensiond,:

S 1
F()()[ ] OO — —. [Moore-Seiberg 89]
SOa da

Finally, we can write the n=2 REE as follows:

4 )

ASY =1logd,.

\— _/




%) The behavior

Go(z,2) ~ Fyola] - (1 — ) 2Rez= 2R
is peculiar to RCFTs (theory dependent), [Asplund-Bernamonti-Galli-Hartman15]

In general, the behavior is less singularin (2,2) — (1, 0)limit.

For example, in holographic CFTs, we obtain
Golz,2) ~ 77 2R

and the time evolution of E.E becomes

21
ASY ~ 1A, log = — log 2
€

(do not reach any finite values)



For generic n-th Renyi entropy, we can apply the sequences of fusion rules

n—1 3/ n—1

>YY ...... Y< Rl ﬁ Y .Y<

7

(thin line = propagation of Identity operator 1)
(thick line = propagation of primary operator O, )

and derive

ASX’) = log d,



» Ising Model case

There are 3 primary fields: [, o, ¢

(Identity, Spin op, Energy op)

log d, = log V2
logd. =0 (no entanglement)

=Time evolution of (Renyi1) EE
for spin op. is given by AS 1

0 (t < 1), - log?
slog2 (t>1)

ASY (t) = {




Contents of this talk

(1)Introduction

(2)How to calculate (Renyi) in QFTs
(3)Results for single excitation in 2d RCFTs
(4)Results for multiple excitation
(5)Conclusion and Future problems



(4)Multiple excitations [TN, 16]

two excitations

insert two local operators:

W) < Ou(—12)Op(—11) |0)

lg—ll

scattering at ¢ =




* Calculation of (Reny1) EE

==

(Wz 1) 2271 1) \\“
0,) o e 0 Zzn>T ‘(@

(W3 Zgb
A) oOb i @ =
Wl ‘OT Zl i
OW2) o o Oulz2)} 0 b k=1

”
RRET i

X

For example, we need 8pt function to calculate 2nd Reny1

= First consider Ising CFT (all correlation function are known)



ex)lsing model (arbitrary n-point functions are known)

two spin operators o(=l2) o(—ly) <
V) x o(—l2)o(—11)]0) — X
< —>
[
AS(Q)
2nd Renyi entropy 21og dy "7 A :

summation of constitutions
log d, s —
from each operator

entanglement doesn’t change after scattering



general RCFT

insert two local operators:

W) < Oa(—l2)Op(—11) |0)

lg—ll

scattering at ¢ =

N




The orbit of each coordinate

After the conformal transformation z = vw = /re’>

0

...........................

(e) I <t

Fusion transformations for O,’s and O;’s are taken

separately.






Therefore, 2nd Renyi entropy is expressed as the summation of
contributions from each operator:

AS'Y =logd, + logd,

In the same manner, we can also take the fusion rules
separately for arbitrary n-th Renyi entropy. Therefore

(" )

ASX“) = log d, + log dp

. _/

This can also be generalized to arbitrary number of excitations.



Non rational CFTs

Consider 2nd Renyi Entropy and the following conformal blocks:

b b b a av'a a¥ b Vb B a av a a¥ b Vb b

YY ¥YY LYY Yy YY.YY

2

() (i) (i)

()Dominant one in RCFTs

Coefficient Fopla| = 1/d, generically vanishes
(cf: Holographic CFTs)

(i) (i) Ignored (subleading ofe ) in RCFTs
(iii)contains interactions effect between O,’s and Oy ’s
and can contribute to the time evolution of (Renyi) EE

— |n this case, we cannot take fusion rules separately



(5)Conclusion

- We study the time evolution of E.E after the local operator excitation.

- Time evolution after single excitation characterizes the Rational CFTs

and non-rational CFTs .

* Time evolution (or final value) of entanglement entropy after the

multiple excitation can also be written as the summation of quantum
dimensions in RCFTs

- In general CFTs, we expect that the scattering effect appears after

multiple excitations



Future Works

* In 2d RCFTs, REE is Written in terms of quantum dimension.

On the other hand, Topological Entanglement Entropy with
anyon excitation labeled by @ is written in the same form:

AStOpO — ],()g da [Kitaev-preskill 05]

» There is explicit relation?

- Multiple excitations in Holographic CFTs

[with Caputa and Osorio, work in progress]



(5)Conclusion

In this talk, we studied the REE for local operator excited states
in the case of free fields in various dim. and 2d RCFTs.

- These results suggest that the late time EE for local operator

excited states can detect the “degree of freedom” of local operators.

cf) EE for grand states can detect degree of freedom of theory.
(for example central charge)

- The late time is no changed under the smooth deformation of

subsystem A :
“Topologica

IH

guantity !



Future problems

* Holographic viewpoint ?

strong interaction - No quasi-particle interpretation

* In 2d RCFTs, REE is Written in terms of qguantum dimension.

On the other hand, Topological Entanglement Entropy with
anyon excitation labeled by @ is written in the same form:

AStopo — lOg Cla

» There is explicit relation?



(1)Introduction

What is Entanglement Entropy ?
First , we consider the system with two spin. Its Hilbert space is

Cz X C2. C2 C2
A
First, we cosider the following state:

) =11 @) ¢

this is not entangled .

Next, we consider the following state:

) = () @ 1)+ 1) @) (Eerstte

This state is not represented as a tensor product state |

_I Difinition of entangled state

How can we quantify entanglement?

=) Entanglement Entropy !



Size of subsystem

(1)small size limit | — (.

In this limit , we find the first law for EE, [ I A B
analogy to the first law of thermodynamics:

ASA O( EA [Bhattacharya-Nozaki-Ugajin-Takayanagi 12]

[Blanco-Casini-Hung-Myers 13]

@ o N
(2)large size limit [ — oo.
) Quite non-local limit . B A
The main theme of this talk !
\_ J

In this talk , we consider the subsystem is half plane.



Relation to Lorentian 4-pt functions

In 1+1d CFTs, position dependence of 4-pt functions

is putted in the cross ratio 2 = 212234/213%24 (Z = Z12%34/Z13%24)

(O(21,21)O0(22, 23)O(23, 23)O(24, 1)) = |212| 7> |234| 2 G(2, 2)

Full expression of G(z, Z) contains the info. of CFT data



65 &—ic. EEORCFT, £EOLTYHMNT

ASXL) = log d, + log d,

MNRtESD TN 16]

n—1&ULT, von Neumann T cOE—%
AS 4 =logd, + logdp
—>RCFTTIIEELOFI I FOE—DZ{LR U




