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Introduction
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In this talk, I will talk about 3pt.
functions in AdS5/CFT4 at weak coupling.
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Why 3pt functions in N = 4 SYM?

They are fundamental building blocks of the theory together with the
2pt. functions.

They encode the dynamics of the string theory on the AdS
background.

We need to study these fundamental observables in detail to reveal the
underlying mechanism of AdS/CFT.

hOi(x1)Oj(x2)Ok(x3)i
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Integrability based approach

In the planar limit, integrability turned out to be a powerful tool.

1 At λ� 1 or perturbative N = 4 SYM,
(1-loop dilatation operator)= Integrable spin chain Hamiltonian

2 At λ� 1 or classical string,
A large class of classical solutions is constructed from algebraic
curves. ⇒ Semiclassical string spectrum
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Assuming the integrability, all-loop results are obtained!

quantum spectral curve

Fortunately, we have solved the spectrum problem by using integrability.
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Spectrum problem has been studied using various integrability
techniques.
⇒It means the underlying 1+1 dim system (light-cone gauge fixed
sigma model, spin chain.) is integrable.

However, “integrability” is not oblivious beyond the spectrum
problem a priori.

Is there any notion of “integrability” beyond the spectrum problem? If
there is, what is the precise meaning of “integrability”?
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Monodromy relation @strong coupling

At the strong coupling regime, the so-called monodromy relation plays an
quite important role [’11 Janik,Wereszczynski],[’11,’12,’13 Kazama,Komatsu].

(e.o.m)⇔ (d+A(u))2 = 0 , Ωi(u) = P exp

[∫
Ci

A(u)

]
Ω1(u)Ω2(u)Ω3(u) = 1

The monodromy relation provide a global information even without
knowing the exact form of the vertex operators and the saddle pt.
configuration.

Combined with the analyticity, it determines the semi-classical
three-point functions completely.

What is the weak coupling counter part of this relation? How is it useful
to constrain three-point functions?
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Motivations for our works

1 We would like to build weak coupling correlators respecting the
symmetry.

2 We wish to find the weak coupling analogue of the monodormy
relation.

Results
1 We develop a new formalism in which the symmetry is manifest.
⇒ We can simplify the analysis exploiting the symmetry.

2 We also derive the monodromy relations for correlator at weak
coupling.
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Construction of 3pt. functions
@weak coupling
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Tree-level three-point functions

Tree-level three-point fuctions are calculated by taking all possible Wick
contractions. In particular, only planar graphs contribute in the large Nc

limit.

At tree-level, the dimensions of operators are highly degenerate.

According to the usual degenerate perturbation theory,
Oi(x1),Oj(x2),Ok(x3) must be eigenstates of the 1-loop dilatation
operator.

⇒ Combinatorics of Wick contractions.
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Two-point functions and dilatation operator

〈Oi(x)Oj(y)〉 =
δij

|x−y|2∆i
. Oi(x): with conformal dimension ∆i

We must take into acount the operator mixing!

Oren
i = ZjiObare

j ,

d

d ln Λ
Oren = ΓOren, Γ :=

dZ

d ln Λ
Z−1

To obtain the conformal dimension, we need to

1 determine Γ,

2 and diagonalize Γ =⇒ ∆i = ∆
(0)
i + γi γi: eigenvalues.

’02 Minahan, Zarembo

In the planar limit Nc →∞ of N = 4 SYM,

Diagonalization of Γ = Diagonalization of spin chain Hamiltonian
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SU(2) sector

The simplest example is SU(2) subsector where all single trace operators
are made up of two types of complex scalar fields:

O(x) = Tr[ZZZ · · ·ZXZ · · · ], Z = φ1 + iφ2, X = φ3 + iφ4

For this sector, the 1-loop dilatation operator becomes the Hamiltonian of
the Heisenberg spin chain!!

Γ|SU(2) ←→ HXXX

Z,X ←→ | ↑〉, | ↓〉
Tr[ZZ . . . Z]←→ |Vac〉 = | ↑↑ . . . ↑〉
Oi,∆i = Ei ←→ |Ei〉, Ei
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Bethe ansatz

1 Define the Bethe states:Fock states of the pseudo-particles (Magnon).

|u〉 =
∏M
i=1B(ui)| ↑`〉, p = i ln u+i/2

u−i/2
2 The momenta (rapidities) of magnons are quantized due to the

periodicity condition. =⇒ Bethe ansatz equation!

3 We can read off the spectrum from the disppersion realation.
E =

∑M
i=1 ε(ui), ε(u) = λ

8π2
1

u2+1/4
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O(x)↔ |u〉 =

M∏
i=1

B(ui)| ↑`〉 , Ω(u) =

(
A(u) B(u)
C(u) D(u)

)
Ω(u) = L1(u) · · ·L`(u) , Ln(u) = u+ i~Sn · ~σ =

(
u+ iS3

n iS−n
iS+
n u− iS3

n

)
They are eigenstates of the Hamiltonian if and only if they satisfy the
Bethe ansatz equations:

T (u)|u〉 = tu(u)|u〉 , T (u) = trΩ(u) = A(u) +D(u) ,∏̀
k=1

(
uk + i/2

uk − i/2

)`
=
∏
j 6=k

uk − uj + i

uk − uj − i

The transfer matrix T (u) generates a family of conserved charges
including the Hamiltonian.

|u〉 is called on-shell when their rapidities satisfy the BAEs.

On-shell Bethe states are highest weight states of SU(2).
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Tailoring for spin chain

The tailoring
is an efficient method to calculate relevant
contractions [’11 Escobedo,Gromov,Sever,Vieira].

1 Cutting spin chains into
the subchains: |Ψi〉 =

∑ |Ψi〉l ⊗ |Ψi〉r.
2 Flipping the half of

the states: |Ψi〉 → Ψ̂i =
∑ |Ψi〉l ⊗ r

←−−〈Ψi|
3 Sewing the states:

Cijk ∝
∑∑∑←−〈Ψi|Ψj〉

←−−〈Ψj |Ψk〉
←−−〈Ψk|Ψi〉
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Tree-level three-point functions are mapped to the overlaps of the spin
chain wave functions.
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A special class of 3pt. functions in SU(2) sector

O1 =
∑

Tr[ZX · · · ]↔
∑
| ↑↓ · · · 〉

O2 =
∑

Tr[Z̄X̄ · · · ]↔
∑
| ↑↓ · · · 〉

O3 =
∑

Tr[ZX̄ · · · ]↔
∑
| ↑↓ · · · 〉

The tailoring gives the structure constant in terms of scalar product of
Bethe states.

Remarks

In this special case, the result only involves 〈off − shell|on− shell〉.
⇒ Determinant formulas.

The mapping to a single SU(2) spin chain is not natural from a
symmetry point of view.
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Basic ideas

In the literatures, there are some unsatisfactory points:

The symmetries are not manifest.

A very limited class of 3pt. functions has been treated.

To improve these points, we develop a new formalism:

Mapping to a double spin chain.

Novel interpretation for the Wick contractions.

× O1O2 = 〈O1|O2〉
© 〈O1O2〉 = 〈V12|(|O1〉 ⊗ |O2〉)

As we will see, the symmetries (Ward identities) are realized as the
invariance for the vertex

〈V12|(J1 + J2) = 0⇔ 〈(JO1)O2〉+ 〈O1(JO2)〉 = 0
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SU(2)L×SU(2)R double spin chain formalism

From a symmetry point of view, it is natural to introduce a double spin
chain [’15 Kazama,Komatsu,T.N].

Φaã =

(
Z X
−X̄ Z̄

)
aã

↔
(
| ↑〉L ⊗ | ↑〉R | ↑〉L ⊗ | ↓〉R
| ↓〉L ⊗ | ↑〉R | ↓〉L ⊗ | ↓〉R

)
aã

SO(4)∼=SU(2)L×SU(2)R transformation is Φ→ gLΦgR.

A general SO(4) scalar is labeled by bi-spinor P aã: P · Φ = P aãΦaã.

P · Φ↔ P 11̃| ↑〉L ⊗ | ↑〉R + P 12̃| ↑〉L ⊗ | ↓〉R
+ P 21̃| ↓〉L ⊗ | ↑〉R + P 22̃| ↓〉L ⊗ | ↓〉R
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General rotated vacua

To treat generic operators in the SU(2) sector, we first consider rotated
vacua on which non-BPS operators are build.

General BPS operators are obtained by SO(4) rotations
Tr[Z`]→ Tr[(P · Φ)`]:

Z = Φ11̃ → (gLΦgR)11̃ = (gL) a
1 Φaã(gR)ã

1̃
,

P aã = nañã , na = (gL) a
1 , ñã = (gR)ã

1̃

Hence, the vacua are assigned two polarization spinors:

Tr[(P · Φ)`]↔ |n`〉L ⊗ |ñ`〉R ,

|n`〉L = |n〉L ⊗ · · · ⊗ |n〉L , |ñ`〉R = |ñ〉R ⊗ · · · ⊗ |ñ〉R ,

|n〉L = n1| ↑〉L + n2| ↓〉L , |ñ〉R = ñ1̃| ↑〉R + ñ2̃| ↓〉R .

For convenience, we normalize polarization spinors as

nan̄a = ñã¯̃nã = 1 , n̄a = (na)∗ , ¯̃nã = (ñã)∗
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General non-BPS operators in SU(2) sector

Non-BPS operators in the SU(2) sector can be obtained by adding
magnons either on the SU(2)L or SU(2)R sector:

Type I : |u; n`〉L ⊗ |ñ`〉R , Type II : |n`〉L ⊗ |ũ; ñ`〉R .

Such states are related to |u; ↑`〉L =
∏M
i=1BL(ui)| ↑`〉L. by

SU(2)L×SU(2)R transformation:

|u; n`〉L = gL|u; ↑`〉L , |n`〉 = gL| ↑`〉 , gL ∈ SU(2)/U(1) ,

It is convenient to parametrize gL as

gL = eζS−−ζ̄S+ = ezS−e− ln(1+|z|2)S3e−z̄S+

where z = ζ
|ζ| tan |ζ|. This is the so-called coherent state representation

and z is the projective coordinate for the coset SU(2)/U(1)≡ S2.

T. Nishimura (UT,Komaba) monodromy Kyoto 23 / 43



With this parametrization gL = ezS−e− ln(1+|z|2)S3e−z̄S+ , we find

|n〉L = gL| ↑〉L , n = gL

(
1
0

)
=

1√
1 + |z|2

(
1
z

)
,

Furthermore, the Bethe states on the rotated vacuum are expressed as
follows

|u; n`〉L = gL|u; ↑`〉L =

(
1

1 + |z|2
)`/2−M

ezS− |u; ↑`〉L .

Notice that the Bethe state is a highest weight state of SU(2)L, i.e.
S+|u; ↑`〉L = 0. Similarly, we have

|u; ñ`〉R = gR|ũ; ↑`〉R =

(
1

1 + |z̃|2
)`/2−M̃

ez̃S̃− |ũ; ↑`〉R .

T. Nishimura (UT,Komaba) monodromy Kyoto 24 / 43



Wick contraction as singlet projection

The Wick contractions for Z,X and their conjugate are summarized as

ΦaãΦbb̃ = εabεãb̃ , Φaã =

(
Z X
−X̄ Z̄

)
aã

To implement the above contractions in a spin chain language, we
introduce a singlet projector

〈1| = εab〈a| ⊗ 〈b| ,
|1〉 = | ↑〉 , |2〉 = | ↓〉 , 〈a|b〉 = δab .

With the singlet projector, we find

ΦaãΦbb̃ = L〈1|(|a〉L ⊗ |b〉L) · R〈1|(|a〉R ⊗ |b〉R)

For P1 · Φ = na1ñ
ã
1Φaã and P2 · Φ = nb2ñ

b̃
2Φbb̃,

P1 · ΦP2 · Φ = L〈1|(|n1〉L ⊗ |n2〉L) · R〈1|(|ñ1〉R ⊗ |ñ2〉R)

= 〈n1, n2〉〈ñ1, ñ2〉 = (εabn
a
1n
b
2)(εãb̃ñ

ã
1ñ
b̃
2)
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Composite operators in the SU(2) sector are schematically written as

Oi 7→ |Oi〉L ⊗ |Õi〉R .

The Wick contractions for the composite operators are given by

O1O2 = 〈|O1〉L, |O2〉L〉 · 〈|Õ1〉R, |Õ2〉R〉

〈|Ψ1〉, |Ψ2〉〉 = 〈V12|(|Ψ1〉 ⊗ |Ψ2〉) , 〈V12| =
∏̀
k=1

〈1k,`−k+1|

k `� k + 1· ·

hV12|(S(1)
k + S

(2)
`�k+1) = 0

The contributions from the left and right sector are completely factorized.
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Cutting and sewing in our formalism

Let us concentrate on the SU(2)L part.
1 Cutting:

|Oi〉L →
∑
a

|Oia〉l ⊗ |Oia〉r (i = 1, 2, 3)

2 Sewing:

〈|O1〉L, |O2〉L, |O3〉L〉
=
∑
a,b,c

〈
|O1a〉r, |O2b〉l

〉〈
|O2b〉r, |O3c〉l

〉〈
|O3c〉r, |O1a〉l

〉
= 〈V123|(|O1〉L ⊗ |O2〉L ⊗ |O3〉L)

hV123|
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z dependence from the Ward identities

Three-point functions must satisfy the Ward identity for SU(2)L:

0 = 〈S∗|O1〉L, |O2〉L, |O3〉L〉+ 〈|O1〉L, S∗|O2〉L, |O3〉L〉
+ 〈|O1〉L, |O2〉L, S∗|O3〉L〉 , S∗ ∈ su(2)L .

Putting |Ôi〉L = eziS− |ui; ↑`〉 into the above, we obtain the following
differential representation for the Ward identities:

3∑
i=1

ρzi(S
∗)
〈
|Ô1〉L, |Ô2〉L, |Ô3〉L

〉
= 0 ,

ρzi(S
−) =

d

dzi
, ρzi(S

3) = Li − zi
d

dzi
, ρzi(S

+) = Lizi −
z2
i

2

d

dzi
.

Li: su(2)L charge. These equations completely fix the zi dependence:〈
|Ô1〉L, |Ô2〉L, |Ô3〉L

〉
= zL1+L2−L3

21 zL2+L3−L1
32 zL3+L1−L2

13 G
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Representation in terms of pDWPF

The cutting for the Bethe state |u; ↑`〉 is determined in EGSV:

|u; ↑`〉 →
∑

αl∪αr=u

H`(αl, αr)|αl; ↑`l〉 ⊗ |αr; ↑`r〉 ,

H`(αl, αr) =
∏
u∈αl

∏
v∈αr

(
u− i

2

)`r (
v +

i

2

)`l (u− v + i

u− v

)

From |ui; n
`i
i 〉 ∝ eziS− |ui; ↑`i〉, we find

|ui; n
`i
i 〉 →

∑
αl∪αr=u

H`(αl, αr)e
zSl− |αl; ↑`l〉 ⊗ ezS

r
− |αr; ↑`r〉 .

The sewing procedure produces the following building blocks:〈
eziS− |x; ↑`〉, ezjS− |y; ↑`〉

〉
T. Nishimura (UT,Komaba) monodromy Kyoto 29 / 43



1 Using the defining property of the singlet 〈112|(S(1) + S(2)) = 0,〈
eziS− |x; ↑`〉, ezjS− |y; ↑`〉

〉
=
〈
|x; ↑`〉, e(zj−zi)S− |y; ↑`〉

〉
.

2 With the relation 〈112|B(1)(u) = −〈112|B(2)(u), we can gather all
the excitations to the one side:

(−1)Mi

〈
| ↑`〉, e(zj−zi)S− |x ∪ y; ↑`〉

〉
3 From 〈112|(| ↑`〉 ⊗ |Ψ2〉) = 〈↓` |Ψ2〉, one finds

(−1)Mi〈↓` |e(zj−zi)S− |x ∪ y; ↑`〉 = (−1)Mi(zj − zi)`−Mi−MjZ`(x ∪ y)

where Z`(u) is the so-called partial Domain Wall Partition Function
(pDWPF):

Z`(u) =
1

(`−M)!
〈↓` |(S−)`−M

M∏
i=1

B(ui)| ↑`〉 .
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Finally, we have

〈|O1〉L, |O2〉L, |O3〉L〉

=

(
1

1 + |z1|2
)`1/2−M1

(
1

1 + |z2|2
)`2/2−M2

(
1

1 + |z3|2
)`3/2−M3

×
∑

α
(k)
l ∪α

(k)
r =uk

z
`12−|α(1)

r |−|α
(2)
l |

21 z
`23−|α(2)

r |−|α
(3)
l |

32 z
`31−|α(3)

r |−|α
(1)
l |

13 D{α(1)
l,r ,α

(2)
l,r ,α

(3)
l,r }

D{α(1)
l,r ,α

(2)
l,r ,α

(3)
l,r }

= (−1)|α
(1)
r |+|α

(2)
r |+|α

(3)
r |

3∏
k=1

H`k(α
(k)
l , α(k)

r )Z`kk+1
(α(k)

r ∪ α(k+1)
l )

where zij := zi − zj , |α| is the number of elements in α.

pDWPF has a determinant expression.

The summation should be simplified so that it reproduces the correct
kinematical dependence.
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Kinematical dependence and further simplification

In particular, if we consider |O1〉L = |u; n1〉, |O2〉L = |v; n2〉,
|O3〉L = |n3〉,〈

|Ô1〉L, |Ô2〉L, |Ô3〉L
〉

= z`21−M1−M2
12 z`23−M2+M1

32 z`31−M1+M2
13 G ,

which yields the following highest order term in z3:

(−1)`31−M1+M2z`33 z
`12−M1−M2
21 G .

On the other hands, the higher order term in the summation we have
derived is given by

(−1)`31z`33 z
`12−M1−M2
21 D{α(1)

l,r ,α
(2)
l,r ,∅}

∣∣∣∣
α

(1)
l =α

(2)
r =∅

By comparing the z3 dependence,

G = (−1)M1+M2 D{α(1)
l,r ,α

(2)
l,r ,∅}

∣∣∣∣
α

(1)
l =α

(2)
r =∅

∝ H(∅,u)H(v, ∅)Z`12(u ∪ v)
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The result is

〈|O1〉L, |O2〉L, |O3〉L〉 = z`21−M1−M2
12 z`23−M2+M1

32 z`31−M1+M2
13

×
(

1

1 + |z1|2
)`1/2−M1

(
1

1 + |z2|2
)`2/2−M2

(
1

1 + |z3|2
)`3/2−M3

×
M1∏
k=1

(
uk +

i

2

)`31 M2∏
l=1

(
vl −

i

2

)`23

Z`12(u ∪ v)

Comments

We have treated correlators for two type I operators and one type II
operator: |ui; ni〉L ⊗ |ñi〉R (i = 1, 2), |n3〉L ⊗ |ũ3; ñ3〉R.
⇒ A special class of 3pt. functions in EGSV is contained in this class.

The correlators for three type I operators, namely, |ui; ni〉L ⊗ |ñi〉R
(i = 1, 2, 3) involves a sum over partitions, even after the
simplification.

pDWPF has a determinant expression and the semi-classical limit is
obtained [’12 Kostov].
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Determinant formulas and semi-classical limit

pDWPF has various (determinant) expressions:[’11 Foda,Wheeler], [’12

Kostov,Matsuo], [’13 Kazama,Komatsu,T.N]

Z`(u) =
1

(`−M)!
〈↓` |(S−)`−M

M∏
i=1

B(ui)| ↑`〉

=

∏M
i=1(ui − i/2)`∏
i<j(ui − uj)

det

(
ul−1
k −

(
uk −+i/2

uk − i/2

)`
(uk − i)l−1

)
1≤k,l≤M

=
L−1∏
i=1

∮
C

dxi
2πi

∏
j<k

(xj − xk)(e2πxj − e2πxk)

L−1∏
l=1

Qu(xl)Qv(xl)

(x2
l + 1/4)L

e2πxl

where Qu(x) :=
∏M
i=1(x− ui). Semi-classical limit (`→∞ ,M/` : fixed)

for pDWPF is obtained in [’12 Kostov]

lnZ`(u) ∼
∮
Cu

dx

2π
Li2(eipu(x)) , pu(x) =

M∑
i=1

1

x− ui
− `

2x
.
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Lessons

1 The Wick contractions are efficiently performed using the singlet
projector 〈112|.

2 The defining property of the singlet ensures the Ward identities of the
symmetry.

3 In this formalism, it is possible to deal a more general class of 3pt.
functions and the structure constants can be expressed in terms of
pDWPFs, rather than the scalar products.

4 The Ward identities and the kinematical dependence greatly simplify
the result.
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Monodromy relations for
correlators @weak coupling
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Monodromy relation for basic 2pt. functions

It is sufficient to consider the 2pt. point functions. We would like to show
the following form of monodormy relation

〈V12|Ω(u− i/2)Ω(u+ i/2) ∝ 〈V12|1 ,
Ω(u) = L1(u) · · ·L`(u) , Ln(u) = u+ i~Sn · ~σ

To prove this, we use two important equations:

Crossing : 〈V12|L(1)
n (u) = −〈V12|L(2)

`−n+1(−u)

Inversion : Ln(−u+ i/2)Ln(u+ i/2) = −(u2 + 1)1
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Crossing relation

With the definition L
(k)
n (u) = u+ i~S

(k)
n · ~σ and the property of the vertex

〈V12|(S(1)
n + S

(2)
`−n+1),

〈V12|L(1)
n (u) = 〈V12|(u+ i~S(1)

n · ~σ)

= 〈V12|(u− i~S(2)
`−n+1 · ~σ)

= −〈V12|L(2)
`−n+1(−u) = σ2L

(2)T
`−n+1(u)σ2

With the crossing relation for the Lax operators, we have

〈V12|Ω(1)(u) = (−1)`〈V12|
←−
Ω (2)(−u) = 〈V12|σ2Ω(2)T (u)σ2 ,

←−
Ω (u) := L`(u) · · ·L1(u) , σ2ΩT (u)σ2 =

(
D(u) −B(u)
−C(u) A(u)

)
In particular, one finds 〈V12|B(1)(u) = −〈V12|B(2)(u).
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Inversion relation

By the explicit calculation, we can show

L(v)L(u) = (vu− 3/4) + i(v + u− i)~S · ~σ

Hence,

〈V12|Ω(1)(u− i/2)Ω(2)(u+ i/2)

= (−1)`〈V12|
←−
Ω (2)(−u+ i/2)Ω(2)(u+ i/2)

= (−1)`〈V12| · · ·L1(−u+ i/2)L1(u+ i/2) · · ·
= (u2 + 1)`〈V12|

To invert the Lax operator, the shift for the spectral parameter is
necessary.
These results are obtained by the reduction from monodormy relation
of psu(2, 2|4) sector [’14 Jiang,Kostov,Petrovskii,Serban],[’15

Kazama,Komatsu,T.N].

T. Nishimura (UT,Komaba) monodromy Kyoto 39 / 43



1/u expansion and Ward identities

If we consider the limit u→∞ and expand the monodormy relation in
power of 1/u, we obtain the Ward identities of the form

〈S∗|O1〉, |O2〉〉+ 〈|O1〉, S∗|O2〉〉 = 0 .

The expansion of the monodormy matrix in power of 1/u generates
the Yangian generators.
⇒The monodormy relations include a kind of the Ward identities of
them.

This in turn suggests the Yangian invariance of the vertex:

〈V123|Ω1Ω2Ω3 ∝ 〈V123|
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Summary and prospects
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Summary

We have devolved a new formalism in which the Wick contractions
are expressed as singlet projections.
⇒The Ward identities automatically follows.

For three-point functions in the SU(2) sector, the structure constants
are given in terms of the pDWPFs.

The knowledge of the kinematical dependence greatly helps the
analysis.

The monodromy relations at weak coupling are derived using the
crossing and inversion relation, both for the fundamental and the
harmonic R-matrix.

The 1/u expansion for them generates non-trivial identities for
correlators, including the usual Ward identities.
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Prospects

More on the monodromy relations. How they constrain the
three-point functions?
⇒ Semi-classical three-point functions from Landau-Lifshitz model.
[Kazama,Komatsu,T.N, in progress]

1-loop corrections
⇒ Is it possible to constrain the 1-loop corrections using the
symmetries?

〈V123(g)|(J1(g) + J2(g) + J3(g)) = 0

(〈V (0)
123 |+ g〈V (1)

123 |+ · · · )
3∑
i=1

(J
(0)
i + gJ

(1)
i + · · · ) = 0

⇔
3∑
i=1

〈V (0)
123 |J

(1)
i +

3∑
i=1

〈V (1)
123 |J

(0)
i = 0

Relation to recent non-perturbative results, SFT vertex (form factor)
[’15 Bajnok,Janik], hexagon form factor [’15 Basso,Komatsu,Vieira] .
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Back up
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D-scheme oscillator represenattion

To construct the representations, It is convenient to introduce the
oscillators satisfying

[µα, λβ] = δαβ , [µ̃α̇, λ̃β̇] = δα̇
β̇
, {ξa, ξ̄b} = δab ,

where α, β, α̇, β̇ are the spinor indices of the Lorentz group
SL(2,C)× SL(2,C) and a, b are the SU(4) R-symmetry indices.

JAB = ζ̄AζB , ζ̄A =

 λα
iµ̃α̇

ξ̄a

A

, ζA =

 µα

iλ̃α̇
ξa


A

,

[JAB, J
C
D] = δCBJ

A
D − (−1)(|A|+|B|)(|C|+|D|)δADJ

C
D ,

C := trJ = JAA , B := strJ = (−1)|A|JAA

JAB: generators of u(2, 2|4), C: central charge, B: hypercharge.

u(2, 2|4) −→︸︷︷︸
remove B

su(2, 2|4) −→︸︷︷︸
remove C

psu(2, 2|4)
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Fundamental fields as Fock states

The fundamental fields of N = 4 SYM are represented as follows:

µα|0〉 = µ̃α̇|0〉 = ξa|0〉 = 0

Fαβ(0)↔ λαλβ|0〉 ,
ψαa(0)↔ λαξ̄a|0〉 ,
φab(0)↔ ξ̄aξ̄b|0〉 ,

ψ̄aα̇(0)↔ 1

3!
εabcdλ̃α̇ξ̄bξ̄cξ̄d|0〉 ,

F̄α̇β̇(0)↔ 1

4!
εabcdλ̃α̇λ̃β̇ ξ̄aξ̄bξ̄cξ̄d|0〉 ,

with the vanishing central charge C = 0. The operator at the general
position x is obtained by

|O(0)〉 → |O(x)〉 := eiP ·x|O(0)〉 .

Thus, the derivatives −i ∂

∂xβ̇α
are expressed as the action of Pαβ̇ = λαλ̃β̇.
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Singlet state for psu(2, 2|4)
We wish to construct a singlet state under psu(2, 2|4). For this purpose, it
is convenient to prepare new vacua

|Z〉 = |0〉B ⊗ ξ̄3ξ̄4|0〉F , |Z̄〉 = |0̄〉B ⊗ ξ̄1ξ̄2|0〉F ,

λα|0̄〉B = λ̃α̇|0̄〉B = 0 ,

|112〉 =
∑

n,m≥0

f(n,m)|n〉 ⊗ |m〉 ,

f(n,m) = δn,m(−1)
nλ̃

1̇
+nλ̃

2̇
+nc1+nc2f(C)

where f(C) is an arbitrary function of the central charge. In particular, if
we take f(C) = 1,

|112〉 = exp
(
λα ⊗ µα − λ̃α̇ ⊗ µ̃α̇ + c̄i ⊗ ci − d̄j ⊗ dj

)
|Z〉 ⊗ |Z̄〉

which is used in [’14 Jiang,Kostov,Petrovskii,Serban].
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Crossing for individual oscillators and Wick contractions

The Wick contractions for the fundamental fields are simply expressed in
terms of

I(x, y) := 〈112|(eiP ·x|0〉 ⊗ eiP ·y|0〉)

Due to the singlet property 〈112|(J (1) + J (2)) = 0 for all the (super)
conformal generators, it satisfies, for example,

0 = 〈112|(P (1)
µ + P (2)

µ )(eiP ·x|0〉 ⊗ eiP ·y|0〉) = −i(∂xµ + ∂yµ)I(x, y)

Then, I(x, y) = I(x− y). Similarly, the singlet condition of the dilatation
D yields

0 = (xµ∂xµ + yµ∂yµ + 2)I(x− y)

Thus, we have I(x, y) = 1
|x−y|2 .

T. Nishimura (UT,Komaba) monodromy Kyoto 48 / 43



Using the exponential form, one can easily find that the crossing for
individual oscillators are given by

〈112|ζA ⊗ 1 = −〈112|1⊗ ζA ,

〈112|ζ̄A ⊗ 1 = 〈112|1⊗ ζ̄A .

Then, all the Wick contractions are expressed in terms of I(x− y)

φab(x)φcd(y) = 〈112|(ξ̄aξ̄beiP ·x|0〉 ⊗ ξ̄cξ̄deiP ·y|0〉)
= 〈112|(eiP ·x|0〉 ⊗ ξ̄aξ̄bξ̄cξ̄deiP ·y|0〉) = εabcdI(x− y) ,

ψαa(x)ψ̄bα̇(y) = δ b
a 〈112|(λαeiP ·x|0〉 ⊗ eiP ·yλ̃α̇|0〉)

= δ b
a 〈112|(eiP ·x|0〉 ⊗ eiP ·yλαλ̃α̇|0〉) = −iδ b

a

∂

∂yα̇α
I(x− y) ,

Fαβ(x)F̄α̇β̇(y) = 〈112|(eiP ·xλαλβ|0〉 ⊗ eiP ·yλ̃α̇λ̃β̇|0〉)

=
1

2

(
∂

∂xα̇α
∂

∂yβ̇β
+

∂

∂xβ̇α
∂

∂yα̇β

)
I(x− y) .
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Monodromy relation for fundamental R-matrix

The gl(4|4) Lax operator is given by

L(u) = u+ η(−1)|B|EAB ⊗ JAB
where EAB is the fundamental representation of gl(4|4). The crossing and
inversion are respectively

Crossing : 〈V12|L(1)
n (u) = −〈V12|L(2)

`−n+1(−u+ η)

Inversion : Ln(u)Ln(η − u) = u(η − u)1 ,

The non-trivial shift for the spectral parameter under the crossing arises
from 〈112|JAB ⊗ 1 = −〈112|(1⊗ JAB + (−1)|A|δAB).
The monodromy relation becomes[’14 Jiang,Kostov,Petrovskii,Serban],[’15

Kazama,Komatsu,T.N]

〈V12|Ω(1)(u)Ω(2)(u) = (u(u− η))`〈V12|
Ω(u) := L1(u) · · ·L`(u)
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Monodromy relation for harmonic R-matrix

We can also derive the monodromy relation for the R-matrix whose
auxiliary space is the singleton representation [’15 Kazama,Komatsu,T.N].

Rij(u) = (−1)J
Γ(J + u+ 1)

Γ(J− u+ 1)
∈ End(Vi ⊗ Vj) , C2 = J(J + 1)

〈V12|Ω(1)(u)Ω(2)(u) = 〈V12| , Ω(i)(u) := R
(i)
a1(u) · · ·R(i)

a` (u) .

It is of particular importance to note the following relation
[’04,Beisert,Staudacher].

H12 =
d

du
lnR12(u)|u=0

The 1-loop dilatation operator, namely, the spin chain Hamiltonian is
easily obtained.
The harmonic R-matrix is used to construct building blocks for the
scattering amplitude as Yangian invariant [’13,Ferro

,Lukowski,Meneghelli,Plefka,Staudacher],[’13,Chicherin,Kirschner],[’14,Broedel,de

Leeuw,Rosso].
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