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Introduction
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In this talk, | will talk about 3pt.
functions in AdS;/CFT,4 at weak coupling.




Why 3pt functions in N' = 4 SYM?

@ They are fundamental building blocks of the theory together with the
2pt. functions.

@ They encode the dynamics of the string theory on the AdS
background.

We need to study these fundamental observables in detail to reveal the
underlying mechanism of AdS/CFT. J
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Integrability based approach

In the planar limit, integrability turned out to be a powerful tool.

Q@ At )\ < 1 or perturbative N’ = 4 SYM,
(1-loop dilatation operator)= Integrable spin chain Hamiltonian

@ At A > 1 or classical string,
A large class of classical solutions is constructed from algebraic
curves. = Semiclassical string spectrum

A1 A>1
Spin chain Classical string
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Assuming the integrability, all-loop results are obtained!

A1 A>1

7

Y-system

in chain
Spin cha quantum spectral curve

Classical string

Fortunately, we have solved the spectrum problem by using integrability.
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@ Spectrum problem has been studied using various integrability
techniques.
=1t means the underlying 1+1 dim system (light-cone gauge fixed
sigma model, spin chain.) is integrable.

@ However, “integrability” is not oblivious beyond the spectrum
problem a priori.

Is there any notion of “integrability” beyond the spectrum problem? If
there is, what is the precise meaning of “integrability” ? J
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Monodromy relation @strong coupling

At the strong coupling regime, the so-called monodromy relation plays an
quite important role [°11 Janik,Wereszczynskil,[’11,°12,’13 Kazama,Komatsu].

(e.om) & (d+A(w)? =0, Qi(u) = Pexp [ /C A(u)]

[

Ql (U)Qg (U)Qg (u) =1

@ The monodromy relation provide a global information even without
knowing the exact form of the vertex operators and the saddle pt.
configuration.

@ Combined with the analyticity, it determines the semi-classical
three-point functions completely.

What is the weak coupling counter part of this relation? How is it useful
to constrain three-point functions?

)
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Motivations for our works

@ We would like to build weak coupling correlators respecting the
symmetry.

@ We wish to find the weak coupling analogue of the monodormy
relation.

© We develop a new formalism in which the symmetry is manifest.
= We can simplify the analysis exploiting the symmetry.

@ We also derive the monodromy relations for correlator at weak
coupling.
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Plan of talk

© Introduction
@ Construction of 3pt. functions @weak coupling
© Monodromy relations

@ Summary and prospects
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Construction of 3pt. functions
Oweak coupling




Tree-level three-point functions

Tree-level three-point fuctions are calculated by taking all possible Wick

contractions. In particular, only planar graphs contribute in the large N,
limit.

k 13)

@ At tree-level, the dimensions of operators are highly degenerate.
@ According to the usual degenerate perturbation theory,

Oi(x1), Oj(z2), Ok (z3) must be eigenstates of the 1-loop dilatation
operator.

= Combinatorics of Wick contractions.
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Two-point functions and dilatation operator

(Oi(2)0;(y)) L - O;(x): with conformal dimension A;

ey
We must take into acount the operator mixing!
ren __ ryj mnbare
O = Z; 07",

d ren __ ren L dz —1
dlnAO =10 ’P'_dlnAZ

To obtain the conformal dimension, we need to
@ determine I,
@ and diagonalize ' — A; = AEO) + v v eigenvalues.

'02 Minahan, Zarembo

In the planar limit N, — oo of N' =4 SYM,

Diagonalization of I' = Diagonalization of spin chain Hamiltonian
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SU(2) sector

The simplest example is SU(2) subsector where all single trace operators
are made up of two types of complex scalar fields:

Ol)=Tx[ZZZ---ZXZ---]|, Z=¢1+ipa, X = ¢35+ is

For this sector, the 1-loop dilatation operator becomes the Hamiltonian of
the Heisenberg spin chain!!

[lsu(e) ¢ Hxxx
Z,X < 1),

T[ZZ... 2] ¢ [Vac) = | 11 ... 1)

Coane =
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Bethe ansatz

@ Define the Bethe states:Fock states of the pseudo-particles (Magnon).
M S udi/2
) = T2, Blug)| 1), p=iln /2
@ The momenta (rapidities) of magnons are quantized due to the
periodicity condition. = Bethe ansatz equation!
© We can read off the spectrum from the disppersion realation.
M
B=M e(w), ew) = 2rpim
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o A(u) B(u)
Oz) & u) = | [ B(w)| 1), Qu) =
Il (e D)
= u+iS3  iS,
Qu) = Ly (u) IAW7LMWZU+ﬁn5=< ;;nusgg)

They are eigenstates of the Hamiltonian if and only if they satisfy the
Bethe ansatz equations:

T(w)lu) = tu (W) , T(w) = rQw) = A(w) + D(u) ,

ﬁ ug +1/2 E_Huk—u]'—l-i
up —i/2) Up — uj — 1

k=1 £k

@ The transfer matrix T'(u) generates a family of conserved charges
including the Hamiltonian.

@ |u) is called on-shell when their rapidities satisfy the BAEs.
@ On-shell Bethe states are highest weight states of SU(2).
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Tailoring for spin chain

The tailoring
is an efficient method to calculate relevant
contractions [*11 Escobedo,Gromov,Sever,Vieira).

@ Cutting spin chains into

the subchains: [U;) = > |¥;); @ [U;),.
@ Flipping the half of

the states: |¥;) — U; = 5 |0;); @ TT\ITA
© Sewing the states:

Cie o 3050 5 (W ) (01w, 0 0

Sewing
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/ \fp: ;

Tree-level three-point functions are mapped to the overlaps of the spin
chain wave functions.
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A special class of 3pt. functions in SU(2) sector

Or=3 T[ZX -] e Y |1 )
Oy =) Tr[ZX---] > | 1-)
O3=> T[ZX--]& D [tL-)

The tailoring gives the structure constant in terms of scalar product of
Bethe states.

@ In this special case, the result only involves (off — shell|on — shell).
= Determinant formulas.

@ The mapping to a single SU(2) spin chain is not natural from a
symmetry point of view.
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Basic ideas

In the literatures, there are some unsatisfactory points:

@ The symmetries are not manifest. J

@ A very limited class of 3pt. functions has been treated.

To improve these points, we develop a new formalism:

@ Mapping to a double spin chain.

@ Novel interpretation for the Wick contractions.

X 0,1_|02 = <01|02>
O (0102) = (V12|(|01) ® |O2))

As we will see, the symmetries (Ward identities) are realized as the
invariance for the vertex

<V12|(J1 =+ JQ) =0 <(J01)02> + <01(J02)> =0
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SU(2)1,xSU(2) g double spin chain formalism

From a symmetry point of view, it is natural to introduce a double spin
chain [’15 Kazama,Komatsu,T.N].

_( Z X D[ MDr D@ DR
q)aa_<—X Z>G~H<|¢>L®|T>R |¢>L®|¢>R>a~

a

e SO(4)=SU(2)1,xSU(2)g transformation is & — g Pgg.
@ A general SO(4) scalar is labeled by bi-spinor P%¢: P - ® = P%;.

P-oe PN @ Ne+ PN L)r
+ P )@ | Vr+ P2 L@ Dk
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General rotated vacua

To treat generic operators in the SU(2) sector, we first consider rotated
vacua on which non-BPS operators are build.

@ General BPS operators are obtained by SO(4) rotations
Tr[Z] — Tx[(P - ®)]:

Z =27 = (9Pgr)17 = (9£)1"Paalgr)’
P4 — n9j@ 0 = (g),® , A% = (gR>ai
@ Hence, the vacua are assigned two polarization spinors:
Te[(P- @) ] ¢+ [n)r @ [8)r
W)= ®---@n), [()r=Mro o W)g,
[y =n!| P+ 0% D)o, [W)r =/ 1)r+52 Ve
@ For convenience, we normalize polarization spinors as
nn, =%z =1, f, = (0%, 4z = (9"
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General non-BPS operators in SU(2) sector

Non-BPS operators in the SU(2) sector can be obtained by adding
magnons either on the SU(2)z, or SU(2)p sector:

Type I: |u;nz>L®]ﬁg>R, Type II : \nZ>L®]u;n>R.

Such states are related to |u; 1) = Hf‘il Br(u)| 9. by
SU(2),xSU(2)r transformation:

lusn)r = grlus 1L, [nf) = go[ 1), gL € SU2)/U(1),
It is convenient to parametrize g, as
_ egs,—ZSJr — #5- g~ In(1+[2[*)S5 ,— 254

gL

where z = % tan |¢|. This is the so-called coherent state representation
and z is the projective coordinate for the coset SU(2)/U(1)= S2.
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With this parametrization g, = e*°~e~ In(1+[2*)S3 . =25+ e find

|">L:gL|T>L7n:gL((1)>:\/1iW<i> ;

Furthermore, the Bethe states on the rotated vacuum are expressed as
follows

t/2—M
1
!um% = gL|U§Tz>L = <1+|z|2> GZS_‘U;T£>L .

Notice that the Bethe state is a highest weight state of SU(2)y, i.e.
Sy |u; 19, = 0. Similarly, we have

2/2—M
w7 5 = gl 1) R = 1 / 25 =l
N R = gr|w; 1T )R = 71+|2‘2 e w1 )R -
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Wick contraction as singlet projection

The Wick contractions for Z, X and their conjugate are summarized as
— 7 X
CDa&(I)bE = €ab€yj > D5 = < _X 7 >a&

To implement the above contractions in a spin chain language, we
introduce a singlet projector

(1] = eap(al @ (0] ,
=11, 12)=11), (alb) = da -
With the singlet projector, we find
—
Paa®yy, = L(1(la)r @ (b)) - R(L|(|a)r @ [b) R)

For P, - ® = n%il®,; and Py - & = n§ld,;,

Pr-@Py- @ = (1f(Im)r ® [n2)r) - rR(1I(IM1) R ® [n2)R)

= (n1,n2)(fi1, fig) = (eapnind) (e zTM5)
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Composite operators in the SU(2) sector are schematically written as
0; — |0:) 1 ®|0:)R -
The Wick contractions for the composite operators are given by
I . .
0102 = (|01)1,|02)1) - {|O1) R, |O2) )

14

([W1), | Wa)) = (Via|(|01) @ [W2)) , (Vio| = [ [ (Lhe-rta
k=1

(Viz|(Sy" + 817, 1) =0

k (-k+1

The contributions from the left and right sector are completely factorized.
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Cutting and sewing in our formalism

Let us concentrate on the SU(2), part.
@ Cutting:

0 = > |0 @0;,)" (i =1,2,3)
@ Sewing:
(101) 1, 102}, 10s)1)
=3 (101)7,102)") (102" 105.)") {105,)7,101,)")

a,b,c

= (Vi23|(|O1)L ® |O2) . ® |O3) 1)

(Vias|
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z dependence from the Ward identities

Three-point functions must satisfy the Ward identity for SU(2):

0= (S*101)r,[02)1,103)1) + {|O1)1, S*|O2) 1, |O3) 1)
+{01)L,[02) 1, S*|O3)1) , S* € 5u(2)L .

Putting |O;) 1, = €%5~|u;; 1) into the above, we obtain the following
differential representation for the Ward identities:

szz ) (101)2,102)1,05)1) = 0.,

_ d d 2-2 d
p=(S7) = dz pzi(Sg) =Li— 25—, Pzz(s+) Liz —

L;: su(2)r, charge. These equations completely fix the z; dependence:

(101)1,102)1, O} ) = =y 12Tl hoTzfytiaag
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Representation in terms of pDWPF

The cutting for the Bethe state |u; 1) is determined in EGSV:

sty = > Hilon, )| 1) @ Jag; 1)

o Uar=u

N\ 4 .
H H 7 U—v+1
uco veEa, 2 u—-v

From |ui;nfi> oc e |ug; 14), we find

. 1
lusni) = > Hyon, an)e* ag; 1) @ €5 o 177)

o Uar=u

The sewing procedure produces the following building blocks:

<€zis* ;1) €% Jy; TZ>>
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@ Using the defining property of the singlet (11](S(!) 4+ 5®)) =0,
(5 Jmi1"), % fyith) ) = (Jas 1), el 705 ;49

@ With the relation (115|BM (u) = —(112|B® (u), we can gather all
the excitations to the one side:

(-0 () 1), el Ugs )
@ From (115(| 1) ® |W3)) = ({¢ |¥s), one finds
(_1)M1 <\L€ |€(ijzi)S_ ‘w Uy; TZ> — (_1)M1 (Zj o Zi)ffAMifMj Zg(:li U y)
where Zy(u) is the so-called partial Domain Wall Partition Function

(PDWPF):

Zutw) = sy T Bl 1)

(£ M) =1
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Finally, we have

(01)r,102)1,103) L)

1 €1/27M1 1 @2/27]\/[2 1 63/27M3
- <1+\21|2> <1+|22|2> <1+|23\2>

3 tz=lai|=laf?| fag—lof®|~la|_ts1~la” =l ] 1)
“21 32 13 oV a2 0@}
al(k)Uagk):u

D, o @ 0@y

l'r’ lr’ L,r
(1) (2) (3) 3 (k) ( )
- o’ [+|on™ |+ ar k) (k k k+1
= (=)l e T T Hy, (0,7, i) Zg, (@ Ua)™ )
k=1
where z;; := z; — zj, | is the number of elements in .

@ pDWPF has a determinant expression.

@ The summation should be simplified so that it reproduces the correct
kinematical dependence.
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Kinematical dependence and further simplification

In particular, if we consider |O1)r, = |u;ny), |O2)1 = |v;n2),
|O3) 1, = [n3),

A A A _ Ao1—M1—Ms {lo3—Mao+M;y {31 —Mi+M:
(1001, 102)1,[Os) 1) = 2y =M Moz Mat M fy-Mitilag
which yields the following highest order term in z3:
l31—Mi+Ms L3 Lia—Mi—Mo
(=1)" R 2 ay g.

On the other hands, the higher order term in the summation we have
derived is given by

b3 _L19— My — M:
(_1)5312 3 Li2=Mi—Mz
3 ~21 1) (2)
{ag o 0} al(l):ag):@

By comparing the z3 dependence,

G=(—1)MTM2p )

H ) H bl Z U
A 1al,77®} al(l):ag):@ x (® u) (U (D) 512(1’1’ ,U)
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The result is

(101)1,02)1,O5) ) = 243~ Mg =M =il

1 Zl/QfMl 1 €2/27M2 1 @3/27]\/[3
>< R R R
<1+|21!2> <1+\Z2l2> (1+123|2>

My i 031 M2 i la3
X kl:[l (uk + 2> H (vl — 2) Zp, (WU v)

=1

Comments

@ We have treated correlators for two type | operators and one type Il
operator: |ug; ;) ® [f)r (i = 1,2), [n3)L @ |d3;13)R.
= A special class of 3pt. functions in EGSV is contained in this class.

@ The correlators for three type | operators, namely, |u;;n;)r ® [i) R
(i = 1,2,3) involves a sum over partitions, even after the
simplification.

o pDWPF has a determinant expression and the semi-classical limit is
obtained [*12 Kostov].
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Determinant formulas and semi-classical limit

pDWPF has various (determinant) expressions:[>11 Foda,Wheeler], [*12

Kostov,Matsuo], [’13 Kazama,Komatsu T.N]

Zi(w) = G 108 KMHBuZW

I e T S O T T w70 A RPN
B Hi<j( Ui — uj) dt( " <uk_i/2> =) >1<k,l§M

L—l
. H% dmz )( 2y 27rwk H Qu 1‘1 QU xl)e%rxl

=
27m ]<k paiey (z2 4+ 1/4)F

where Q,(z) := Hf\il(m — u;). Semi-classical limit (¢ — oo , M /¢ : fixed)
for pPDWPF is obtained in [?12 Kostov]

I Zg(w) ~ ¢ o—Lia(e™)) , pu(e) =) ~ 5
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Lessons

© The Wick contractions are efficiently performed using the singlet
projector (11a].

@ The defining property of the singlet ensures the Ward identities of the
symmetry.

© In this formalism, it is possible to deal a more general class of 3pt.
functions and the structure constants can be expressed in terms of
pDWPFs, rather than the scalar products.

@ The Ward identities and the kinematical dependence greatly simplify
the result.
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Monodromy relations for
correlators @weak coupling




Monodromy relation for basic 2pt. functions

It is sufficient to consider the 2pt. point functions. We would like to show
the following form of monodormy relation

(Via|Qu — i/2)Q(u +1i/2) o (Via|1
Q(u) = Ly(u) - Ly(u) , Lyp(u) =u+iS, -G

To prove this, we use two important equations:

Crossing :  (Via| LD (u) = —<V12|Lé2_)n+1(—U)

Inversion : Ly (—u +i/2)Ly(u+1/2) = —(u® 4+ 1)1
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Crossing relation

With the definition L (u) =u+ iS¥) . & and the property of the vertex

<Vl2‘(S£L St@nﬂ)

(Vio| LV () = (Via|(u + SV - 7)
= (Vio|(u —iSP - &)
~ (VoL (—w) = 2LPT (u)o?

With the crossing relation for the Lax operators, we have

Vol 2V () = (~1) (Vi 0P (—u) = (Vs o207 (u)o?
<_

Q(u) = Le(w) -+~ Li(u) , o*QT (u)o® = ( —DC(’EZ) _ff(fg) )

In particular, one finds (Vi2|BM (u) = — (V1| B® (u).

T. Nishimura (UT,Komaba) monodromy Kyoto 38 /43



Inversion relation

By the explicit calculation, we can show
L(v)L(u) = (vu — 3/4) + i(v+u—i)S - &
Hence,
(Vi2]QW (u —i/2)Q®) (u +i/2)
= (-1 Vil Q@ (—u+1/2)9) (u + i/2)
= (-1 (Via| -+ Li(—u+1/2)Ly(u+1i/2) - -
= (u? + 1)"(Viz|

@ To invert the Lax operator, the shift for the spectral parameter is

necessary.
@ These results are obtained by the reduction from monodormy relation

of p5u(2, 2|4) sector [’14 Jiang,Kostov,Petrovskii,Serban], [’15
Kazama,Komatsu,T.N].

T. Nishimura (UT,Komaba) monodromy Kyoto 39 /43



1/u expansion and Ward identities

If we consider the limit © — oo and expand the monodormy relation in
power of 1/u, we obtain the Ward identities of the form

(5%]01),102)) +(|01), 5%|02)) =0 .

@ The expansion of the monodormy matrix in power of 1/u generates
the Yangian generators.
=-The monodormy relations include a kind of the Ward identities of
them.

@ This in turn suggests the Yangian invariance of the vertex:

(V123219203 o< (Vi3]
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Summary and prospects
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@ We have devolved a new formalism in which the Wick contractions
are expressed as singlet projections.
= The Ward identities automatically follows.

@ For three-point functions in the SU(2) sector, the structure constants
are given in terms of the pDWPFs.

@ The knowledge of the kinematical dependence greatly helps the
analysis.

@ The monodromy relations at weak coupling are derived using the
crossing and inversion relation, both for the fundamental and the
harmonic R-matrix.

@ The 1/u expansion for them generates non-trivial identities for
correlators, including the usual Ward identities.
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@ More on the monodromy relations. How they constrain the
three-point functions?
= Semi-classical three-point functions from Landau-Lifshitz model.
[Kazama,Komatsu,T.N, in progress]

@ 1-loop corrections
= Is it possible to constrain the 1-loop corrections using the
symmetries?

(Vi23(9)|(J1(g) + J2(g9) + J3(g)) = 0

3
Vil +gVigdl + ) > + g1V +--) =0
=1
> 0), (1 1), (0
s Z<V1(2?2|Ji( ) + Z <V1(23)’<]i( =0
i=1 i=1

@ Relation to recent non-perturbative results, SFT vertex (form factor)
[’15 Bajnok,Janik], hexagon form factor [’15 Basso,Komatsu,Vieira] .
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Back up
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D-scheme oscillator represenattion

To construct the representations, It is convenient to introduce the
oscillators satisfying

[:u’a7)‘5] = 5a6 ’ [/ja75\5] = 5a[3 ) {éaagb} = 5ab )

where «a, (3, d,B are the spinor indices of the Lorentz group

SL(2,C) x SL(2,C) and a,b are the SU(4) R-symmetry indices.
A

Ao pe
Jp=Cs, ¢t= ipg® C o= idg :
€ &),

(%, 5] = 6504, — (=1)(AHIBDICIHIDD sA 7O
C:=trJ =J%, B:=strJ=(-1)AJ4
J*5: generators of u(2,2[4), C: central charge, B: hypercharge.
u(2,24) — su(2,2/4) — psu(2,2[4)

remove B remove C'
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Fundamental fields as Fock states

The fundamental fields of N' =4 SYM are represented as follows:

p*|0) = A*|0) = £%0) =0
Fop(0) <> AaAs[0)
Vaa(0) < Xaa|0) |

Pap(0) <> €a§b|0>

P4(0) < adeAa£b£c§d|0>

1 -~
Fi(0) ¢ 76 Aasadpéedal0)

with the vanishing central charge C' = 0. The operator at the general
position x is obtained by

0(0)) — |O(x)) := €"*|O(0)) .

Thus, the derivatives —i—2— are expressed as the action of P_: = Ao\,
OxPe ap B
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Singlet state for psu(2,2|4)

We wish to construct a singlet state under psu(2,2|4). For this purpose, it
is convenient to prepare new vacua

1Z) = |0)p @ &&|0)F , |Z) = [0)p @ E1&|0)F

Aal0)p = Xal0)p =0,

112) = Z f(n,m)n) ®[m)

n,m>0

ny. Ny, tneg ey
fln.m) = dnm(=1) 7 F(©)

where f(C') is an arbitrary function of the central charge. In particular, if
we take f(C) =1,

1112>:exp<>\a®/f“—Z\d®ﬁd+ai®ci—cij®dj> Z) | Z)

WhICh is used in [’14 Jiang,Kostov,Petrovskii,Serba.n].
T. Nishimura (UT,Komaba) monodromy Kyoto 47 / 43



Crossing for individual oscillators and Wick contractions

The Wick contractions for the fundamental fields are simply expressed in
terms of

I(z,y) := (112|(e"*]0) @ e'7|0))

Due to the singlet property (112|(J() + J®)) = 0 for all the (super)
conformal generators, it satisfies, for example,

0= (112|(B{Y + BP)(e710) @ e|0)) = —i(0; + )1 (,y)

Then, I(x,y) = I(x — y). Similarly, the singlet condition of the dilatation
D vyields

0= (20 +y"0 +2)I(x — y)

1
lz—y[? -

Thus, we have I(z,y) =
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Using the exponential form, one can easily find that the crossing for
individual oscillators are given by

(112]Ca®1=—(112]1®Ca ,
1|t ®1=(1plelt.

Then, all the Wick contractions are expressed in terms of I(z — y)

b (@) Dealy) = (Lizl €t 710) @ E,LaePV]0)
<11 |( sz|0> & gagbgcgdezpym» = eabcdl(x - y) s
z/m( Y8 (y) = 6. (Lia|(Aae™*[0) @ ¥ 24]0))
= 5.l I0) & IO = —i0, 5l ).

1 . e~
Fap(2)Fy3(y) = (L1l (€7 AaA5/0) @ € A6 A410))

(00 L0 0 N
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Monodromy relation for fundamental R-matrix

The gl(4]|4) Lax operator is given by
L(u) =u+n(-1)BIE4 o T4

where E4; is the fundamental representation of gl(4|4). The crossing and
inversion are respectively

Crossing : (‘GQ‘LS)( ) = <V12|LZ n+1( u+1n)
Inversion :  Lp(u)Lp(n —u) = u(n —u)l ,
The non-trivial shift for the spectral parameter under the crossing arises
from (112|J5 ® 1 = —(119|(1 ® J4 + (—1)I4ls4,).

The monodromy relation becomes[’14 Jiang,Kostov,Petrovskii,Serban],[’15

Kazama,Komatsu,T.N]

(V2|2 () 2P () = (u(u =) (Viz|
Qu) = La(u) - - Le(u)
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Monodromy relation for harmonic R-matrix

We can also derive the monodromy relation for the R-matrix whose
auxiliary space is the singleton representation [’15 Kazama,Komatsu,T.N].

Rw(u) = (—1)Jm I~ End(VZ X VJ) s CQ = J(J —+ 1)
(V2|2 (@)@ (w) = (Via| , 2O () := R (u) - RD(w) .

It is of particular importance to note the following relation
[’04,Beisert,Staudacher].

d
Hy; = Tu InRi2(u)|u=0

@ The 1-loop dilatation operator, namely, the spin chain Hamiltonian is
easily obtained.

@ The harmonic R-matrix is used to construct building blocks for the
scattering amplitude as Yangian invariant [’13,Ferro
,Lukowski,Meneghelli,Plefka,Staudacher], [’13,Chicherin,Kirschner], [’ 14,Broedel

Leeuw,Rosso].
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