電弱相互作用を行う暗黒物質の 探索可能性について

京都大学セミナー 2017年2月8日

Introduction

Hypercharged dark matter

◎間接探索

●まとめ

Introduction

Dark Matter (DM)

Clowe et. al. (2006)

Weakly-Interacting Massive Particles (WIMPs)

電弱スケール程度の質量を持ち,標準模型粒子と弱く相互 作用をする中性で安定な粒子の総称

熱残存量が暗黒物質量の 観測値と自然に一致 $\Omega_{\rm DM} h^2 \simeq \frac{3 \times 10^{-27} \rm cm^3 s^{-1}}{\langle \sigma_{\rm ann} v_{\rm rel} \rangle}$

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性

● SU(2)_L x U(1)_Y 電荷は??

<u>(n, Y)</u>

(1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), ...

• スピン?

Scalar, fermion, vector, ...

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性

• SU(2)_L x U(1)_Y 電荷は??

<u>(n, Y)</u>

(1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), ...

シングレット・スカラー?

• スピン?

Scalar, fermion, vector, ...

Singlet scalar DM

V. Silveira and A. Zee (1985); J. McDonald (1994); C. P. Burgess, M. Pospelov, and T. ter Veldhuis (2001).

標準模型にシングレット・スカラーを足しただけの超簡単な 模型。

<u>ラグランジアン</u>

$$\mathcal{L}_{\rm int} = -\frac{1}{2}m^2 S^2 - \frac{1}{2}\lambda_{SH}S^2|H|^2 - \frac{1}{4!}\lambda_S S^4$$

- ・暗黒物質の現象論は質量パラメーターと結合定数λ_{SH}のみで決まる。
- ・残存量を合わすように結合定数を選べば,残るパラメー ターは暗黒物質質量のみ。

$$\sigma_{\rm ann} v_{\rm rel} \simeq \frac{\lambda_{sH}^2}{16\pi m_{\rm DM}^2}$$

(m_{DM} > weak scale)

後でみるように、直接探索実験で探れる。

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性

• SU(2)_L x U(1)_Y 電荷は??

<u>(n, Y)</u>

(1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), ...

シングレット・フェルミオン?

• スピン?

Scalar, fermion, vector, ...

Singlet fermion DM

安定なシングレット・フェルミオン暗黒物質は標準模型粒子と くりこみ可能な相互作用を持てない。

熱残存量で暗黒物質観測値を説明するためには,何か粒子を 加えなければならない。

シングレット・スカラーを加える

$$\mathcal{L}_{\text{int}} = -f\psi\psi S + \text{h.c.} + \mathcal{L}(S, H)$$

ダブレット・フェルミオンを加える

$$\mathcal{L}_{\rm int} = -f\psi\psi_D H + \text{h.c.}$$

・ クォーク・フェルミオンのスカラー・パートナーを加える $\mathcal{L}_{int} = -f\psi Q \widetilde{Q} + h.c.$

模型ごとの解析が必要となる。

Quantum numbers of DM

暗黒物質はカラー量子数を持たず電気的に中性

• SU(2)_L x U(1)_Y 電荷は??

<u>(n, Y)</u>

(1, 0), (2, ± 1/2), (3, 0), (3, ± 1), (4, ± 1/2), ...

• スピン? Electroweak-Interacting DM

Scalar, fermion, vector, ...

このような粒子は新物理の模型にもしばしば現れる。

- Higgsino/wino in SUSY models
- Innert Higgs DM

Electroweak-Interacting DM

SU(2)∟ n重項, ハイパーチャージYの中性成分が暗黒物質となっている場合

相互作用

$$\mathcal{L}_{\text{int}} = \frac{g_2}{4} \sqrt{n^2 - (2Y - 1)^2} \,\overline{\chi^+} W^+ \chi^0 + \frac{g_2}{4} \sqrt{n^2 - (2Y + 1)^2} \,\overline{\chi^0} W^+ \chi^- + \text{h.c.} + ig_Z Y \overline{\chi^0} Z \eta^0 \,.$$

例

- ・ n = 2, Y = 1/2 (ヒッグシーノ)
- · n = 3, Y = 0 (ウィーノ)
- \cdot n = 5, Y = 0 (Minimal Dark Matter)

Mass splitting

多重項間の質量差は量子補正の赤外の寄与により生じる。

典型的にO(100) MeV.

Electroweak-Interacting DM

Quant	um num	bers	DM could	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Finite naturalness	$\sigma_{ m SI}$ in
$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	bound in TeV	$10^{-46}{\rm cm}^2$
2	1/2	0	EL	0.54	350	$0.4 imes \sqrt{\Delta}$	$(0.4 \pm 0.6) 10^{-3}$
2	1/2	1/2	EH	1.1	341	$1.9 imes \sqrt{\Delta}$	$(0.25 \pm 056) 10^{-3}$
3	0	0	HH^*	$2.0 \rightarrow 2.5$	166	$0.22 imes \sqrt{\Delta}$	0.12 ± 0.03
3	0	1/2	LH	$2.4 \rightarrow 2.7$	166	$1.0 imes \sqrt{\Delta}$	0.12 ± 0.03
3	1	0	HH, LL	$1.6 \rightarrow ?$	540	$0.22 imes \sqrt{\Delta}$	$(1.3 \pm 1.1) 10^{-2}$
3	1	1/2	LH	$1.9 \rightarrow ?$	526	$1.0 imes \sqrt{\Delta}$	$(1.3 \pm 1.1) 10^{-2}$
4	1/2	0	HHH^*	$2.4 \rightarrow ?$	353	$0.14 \times \sqrt{\Delta}$	0.27 ± 0.08
4	1/2	1/2	(LHH^*)	$2.4 \rightarrow ?$	347	$0.6 imes \sqrt{\Delta}$	0.27 ± 0.08
4	3/2	0	HHH	$2.9 \rightarrow ?$	729	$0.14 \times \sqrt{\Delta}$	0.15 ± 0.07
4	3/2	1/2	(LHH)	$2.6 \rightarrow ?$	712	$0.6 imes \sqrt{\Delta}$	0.15 ± 0.07
5	0	0	(HHH^*H^*)	$5.0 \rightarrow 9.4$	166	$0.10 imes \sqrt{\Delta}$	1.0 ± 0.2
5	0	1/2	stable	$4.4 \rightarrow 10$	166	$0.4 imes \sqrt{\Delta}$	1.0 ± 0.2
7	0	0	stable	$8 \rightarrow 25$	166	$0.06 imes \sqrt{\Delta}$	4 ± 1

(→: ゾンマーフェルト効果)

これらの暗黒物質の物理は、ゲージ相互作用で(ほぼ)決まる。

- 熱残存量
- 多重項間の質量差

スカラーの場合はヒッグスとの 結合を無視した場合。

M. Farina, D. Pappadopulo, A. Strumia, JHEP **1308** (2013) 022.

Electroweak-Interacting DM

Quant	um num	bers	DM could	DM mass	$m_{\rm DM^{\pm}} - m_{\rm DM}$	Finite naturalness	$\sigma_{ m SI}$ in
$\mathrm{SU}(2)_L$	$\mathrm{U}(1)_Y$	Spin	decay into	in TeV	in MeV	bound in TeV	$10^{-46} \mathrm{cm}^2$
2	1/2	0	EL	0.54	350	$0.4 imes \sqrt{\Delta}$	$(0.4 \pm 0.6) 10^{-3}$
2	1/2	1/2	EH	1.1	341	$1.9 imes \sqrt{\Delta}$	$(0.25 \pm 056) 10^{-3}$
3	0	0	HH^*	$2.0 \rightarrow 2.5$	166	$0.22 \times \sqrt{\Delta}$	0.12 ± 0.03
3	0	1/2	LH	$2.4 \rightarrow 2.7$	166	$1.0 imes \sqrt{\Delta}$	0.12 ± 0.03
3	1	0	HH, LL	$1.6 \rightarrow ?$	540	$0.22 imes \sqrt{\Delta}$	$(1.3 \pm 1.1) 10^{-2}$
3	1	1/2	LH	$1.9 \rightarrow ?$	526	$1.0 imes \sqrt{\Delta}$	$(1.3 \pm 1.1) 10^{-2}$
4	1/2	0	HHH^*	$2.4 \rightarrow ?$	353	$0.14 imes \sqrt{\Delta}$	0.27 ± 0.08
4	1/2	1/2	(LHH^*)	$2.4 \rightarrow ?$	347	$0.6 imes \sqrt{\Delta}$	0.27 ± 0.08
4	3/2	0	HHH	$2.9 \rightarrow ?$	720	$0.14 imes \sqrt{\Delta}$	0.15 ± 0.07
4	3/2	1/2	(LHH)	$2.6 \rightarrow ?$	712	$0.6 imes \sqrt{\Delta}$	0.15 ± 0.07
5	0	0	(HHH^*H^*)	5.0 ightarrow 9.4	166	$0.10 imes \sqrt{\Delta}$	1.0 ± 0.2
5	0	1/2	stable	$4.4 \rightarrow 10$	166	$2.4 imes \sqrt{\Delta}$	1.0 ± 0.2
7	0	0	Stable	$8 \rightarrow 25$	166	$0.06 \times \sqrt{\Delta}$	4 ± 1
間違い	\!			(→: ゾン	ンマーフェル	ト効果) 未	完
$rac{1}{\Lambda}$	<i>χχχΕ</i>	$H^{\dagger}H$		ル- 不知	ープ・レベ 安定にする	ベ 市黒物 5。	質を
以下-	では,	Z_2	パリテ	ィで安況	定性が保護	証されてい	るものとする

L. Di Luzio, R. Grober, J. F. Kamenik, M. Nardecchia, JHEP 1507 (2015) 074.

J. Hisano, K. Ishiwata, N. Nagata, JHEP **1506**, 097 (2015).

DM Direct Detection experiments

LUX, arXiv: 1608.07648.

- ・WIMP暗黒物質が検出器内の原子核を散乱する際に原子核 が受け取る反跳エネルギーを検出する。
- ・高感度の将来実験が多数計画されていて、いくつかは既に 動き始めている。

DM-nucleon scattering

理論側では、 各暗黒物質模型で

暗黒物質・核子散乱断面積

を計算することになる。

①非相対論的散乱過程

暗黒物質の局所平均速度 (mean local velocity) : $v \sim (2-3)00 \text{ km/s}$

② クォーク・グルーオンとの散乱

核子との散乱に焼きなおす際に非摂動論的取り扱いが 必要となる。

DM-nucleon scattering

③ スピンに依存する(しない) 散乱 暗黒物質と核子との相互作用は二種類に分けられる:

- ・スピンに依存する (spin-dependent) 相互作用
- スピンに依存しない (spin-independent) 相互作用

スピンに依存しない相互作用は,原子核中の全ての核子について 加算的に干渉する。

質量数の大きな原子核を標的に用いることで、スピンに依存 しない散乱に対して飛躍的に検出感度をあげることができる。

例) Xe (A ~ 130) [XENON, XMASS, LUX など]

Nucleon matrix elements

暗黒物質とパートンとの相互作用から暗黒物質と核子との 散乱断面積を求めるには、各相互作用の<mark>核子行列要素</mark>を 求める必要がある。

スカラー型 暗黒物質と核子質量との結合

クォーク

格子シミュレーションにより計算されている。

・グルーオン

エネルギー・運動量テンソルのトレース・アノマリーを 通じてクォークの行列要素と関係付く

Twist-2型 暗黒物質と核子運動量との結合

パートン分布関数 (PDFs) から計算できる。

Nucleon matrix elements (スカラー型クォーク演算子)

クォークの核子行列要素としては、格子計算の結果を用いる。

$\langle N|m_q\bar{q}q|N\rangle/m_N \equiv f_{T_q}$

<u>ns</u>

Mass fractions of proton

Singlet scalar DM

V. Silveira and A. Zee (1985); J. McDonald (1994); C. P. Burgess, M. Pospelov, and T. ter Veldhuis (2001).

標準模型にシングレット・スカラーを足しただけの超簡単な 模型。

<u>ラグランジアン</u>

$$\mathcal{L}_{\rm int} = -\frac{1}{2}m^2 S^2 - \frac{1}{2}\lambda_{SH}S^2|H|^2 - \frac{1}{4!}\lambda_S S^4$$

- ・暗黒物質の現象論は質量パラメーターと結合定数λ_{SH}のみで決まる。
- ・残存量を合わすように結合定数を選べば,残るパラメー ターは暗黒物質質量のみ。

$$\sigma_{\rm ann} v_{\rm rel} \simeq \frac{\lambda_{sH}^2}{16\pi m_{\rm DM}^2}$$

(m_{DM} > weak scale)

Singlet scalar DM

$$\frac{f_N}{m_N} = \frac{\lambda_{SH}}{m_h^2} \begin{bmatrix} \sum_{q=u,d,s} f_{T_q} + 3 \times \frac{2}{27} f_{TG} \end{bmatrix}$$
軽いクォークの寄与

重いクォークの小一プを介した

グルーオンの寄与

Singlet scalar DM

暗黒物質直接探索が、この模型を検証する上で重要な 役割を果たす。

Electroweak-Interacting DM

SU(2)∟ n重項, ハイパーチャージYの中性成分が暗黒物質となっている場合

相互作用

$$\mathcal{L}_{\text{int}} = \frac{g_2}{4} \sqrt{n^2 - (2Y - 1)^2} \,\overline{\chi^+} W^+ \chi^0 + \frac{g_2}{4} \sqrt{n^2 - (2Y + 1)^2} \,\overline{\chi^0} W^+ \chi^- + \text{h.c.} + ig_Z Y \overline{\chi^0} Z \eta^0 \,.$$

|--|

- ・ n = 2, Y = 1/2 (ヒッグシーノ)
- · n = 3, Y = 0 (ウィーノ)
- \cdot n = 5, Y = 0 (Minimal Dark Matter)

●暗黒物質・核子散乱はツリー・レベルで生じない
 ●断面積は暗黒物質の質量のみの関数としてかける。

LO diagrams

1-loop (quark)

q

J. Hisano, S. Matsumoto, M. Nojiri, O. Saito (2005)

J. Hisano, K. Ishiwata, N. Nagata, Phys. Lett. **B690**, 311 (2010)

LO results (triplet)

各寄与の間に打ち消し合いが生じていた。

その結果、従来の計算結果よりも小さな断面積が得られた。

J. Hisano, K. Ishiwata, N. Nagata, Phys. Lett. B690, 311 (2010)

NLO result (triplet)

- ・打消し合いのせいで不定性が大きかったのでNLOまで計算 した。
- それでもニュートリノBGよりも上なので将来検証可能。

J. Hisano, K. Ishiwata, N. Nagata, JHEP **1506**, 097 (2015).

NLO results

- ・ Minimal DMは検証可能
- 一重項(ヒッグシーノ)を探るのは厳しそう。

J. Hisano, K. Ishiwata, N. Nagata, JHEP **1506**, 097 (2015).

Hypercharged DM

N. Nagata and S. Shirai, Phys. Rev. D **91**, 055035 (2015).

Hypercharged DM

ハイパー・チャージを持つ暗黒物質は直接検出実験にて<u>排除</u> されている。

ベクトル型相互作用の寄与が大きすぎる。 スカラーの場合も同様に死んでいる。

e.g.) Left-handed sneutrino DM in the MSSM.

Hypercharged DM

高エネルギー物理の何らかの効果によって中性成分の間に 質量差が生じる場合

この場合、マヨラナ条件により

$$\overline{\psi^0}\gamma_\mu\psi^0\overline{q}\gamma^\mu q = 0$$

直接検出実験の制限を逃れることができる。

New physics effects

中性成分間に質量差を与える相互作用は, "DM数"を破るような 次の形の相互作用で表される。

 $\frac{1}{\Lambda^{4Y-1}} [HH\dots H]^* \psi \psi \qquad \frac{1}{\Lambda^{4Y-1}} [HH\dots H] \eta \eta$ 4Y
4Y

 ψ : (**n**, Y), η: (**n**, -Y), H: Higgs field, Λ: a cut-off scale

$$\mathcal{L}_{\text{mass}} = -\frac{1}{2} (\psi^0 \ \eta^0) \begin{pmatrix} \delta m & M \\ M & \delta m \end{pmatrix} \begin{pmatrix} \psi^0 \\ \eta^0 \end{pmatrix} \qquad \text{M: Dirac mass}$$

$$\delta m \sim \frac{v^{4T}}{\Delta^{4Y-1}} \qquad \chi^0_{1,2} = \frac{1}{\sqrt{2}} (\psi^0 \pm i\eta^0) \qquad M_{1,2} = M \pm \delta m$$

ディラック・フェルミオンは2つのマヨラナ・フェルミオンとなる。

New physics effects

Ex.) Doublet (2, 1/2) DM

Singlet and/or triplet Majorana fermion with a mass of $\sim \Lambda$.

$$\frac{1}{\Lambda} (H^{\dagger}\psi) (H^{\dagger}\psi)$$

cf.) Higgsino with bino/wino

Inelastic scattering

もしも質量差が小さすぎると,非弾性散乱が生じてしまう。

質量差がおよそ100 KeV以下だと,またもや暗黒物質 直接探索実験にて排除される。
Mass splitting

直接探索実験の制限を逃れるには,

$$\delta m \sim \frac{v^{4Y}}{\Lambda^{4Y-1}} \gtrsim 100 \text{ keV}$$

ハイパー・チャージが大きい場合,カットオフ・スケールが かなり低くなければならない。

$$\Lambda \lesssim \begin{cases} 10^9 & & \\ 3 \times 10^4 & \text{GeV} & Y = \begin{cases} 1/2 \\ 1 \\ 4 \times 10^3 & & \text{for} \end{cases} \quad Y = \begin{cases} 1/2 \\ 1 \\ 3/2 \end{cases}$$

For scalar DM

上限が付く!

 $\Lambda \lesssim (10^5, 4 \times 10^3) \text{ GeV}$ for Y = (1, 3/2)

with $m_{DV} = 1$ TeV.

Dim-5 operators

一般に次のような次元5の演算子も同時に生成される。

$$\frac{1}{\Lambda}|H|^2\overline{\psi}(a_s+ib_s\gamma_5)\psi \qquad \frac{1}{\Lambda}(H^*\tau_aH)\overline{\psi}(a_t+ib_t\gamma_5)T_a\psi$$

<u>弹性散乱</u>

∧に下限が付く!

Constraints and prospects

- •Y=3/2の場合は既にかなりつらい。
- 将来実験にてY=1の場合は探れそう.
- スカラーの場合でもY=3/2は大分厳しい。

N. Nagata and S. Shirai, Phys. Rev. D **91**, 055035 (2015).

H. Fukuda, N. Nagata, H. Otono, and S. Shirai, in preparation.

LHC search

電弱暗黒物質多重項は、カラー粒子と比較して生成断面積が 小さい。

加えて,多重項間の質量差が非常に小さいため,崩壊の際の 生成物のエネルギーが非常に小さい。

例) 三重項では165 MeV

LHCでこれらを探るのはとても難しそう?

Disappearing track search

崩壊生成物のエネルギーが小さすぎることにより,内部飛跡 検出器における<mark>消失トラック事象</mark>という特徴的な信号を与える。

ATLAS 内部飛跡検出器

Semiconductor tracker (SCT) まで飛ぶことを要請。

数十cmの飛跡, すなわち~1ns,程度の寿命の粒子に感度あり。 例)三重項では0.2nsほど。

Disappearing track search

三重項の場合, 8 TeV LHCにて270 GeV程度まで除外された。

ATLAS Collaboration, Phys. Rev. D88, 112006 (2013).

Disappearing track search

LHC Run2 からInsertable B-Layer (IBL) が R = 33 mmに新たに 導入された。

```
ピクセル検出器だけを使用して
消失トラック事象を探せないか?
```

運動量を再構成するためには, 最低2発のヒットが必要。 (もう1点は衝突点)

50.5 mm以上の飛跡に感度あり。

<u>欠点</u>

短い飛跡に着目するため当然運動量分解能が悪くなり, 背景事象を除きにくくなる。

Indirect search

暗黒物質の消滅断面積は比較的大きいので,間接探索実験は 有効な手段となる。特に,γ線を用いるのが有望。

銀河中心

暗黒物質分布の不定性から来る誤差が非常に大きい

矮小楕円体銀河 (dSphs)

暗黒物質分布の不定性から来る誤差が比較的小さく, 信頼性の 高い制限を与える。

Indirect search

現在の制限

三重項の場合、大部分の領域が将来実験にて探索可能。

B. Bhattacherjee, M. Ibe, K. Ichikawa, S. Matsumoto, and K. Nishiyama, JHEP 1407, 080 (2014).

CTA

銀河中心はやはり不定性が大きい。

V. Lefranc, E. Moulin, P. Panci, F. Sala, and J. Silk, JCAP 1609, 043 (2016).

Conclusion

Conclusion

- 電弱相互作用を行う暗黒物質に注目して、将来の探索
 見込みを議論した。
- 現在の実験でいくつかの場合について制限を与えているものの、本格的に探りうるのはまだまだこれから。
- 直接探索実験、LHC実験、間接探索実験をあわせて精査していくことが重要。

Sommerfeld effects

J. Hisano, S. Matsumoto, and M. M. Nojiri, Phys. Rev. Lett. 92, 031303 (2004).

Scalar septet DM is unstable

Dim. 5 operator

$$rac{1}{\Lambda}\chi\chi\chi H^{\dagger}H$$
 ma

akes the DM decay.

$$\Gamma_{\chi_0} = \frac{857C_0^2}{441548\pi^5} \frac{g^4 v^4}{\Lambda_{\text{eff}}^2 m_{\chi}} = 5.9 \times 10^{-8} \text{ s}^{-1} \left(\frac{10^{15} \text{ GeV}}{\Lambda}\right)^2 \left(\frac{1 \text{ TeV}}{m_{\chi}}\right)^{(C_0 \simeq -0.0966)}$$

L. Di Luzio, R. Grober, J. F. Kamenik, M. Nardecchia, JHEP **1507** (2015) 074.

Method of effective theories

この計算を高精度かつ系統的に行うために,

を用いる。

 ・暗黒物質とクォーク・グルーオンとの相互作用は高次元 演算子によって表される。

非相対論的過程で効いてくる相互作用,スピンに依存しない 相互作用といった情報がすぐにわかる。

・
摂動QCDの効果と
非摂動的な
効果とを
系統的に
分離できる。

Method of effective theories

 暗黒物質とクォーク・グルーオンとの相互作用を媒介する 粒子を積分して、有効ラグランジアンを求める。

<u>演算子積展開 (OPE)</u>

$$\mathcal{L}_{\text{eff}} = \sum_{i} C_i(\mu) \mathcal{O}_i(\mu)$$

C_i (µ): Wilson係数

短距離 (short-distance)の情報を含む

O_i (μ): 有効演算子

高次元演算子。その行列要素に長距離 (long-distance)の情報を含む。

μ: factorization scale 高エネルギー理論と有効理論とをマッチさせるスケール。

Method of effective theories

② 有効演算子の核子行列要素を(適当なスケールで)求める。

- ・くりこみ群方程式
- ・重いクォークの積分

③ 上で得られた核子行列要素を用いて散乱断面積を評価。

$$\begin{array}{l} \mathcal{O}_{T_{1}T_{1}}^{q} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi} \partial t \partial t \partial t \chi^{0} \mathcal{O}_{\mu\nu\mu\nu\nu}^{q} , \\ \mathcal{O}_{T_{2}T_{2}}^{q} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi} \partial t \partial t \partial t \chi^{0} \mathcal{O}_{\mu\nu\mu\nu\nu}^{q} , \\ \mathcal{O}_{T_{2}T_{2}}^{q} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi} \partial t \partial t \partial t \chi^{0} \mathcal{O}_{\mu\nu\mu\nu\nu}^{q} , \\ \mathcal{O}_{T_{1}T_{1}}^{g} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi} \partial t \partial t \partial t \chi^{0} \mathcal{O}_{\mu\nu\mu\nu\nu}^{q} , \\ \mathcal{O}_{T_{2}T_{2}}^{g} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi} \partial t \partial t \partial t \chi^{0} \mathcal{O}_{\mu\nu\mu\nu\nu\nu}^{q} , \\ \end{array}$$

$$\frac{\text{Twist-2 operator}}{\mathcal{O}_{\mu\nu}^{q} \equiv \frac{1}{2} \bar{q} i \left(D_{\mu} \gamma_{\nu} + D_{\nu} \gamma_{\mu} - \frac{1}{2} g_{\mu\nu} \not{\!\!\!D} \right) q$$

$$\mathcal{O}_{\mu\nu}^{g} \equiv G_{\mu}^{a\rho} G_{\rho\nu}^{a} + \frac{1}{4} g_{\mu\nu} G_{\alpha\beta}^{a} G^{a\alpha\beta}$$

q

$$\mathcal{O}_{S}^{q} = \frac{1}{2} \frac{1}{$$

$$\mathcal{O}_{T_{1}T_{1}}^{q} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi}^{0} \overline{\chi}^{0} \overline{\mathcal{O}}_{\mu\nu} \mathcal{O}_{\mu\nu}^{q} ,$$

$$\mathcal{O}_{T_{2}T_{2}}^{q} = \frac{1}{2} \frac{1}{\tilde{\chi}} \overline{\chi}^{0} \overline{\chi}^{0} \overline{\mathcal{O}}_{\mu\nu} \mathcal{O}_{\mu\nu}^{q} ,$$

$$\mathcal{O}_{T_{2}T_{2}}^{g} = \frac{1}{2} \frac{1}{\tilde{\chi}}^{0} \overline{\chi}^{0} \overline{\mathcal{O}}_{\mu\nu} \mathcal{O}_{\mu\nu}^{q} ,$$

$$\mathcal{O}_{T_{1}T_{1}}^{g} = \frac{1}{2} \frac{1}{\tilde{\chi}}^{0} \overline{\chi}^{0} \overline{\mathcal{O}}_{\mu\nu} \mathcal{O}_{\mu\nu}^{q} ,$$

$$\mathcal{O}_{T_{2}T_{2}}^{g} = \frac{1}{2} \frac{1}{\tilde{\chi}}^{0} \overline{\chi}^{0} \overline{\mathcal{O}}_{\mu\nu} \mathcal{O}_{\mu\nu}^{q} ,$$

$$\frac{\text{Twist-2 operator}}{\mathcal{O}_{\mu\nu}^{q} \equiv \frac{1}{2} \bar{q} i \left(D_{\mu} \gamma_{\nu} + D_{\nu} \gamma_{\mu} - \frac{1}{2} g_{\mu\nu} \not{\!\!\!D} \right) q$$

$$\mathcal{O}_{\mu\nu}^{g} \equiv G_{\mu}^{a\rho} G_{\rho\nu}^{a} + \frac{1}{4} g_{\mu\nu} G_{\alpha\beta}^{a} G^{a\alpha\beta}$$

q

暗黒物質と核子質量との

結合をもたらす。

Nucleon matrix elements (Twist-2型)

Twist-2型演算子の核子行列要素は,パートン分布関数(PDF) を用いて求める。

$$\langle N(p) | \mathcal{O}_{\mu\nu}^{q} | N(p) \rangle = \frac{1}{m_{N}} \Big(p_{\mu} p_{\nu} - \frac{1}{4} m_{N}^{2} g_{\mu\nu} \Big) (q(2;\mu) + \bar{q}(2;\mu)) ,$$

$$\langle N(p) | \mathcal{O}_{\mu\nu}^{g} | N(p) \rangle = -\frac{1}{m_{N}} \Big(p_{\mu} p_{\nu} - \frac{1}{4} m_{N}^{2} g_{\mu\nu} \Big) g(2;\mu) .$$

ここで, q(2),g(2)は PDFのsecond momentと呼ばれる。

$$q(2;\mu) = \int_0^1 dx \ x \ q(x,\mu) \ ,$$
$$\bar{q}(2;\mu) = \int_0^1 dx \ x \ \bar{q}(x,\mu) \ ,$$
$$g(2;\mu) = \int_0^1 dx \ x \ g(x,\mu) \ .$$

g(2)	0.464(2)		
u(2)	0.223(3)	$\bar{u}(2)$	0.036(2)
d(2)	0.118(3)	$\bar{d}(2)$	0.037(3)
s(2)	0.0258(4)	$\bar{s}(2)$	0.0258(4)
c(2)	0.0187(2)	$\bar{c}(2)$	0.0187(2)
b(2)	0.0117(1)	$\overline{b}(2)$	0.0117(1)

CJ12, CTEQ-Jefferson Lab collaboration.

Effective coupling of Majorana DM with nucleon

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} f_N \overline{\widetilde{\chi}^0} \widetilde{\chi}^0 \overline{N} N$$

with

$$f_N/m_N = \sum_{q=u,d,s} C_S^q(\mu_{\text{had}}) f_{T_q}^{(N)} - \frac{8\pi}{9\alpha_s} C_S^g(\mu_{\text{had}}) f_{TG}^{(N)} + \frac{3}{4} \sum_{q}^{N_f} \sum_{i=1,2} C_{T_i}^q(\mu) [q(2;\mu) + \overline{q}(2;\mu)] + \frac{3}{4} \sum_{i=1,2} C_{T_i}^g(\mu) g(2;\mu)$$

The scalar-type gluon contribution turns out to be comparable to the quark contributions even though it is induced at higher loop-level.

Majorana DM-nucleus scattering cross section

$$\sigma = \frac{1}{\pi} \left(\frac{m_{\rm DM} m_{\rm nucl}}{m_{\rm DM} + m_{\rm nucl}} \right)^2 \left[|n_p f_p + n_n f_n|^2 + 4 \frac{J+1}{J} |a_p \langle s_p \rangle + a_n \langle s_n \rangle|^2 \right]$$

Dark matter direct detection experiments

Snowmass, arXiv: 1310.8327.

NLO calculation

Diagrams

<u># of loops</u>

Operators		Higgs		Box		
Parton	Type	LO	NLO	LO	NLO	
Quark	Scalar $C_{\rm S}^q$	1-loop	2-loop	-	2-loop	
(1st&2nd)	Twist-2 $C_{T_{1,2}}^q$	-	-	1-loop	2-loop	
Quark	Scalar $C_{\rm S}^b$	1-loop	2-loop	1-loop	2-loop (neglected)	
(b-quark)	Twist-2 $C^b_{\mathrm{T}_{1,2}}$	-	-	1-loop	2-loop (neglected)	
Gluon	Scalar $C_{\rm S}^G$	2-loop	3-loop	2-loop	3-loop	
(1st & 2nd)	Twist-2 $C_{T_{1,2}}^G$	-	-	-	2-loop	
Gluon	Scalar $C_{\rm S}^G$	2-loop	3-loop	2-loop	3-loop (3rd gen. neglected)	
(3rd)	Twist-2 $C_{T_{1,2}}^G$	-	-	-	2-loop (3rd gen. neglected)	

3rd gen. contribution

OPEs of current-current correlators

9 June 1994

PHYSICS LETTERS B

Physics Letters B 329 (1994) 103-110

Two-loop gluon-condensate contributions to heavy-quark current correlators: exact results and approximations *

D.J. Broadhurst^{a,1}, P.A. Baikov^{b,2}, V.A. Ilyin^{b,3}, J. Fleischer^{c,4}, O.V. Tarasov^{c,5}, V.A. Smirnov^{d,6}

Loop functions

J. Hisano, K. Ishiwata, N. Nagata, JHEP **1506**, 097 (2015)

OPE

$$-\frac{\alpha_s(m_Q)}{60\pi m_Q^2} (D^{\nu}G^a_{\nu\mu}) (D^{\rho}G^a_{\rho\mu}) \bar{\chi}^0 \chi^0 - \frac{g_s \alpha_s(m_Q)}{720\pi m_Q^2} f_{abc} G^a_{\mu\nu} G^{b\mu\rho} G^c_{\nu\rho} \bar{\chi}^0 \chi^0 ,$$

$$\Lambda^2_{\rm QCD} / m_c^2 = \mathcal{O}(0.1)$$

NLO twist-2

J. Hisano, K. Ishiwata, N. Nagata, JHEP 1506, 097 (2015)

Scale dependence

J. Hisano, K. Ishiwata, N. Nagata, JHEP **1506**, 097 (2015)

J. Hisano, R. Nagai, N. Nagata, JHEP **1505**, 037 (2015)

Higgsino in high-scale SUSY

A wide range of parameter space can be probed in future experiments.

N. Nagata and S. Shirai, JHEP **1501**, 029 (2015).

Background of disappearing track search

- ・ハドロンと検出器の散乱
- ・レプトンの制動放射
- たまたま近くにあった粒子からのヒットを再構成

ATLAS Collaboration, Phys. Rev. D88, 112006 (2013).