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1. Introduction



If the standard model (SM) is valid up to the Planck scale
The electroweak vacuum is (probably) metastable

The Higgs quartic coupling becomes negative at > M eak
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How large is the Decay rate of the EW vacuum?
= Is the decay rate small enough so that t,w >~ 13.6 Gyr?

Stability of the EW vacuum was studied in the past
[Isidori, Ridolfi & Strumia; Degrassi et al.]
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Problems in the previous calculations

e Effects of zero-modes were not properly taken care of

e [ he calculations were not simple
I explain how to calculate the decay rate of the EW vacuum

e A calculation without problems in previous studies
e Gauge-invariant expression of the decay rate

e Our result (with best-fit SM parameters)
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2. Coleman's Method



Calculation of the decay rate using “bounce”

[Coleman; Callan & Coleman]
e [ he decay rate is related to Euclidean partition function

7 = (FV|e "1 |FV) ~ /D\If e %% o exp(iyVT)

e [ he false vacuum decay is dominated by the classical path

Bounce: saddle-point solution of the EoM

one-bounce
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The bounce: O(4) symmetric solution of Euclidean EoM
[Coleman, Glaser & Martin; Blum, Honda, Sato, Takimoto & Tobioka]
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The decay rate per unit volume w.r.t. one-bounce action

v~ ——1Im —Im

1 [ZLbounce] ~ 1 /1—bounce py e_SE
VT VT / DY oSk
L JO-bounce |

ZO-bou nce

We expand the action around the “classical path”
Seld + U] = Se[o / d* U MU + O(T?)

Selv + U] = Sefv] + 5/(14;1;\11/\7\1/ + O(T)

¢:. Classical solution (bounce)
V: Field fluctuations around the classical solution

M and M: so-called “fluctuation operators”



Final expression for v (at the one-loop level)
v = Ae™® with B = Sg[¢] — Sg[v]

Prefactor A (for bosonic contribution)

1 ~1/2

Y '

V'’

Det M
Det M

M fluctuation operator around the bounce

——

M fluctuation operator around the false vacuum
Main subject today:

e Calculation of the prefactor A ~ A" x AlGauge) » ...

e Naive calculation gives A — oo, if M has zero-eigenvalue



3. Bounce in the SM



Higgs potential: V = m?HTH + \(HTH)?
e \We consider very large Higgs amplitude for which A < 0
e It happens when |H| > m, so we neglect m?*-term

We use the following potetial: V = —|\|[(HTH)?

= [ his potential does not have local minimum
= It still has “bounce solution”

1 ape 3 .
Hooooo — Eew 0 (g) with 926 + ~0,6+ 3|\ 2 = 0

= Expliit form of the bounce:

RCESpNTE < ¢ = ¢(r =0): free parameter
T



Bounce action for the SM

B 872

B=_—"_
3|\l
Possible deformation of the bounce

e SU(2) transformation: change of #°
e Scale transformation: change of ¢¢

e Translation (in 4D space)

Expansion around the bounce:

1 age [ ! +ig?
H= =" |- , W = w?
\/§€ (gb+h—w3 ’ p = Y



4. Effects of the Higgs Mode



Fluctuation operator of the Higgs mode
1 _ 1
Lajﬂ%ﬁ—%Wﬂh:§MMW

We need to calculate Det M)

Det M ~ T w, w,. Eigenvalue of MW"

n

We expand h using 4D spherical harmonics YV, .my

h ~
W)= Y Qndmamslo s () s ()

n7J7mA7mB

Qn mame. €XPansion coefficient (integration variable)

4D Laplacian acting on angular-momentum eigenstate

_4J(J+1):a _a L

r2 r2

a?%AJE£+§&



Radial mode function pff}(r):

) (h 3 4J(J + h
o M = -5 =20+ UL gpig) o) < ol

e p,7(0) < oo to make Sg finite
o pff}(oo) = 0, because h(oc) =0

We calculate the functional determinant of /\/lf]h)

(2J—|—1)2 (2J—|—1)2

— DetM® = TJ [DetMS’”] — I [Hwn,J

J=0 J=0 LT

Regularization with angular-momentum cutoff



Quadratic part of the action (to perform Gaussian integral)

1
Se = B+ > O‘%,J,mA,mB /drr3p51]?}MSh)p;?} 4.

2 najamAamB

1
= B+ Z Qan,JOé?z,J,mA,mB T

2 nvjamAamB

Normalization: /drr?’pg’b}pgf’)J, = 270 7.7 Opy

Path integral over h:

/Dhe_SE — / 11 d()én’(],mA’mBe_SE

TL,J,mA I B

L [T

J
— 7B :Det/\/l(h)} 1/

£
®

] —(2J+1)?/2




Functional determinant for operators defined in 0 <r < R
(Mpn, = wppp, With M = —Aj; + W (r)
DetM ~ [[w, with < p,(0) < o

\pn(R) =0

We introduce a function f which obeys: (M —w) f(r;w) =0

‘f(r:RECU)‘w:wn:O A1 o)
e Det(M — w)|uy, =0




We can use “Gelfand-Yaglom theorem”

[Coleman; Dashen, Hasslacher & Neveu; Kirsten & McKane; - -]

(Mf(r;w) = wf(r;w)
with {MF(riw) = wf(rw)
f(r=0)

f(r=0) <

\

= Notice: LHS and RHS have the same analytic behavior

e LHS and RHS have same zeros and infinities
e LHS and RHS becomes equal to 1 when w — o

We need f(r;w =0) and f(r;w = 0), which obey
o Mf=20
e Mf=0



Higgs-mode contribution to the prefactor A

B (h) . —(2J+1)/2
DIPUERE [ (reo)
A( ) o rololglooH 7a2J
3 4J(J + 1 -
MW ) — g2 ~0: + <T2 ) — 32| M =0

However, féh) (r — 00) = fl(%(r —00) =0

.
e Conformal zero-mode in J = 0: féh) = (‘95
C

.
e Translation zero-mode in J =1/2: fl(% =

e



Conformal zero-mode: /\/l(gmpconf(fr) = ()

0 Al - Aoy S\
pconf(r)y0,0,0 — -/\/;:onf&;#ij — Monf (1 — !¢%}T2> (1 + |8’¢2C’742)

Normalization factor

—9 1 d4 (8gb> 6471' lnfroo

conf — 27T a¢c |)\‘2¢é
Path integral over conformal zero-mode = integral over ¢¢
1 - 1 O¢
H> — h n N n
\/§(¢—|— ) \/— ¢_|_Ofcof cofa¢0

— /Dh(conf) — /daconf N /./il/?()f




Functional determinant

~1/2

/ gd%,J:o e o [Det/\/l(()h)]_l/2 — / Jffibjf

“Prime” : zero-eigenvalue is omitted from the Det

Det' My

Functional determinant with zero-eigenvalue omitted

h h h F(h
Det’/\/l(() ) TR Det(/\/lé gt V) — fé )(froo) + Vfo( )(Too)
Det M) v=0 DetMy” v v

3 < ~1
M+ o)1 + v ) = 06 = A= - M) P
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4 \>\|¢30

T'oo) / driry / dr27“2a¢c ‘)\’qg%lnroo_ 6

conf



J = 0 contribution: Inr,, disappears

1/2 doc (167
)| :/¢f(w

Detﬂg

We can also take care of the translation zero-mode:

[Callan & Coleman]
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We are calculating one-loop effective action

= Renormalization is necessary

1 |Det (=02 +6W)| "/ | :
A = ( ) e™oCT  with 6W = —3|\|¢?
VT Det (—0?)
1 oW (r)
= InA~ —Trin |1 — + .-
- T
SW SW SW
/’,"”"~~~\\ /’,"”"~~~\\ /',"”"~~~\\ ',"‘—.‘---‘\
:\ ) :\ W ) :\ \gw 6V£/‘ Teee u‘*“:: ,’
D S Pig ‘s~.--’-‘"o' Seeem e o .~~-..-",.
(1) @ @ s

= We calculate the divergent part (i.e., sV +35?) in two ways



1. Gelfand-Yaglom theorem

s 4 @ 4 ®

—Z

(2J+ 1)?

fJ(oo)

In

2J
TS

e \We expand f}h) w.r.t. oW: (—AJ+5W)f§h>

Yy =r¥ £ 3 F)(r) with AE, = 6W(r)F,
p=1

e \We calculate f}h)

JNCORING)

up to O(6W?)

5 (2J + 1)* _Fl(froo)
J 2 TCZX{

ZSJ
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2. Dimensional regularization (with MS subtraction)

J1)

Syie = 0
s& = /dkkgéW(k)(SW( k) 1 —|— lnk—2 — (C.T.)
MS 12874 12

W (k) = F.T.[6W ()]

—1

e In MS scheme, € ! is subtracted by counter terms

e The u- dependent part

3—553 /d4

Ywf : Wave-function correction

7W ¢82¢+ 5vtx§b ln:u_i_

Ovtx . Vertex correction



Counter term (for the Higgs mode)

ScT. = SMS — Z SJ
J

Prefactor AM:

&G_SC.T. — /d?c — St 80—|—81/2 BQ (1671-)1/2 _f:1<7%(,roo)_

Vi ate 4m2 \ |\ Foo
© () —(2J+1)%/2
Sy J (TOO)
Jl;lle 7“30‘]

e’/ subtracts the divertent part from DetMSh)

h —(2J+1)%/2
{f§ ><rm>}

2J
r'so

—1 as J — o




p-dependence of v = Ae 5 ~ exp [~ (B + spc + - - -)]

1 _

B(w) = [ d'e [~500% + M)

Running of the quartic coupling

A() = Apo) + (29w A + Oux) In(pe/ o) + -+

p-dependence of the decay rate

B+5M—S:..._|_%/d4$ %vfk(fg‘;_ygb)

At the leading order, u-dependence vanishes due to EoM
[Endo, TM, Nojiri, Shoji]



5. Gauge and NG Contributions



Next subject: effects of gauge and NG fields

= For simplicity, let us consider U(1) gauge symmetry

H: scalar field with charge +1

Our choice of gauge-fixing function: F = 9,4,

[Such a choice was also suggested by Kusenko, Lee & Weinberg]

1 _
L=+ E(QLAM)Z + cd’c

With this choice of gauge-fixing function:

e Ghosts do not couple to the bounce

e Gauge-fixing terms do not affect the EoM of the bounce

1 ., -
— Hbounce — ﬁewgb



Comment: People used to adopt R¢ gauge
Fe) =9, A, —26g(ReH)(ImH)

EoM of the bounce is affected by the gauge-fixing terms

| N |
= (H7 Au)bounce — (\/§€Z@(T)gb7 galu@(r)>

3 I, -
0?0 + ~0,0 — 5592gb2 sin 20 = 0.
(A
O(r) is determined by ©(0), because ©'(0) =0

Fluctuation operator depends on the choice of ©

= I could not understand how we take into account the
effects of all the possible bounce configuration



Fluctuation operator for A, and ¢

1 _ _ _
M(Au,gp) — (_825,&1/ + <1 — €> a,uav + 92¢2 g(au¢) T ggbay
29(0,9) + 990, —0° — |A|¢’

We expand fluctuations using Yy, ms

S L L r
Au@) 2 D ()Y simas + Pimans ()7 0V amaims

Ta ’ a
+ _Zl2pg,n3A,mB(T)ZEMVPUVV( )(37/)5)0 — T50p) YV 1msms

o) 3 P¥) o (M) smams

V(@) arbitrary constant 4D vector

1%



Fluctuation operator after angular-momentum decomposition

— 1
Se = Seld] + ; [ d'o (u,0) MU (0,

~ Sg[o)

Loy [ drr® (o), B, ) ML) (o), o0) (o)

2 JamAamB

1
S Z Z /dTTSP(Ta)MST)p(Ta)

2 Jmamp a=1.2

pX) have indices J, my4, and mp

We calculate the contribution of each J
(2J+1)?

2
det M) ~ ] [deth,S’L’“D) (detmy)
J



Fluctuation operators around the bounce

3 - 2L L
[ A+ 2 4 2 = 98 — g0,
2L ] ]
MSS,L ©) — -— —AJ - i g2¢2 __g¢
r T r
I )
\290' + 900, + —gb  ——gb  —A;—|\¢’)
r T
(2420, -5 ~1( 0. 5) 0
1 r r , T
| P S s
¢) | L Tar - - 0
.0 0 0)
MP) = — A+ ¢%¢* < ¢-independent

AJE(()?,

L
_a__

2

with L?=4J(J +1)

/]02



S- L-, and NG-mode contributions to the prefactor A

AL — I

J

= 1l

J

_ Deth]S’L’“O)

_ DetﬂSS’L’*p)

(DFJS’L"P) (r — 0)

D(SL“’)( —0)

—(2J+1)%/2

D

(S,L,p

J

)(r%oo)

;

D

DWELY)(r) = det(Wy(r) Uy(r) Us(r))
DL (1) = det(Ty (1) Wo(r) Us(r))

~(S,L,p

J

\(r — o0)

—(2J+1)%/2

We need solutions of 2nd order differential equation

MPEG ()

= We need three independent solutions:

=0

Uy, Uy, Us



Let us consider 3 x 3 functions G;(r) and G;(r), obeying

o MP*9G;(r) =0
MPEAG(r) =0
We may choose:
20070 LT+ DE= T 0
e Gi(r)=| Lr*"1 2J[(J+1E—(J+2)]r¥T 0
\ 0 0 T2J)



Asymptotic behavior at »r — o0

e G; and G, obey (almost) the same equation at r — oo

e Columns of G, are linear combinations of those of G;

= G(r — 00) ~ Gs(r — 00) Tzx3(€)

Tsvs3: 3 x 3 “transfer matrix”

Is det/543 £&-independent?

Det/\/l (5L.o) | {detgj(r — 00)
Det M| detG;(r — o)

Comment:

Calculation of 7543 is numerically challenging



We found that ME(]S’L’QO)\IJ(’I“) = 0 holds for ¥, where:
L ()
o\ [ i 9@

L 1
—X + _ D, 2 + O
r Lr2g2g? (r°n)

b |0 ) e

S
]

Requirements on the three functions: x(r), n(r), {(r)

i 3/
A= =2 2 a( ¢<)—fc

2¢3
2[/2&/




We can find three independent solutions:

= x =%’
2.¢(=0

= o= £ with (A — 262 f17 — 2¢q; () = 0

= X = a2T2J + 5)(2
dx2. hon-homogeneous terms generated by f}")
3. (=r?

= 113 = by [} + s
= x = asr*’ + b3dxa + 0x3



Around the bounce

(2JT2J—1 1 2741 _1§T2J+1 \

8(J +1) 4
D(r — 0) ~det | Lr*/~! J(JL;I_ 2)7"2‘]“ _%grlﬁl—l ~ O(r%)
\90er _2J;GBCT2J gcb%rw )
(2Jfr2*]—1 —éfﬁm _ (J4J(rjlzf1_) JT2J+1 \
D(r — o) ~det | Lr*/~! _%fﬁn) _2J[(J ILl()Jf;l()J + 2>]r2']+1
| 9o’ _2mig - 15 O(pr>7+2) /

D(r — 0) and D(r — oo) are both proportional to (J +1)é+ J

= The £-dependence cancels out



Functional determinant of the fluctuation operator

DetM;™" ) NJG2fT (re)
DetM"H?) (T + 1)r3/

) 24/
(8 - B - 20, (1) =0

A special care is needed for J =0

e T hereis no L nor T" mode

o Zero-mode exists in association with gauge symmetry

_ 1 _
Sp(gauge) :Ngaugegb with N 5. = —/d4£lfgb2

gauge

_ L gauge) Yo
Hbounce T \/§ ¢ = /Dgp - /Ngauge Ngauge




Fluctuation operator for J =0 (only S- and NG modes)

3 B - B

Do+ 5 + 620" g9 — g¢0, Ao S

MS;“S) - _ 7:2 3 - 72 ’ (1 - 1> L O
29¢' + 900, + —g¢ Do —[A|¢

Two independent solutions of Mﬁ’?\lf =0

o Uy (r) = ( gOgB ) < Zero-mode
( —lfr \

o \112(7”) — 1 4 B
\—é§7“29¢}




Functional determinant for J =0

_ Det/\/lés’gp)

Det M

1-1/2

X VU(l) _ Det/./\/l(()s’gp)
Ngauge ] DetM\(()Sjsp) ]

1-1/2

Calculation of Det’/\/lés’*”) (rough sketch)

1. Find a solution of [Dewg&@ + diag(v, y)] v =

g W) (T's0)

Ui(re) +v |cVs +

0
1

U1 (1) + O(V%)

2. Use the Gelfand-Yaglom theorem

Det’ M{*? ~ lim

v—0

det(TW) 0,)

vV

2N 2

gauge

or?)

T'oo

foo — det(\ifl \112)7«00

+ O(v?)



Functional determinant for J =0

DetM|¥)

_ Det/ﬂé‘g’@) _

A(Gauge,NG) _ VU (

- _1/9 - 1—1/2
/ Vo [Det' My / =
Nagavge | Det M) o
Gauge and NG contribution to the Prefactor
167\ /2
\ 11
AL ) s
_ 1—(2J+1)%/2 1
A2 (roc) 157 (rac)
8(J + 1)r2/—2 r2/

(A= &) f7" -

(A; — g2H) fi7

29/

g

()~

(16W
Al

)1/2

—(2J+1)2



6. Total Decay Rate



Decay rate:
Y= /dln o [TW [WENG) [(B) o=Ser. =B

Contributions of various fields

- (] 5 =2 - 1—(2J+1)%/2
7(h) _ B2 (167\"? ff/%(roo) 1 £ (rae)
472 \ || ro | 21| r2/
3/2
167
IS = Vap (A) S
A V=W.Z J>1/2
- - v 1 —QJ+1)?/2 ¢ v - —(2J+1)3
NGRS (1) 7 ()
8(J + 1)r2/—2 r2/

I®: top quark contribution



So far, we have calculated v at one-loop level
= Leading Inu depencence cancels out
Scales in the calculation: p and ¢¢

= Higher-loop effects should introduce terms proportional
to In”(¢c/p), which are not included in our result

= We choose i ~ ¢o to minimize such contributions

Decay rate:

. 1 h) t(W,Z,NG) r(t) ,—ScT. ,—DB
7= [dlnge [IW[WANO[DeSer 78]



Proper choice of u is important

o If we use a fixed u, I" is approximately proportional to
¢‘({~ and ¢c integration does not converge

Due to the RG effect, \ is minimized for u ~ O(10'7) GeV

e B becomes enhanced for ;> O(10'7) GeV

e [ he integrand is significantly suppressed
We use 3-loop RGE for A to calculate the RG running

e \We checked that ~ is insensitive to the upper bound of
the integration, if ¢&™ > O(10'8) GeV



7. Numerical Results



Inputs (from PDG):

o my, = 125.09 4+ 0.24 GeV
o m\P® = 1735+ 1.1 GeV

e o (my) =0.1181 £ 0.0011
Decay rate of the EW vacuum (taking u = ¢¢)
e log;| v (Gyr‘lec_3)] = —5543?3{9581

For the present universe:

e Cosmic age: ty ~ 13.6 Gyr

e Horizon scale: Hy' ~ 4.5 Gpc



Decay rate per unit volume as a function of my; and my
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8. Summary



I have discussed the decay rate of the EW vacuum

e Effects of gauge, Higgs (including NG), and top quark are
taken into account

e Path integrals over the conformal and gague zero-modes
are properly performed

Numerical result

logyo[ v (Gyr *Gpe )] =~ =554 11 517 T

= Uncertainty due to m; (and ay) is quite large
The decay rate is extremely small: v < Hj

= We can safely live in the EW vacuum



Back Ups



4D spherical harmonics

L,.L, . —1
e with L/W — —Z(QEuﬁy — ija/)

V2

Rotation group of 4D Euclidean space: SU(2)4 x SU(2)p

0,0, = 02 + ;ar =

r2

— States are labeled by the eigenvalues of A%, B?, As;, B;

1 /1 1 /1
A = NG (§€ijkl/z’j - LO@‘) b; = /2 (56@7'1@[/@';' + Lm)

= A? = B? for the 4D spherical harmonics
4D spherical harmonics: eigenstate of A? = B?, A;, Bs

Vimamg(T) = (T|(J,ma,mp)), with J =0, %, 1, ---

— L,LWL,LWyJ,mA,mB — 4J(<] + 1)yJ,mA,mB — LQyJ,mA,mB



