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First, let us see the case of electron mass.

2

me = 5.485 799 0932 (29)⇥ 10�4 mu

= 0.510 998 928 (11) MeV
[CODATA2010 (latest version)]

This value is obtained by spectroscopy of hydrogen-like atoms.

12C5+
[Beier et. al. PRL 88 011603]

by far the best precision
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FIG. 1. Sketch of the double Penning trap.

charged ions have been stored for months, and neither
vacuum !p , 10216 mbar" nor transport between the two
traps restrict the storage time of an ion. To determine
the Larmor frequency, the spin-flip rate is recorded as a
function of the frequency vmw of an applied microwave
field and of the cyclotron frequency vc of the ion [15,25].

To investigate spin flips, we first analyze the direction
of the spin in the so-called analysis trap, where the mag-
netic field has a considerable quadratic component, B !
B0 1 B2z2 1 . . . , B2 ! 10 mT#mm2 [16]. Because of
this inhomogeneity, the axial frequency of the ion slightly
differs for both spin orientations. The ion is transferred to
the precision trap, where the magnetic field is much more
homogeneous !B2 ! 8 mT#mm2". Microwave irradiation
takes place, and simultaneously the cyclotron frequency is
measured by an image-current technique. To determine the
final spin state, the ion is moved back to the analysis trap.
This double-trap technique circumvents the limitations im-
posed by the magnetic inhomogeneity which is required for
the detection of the spin direction [26] and which limited
us to a precision of 1026 in an earlier experiment [16].

Employing a Gaussian least-squares fit to the spin-flip
resonance in Fig. 2, the center of the curve can be deter-
mined within 5% of the relative line width of 7 3 1029.
We modeled the small asymmetry of the resonance ac-
cording to Brown [27] and investigated it experimentally
by increasing the axial energy. Its influence on the ratio
vL#vc was found to be less than 2 3 10210. Corrections
are performed for finite ion-oscillation amplitudes by ex-
trapolating to vanishing energies. Finally, the frequency
ratio vL#vc can be extracted to a relative precision of
5 3 10210:

vL

vc!12C51"
! 4 376.210 498 9!19" !13" . (6)

FIG. 2. Normalized Larmor resonance for 12C51 measured in
the precision trap. We plot the spin-flip probability versus the
frequency ratio vmw#vc , corrected for finite cyclotron energy.
The solid line is a fit of a Gaussian. The error margins are
calculated by assuming a binomial distribution of the spin-flip
probability.

Here, the first uncertainty is statistical [15], whereas
the second one is obtained from the estimation of
possible systematical shifts [15,25]. Employing the
published value for the electron’s mass [1], we obtain
g!12C51" ! 2.001 041 596 3!10" !44", where the first error
results from quadratically combining the uncertainties
of (6) and the second error is due to the uncertainty in
the known value of the electron’s mass. We report all
our uncertainties as one-sigma margins, i.e., standard
deviations.

The theoretical value of g!12C51" is given by the
Dirac value for the g factor in the ground state of
a hydrogenlike ion with nuclear charge Z, g1s !
!2#3" $1 1 2

p

1 2 !Za"2 %, plus additional corrections for
finite nuclear size and mass, and for QED effects. The
QED effects are calculated up to order !a#p"4 for the
free electron (cf. [28], and references therein). Additional
bound-state QED corrections are known nonperturba-
tively in Za up to order !a#p" [19,20]. For the current
theoretical value we adopt

g!12C51" ! 2.001 041 589 9!10" . (7)

The individual contributions to the theoretical value are
presented in Table I. The value in (7) and also Table I
deviate from that quoted in [15] in several respects. First,
the updated value [1] for the fine-structure constant a was
employed, a ! 1#137.035 999 76!50". All calculations
presented in [19] and cited in [15] are based on the value
a ! 1#137.035 989 6. This change does not affect any of
the bound-state QED calculations at the precision given
here. However, the leading Dirac-theory term and the
order-!a#p" term for the free-QED contributions are
sensitive to it on the 10210 level. Employing the old value
increases the total theoretical number by 1 3 10210.
The recent uncertainty of a causes an uncertainty of
2 3 10211 in the prediction for g. Since the value for a
from [1] is mainly based on the g 2 2 measurement for

011603-2 011603-2

All calculation is based on pole-mass scheme.

m12C5+ = m12C6+ +me + Ebin

Mass of bound state is sum of masses of elements and binding energy.

Let us try similar procedure with top quark.

mu ⌘ m12C

12
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Top quarks does not form stable bound state, 
but its signal can be visible at future linear collider.

3

3

FIG. 1. Scale dependence of the cross section near thresh-
old. The NLO, NNLO and N3LO result is shown in blue, red
and black, respectively. The renormalization scale is varied
between 50 and 350 GeV.

the total cross section is shown as a function of the center-
of-mass energy

√
s. The previous NLO and NNLO pre-

dictions are also shown for comparison to the new N3LO
result (black, solid). The bands are obtained by varia-
tion of the renormalization scale in the specified range.
After the inclusion of the third-order corrections one ob-
serves a dramatic stabilization of the perturbative predic-
tion, in particular in and below the peak region. In fact,
the N3LO curve is entirely contained within the NNLO
one. This is different above the peak position where a
clear negative correction is observed when going from
NNLO to N3LO. For example, 3 GeV above the peak
this amounts to −8%. This arises from the large negative
three-loop correction to the matching coefficient cv [22].
The theoretical precision of the third-order QCD result

FIG. 2. Scale dependence (hatched area) of the N3LO cross
section relative to the reference prediction. Overlaid are pre-
dictions for two different values of Γt, again normalized to the
reference prediction. See text for details.

as measured by the residual scale dependence is high-
lighted in Fig. 2, which shows R(µ) normalized to a ref-
erence prediction defined at µ = 80GeV. The width of
the shaded band corresponds to an uncertainty of about
±3% with some dependence on the center-of-mass energy√
s. The figure also shows the sensitivity to the top-quark

width. The two solid lines refer to the cross section with
Γt changed by ±100MeV to 1.43 and 1.23GeV, respec-
tively, computed with µ = 80GeV and normalized to
the reference prediction. Decreasing the width implies
a sharper peak, i.e. an enhancement in the peak region,
and a suppression towards the non-resonant region below
the peak. A few GeV above the peak the cross section
is largely insensitive to the width. Increasing the width
leads to the opposite effects. This pattern is clearly seen
in Fig. 2, which also demonstrates that a ±100MeV de-
viation from the width predicted in the Standard Model
leads to a cross section change near and below the peak
far larger than the uncertainty from scale variation.

We now turn to the question to what accuracy the
top quark mass can be determined. Even if we focus
only on the theoretical accuracy, a rigorous analysis re-
quires accounting for the specifics of the energy points
of the threshold scan and the correlations. However, a
good indication is already provided by looking at the po-
sition and height of the resonance peak. Fig. 3 shows this
information at LO, NLO, NNLO and N3LO, where the
outer error bar reflects the uncertainty due to the renor-
malization scale and αs variation, added in quadrature,
and the inner error bar only takes the αs uncertainty
into account. The central point refers to the value at
the reference scale µ = 80GeV. There is a relatively big
jump from LO to NLO of about 310 MeV, approximately
150 MeV from NLO to NNLO, which reduces to only
64 MeV from NNLO to N3LO. Furthermore, the NNLO
and N3LO uncertainty bars show a significant overlap.

FIG. 3. Position and height of the cross section peak at LO,
NLO, NNLO and N3LO. The unbounded range of the LO
error bars to the right and up are due to the fact that the
peak disappears for large values of the renormalization scale.

theoretical  
prediction

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser, 2015]

This peak position is not  
exactly the toponium mass 
because it consists of 
bound state + continuum.
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highlight of this talk
• We analyze toponium bound state mass at NNNLO. 

• Cancelation of u=1/2 renormalon contribution is crucial.

4

before cancelation after cancelation
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highlight of this talk
• By using proper mass definition, we find that the precision 

of 30 MeV in the top quark mass is possible in principle.

5

Theoretical uncertainty is estimated  
by the scale dependence of prediction.
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highlight of this talk
• We suggest that the cancelation happens not only in u=1/2 

renormalon but also in more general IR contributions.

6

before cancelation after cancelation
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highlight of this talk
• Improvement of perturbative convergence is more drastic 

in the case of bottomonium, due to rather low energy scale.

7

before cancelation after cancelation
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Plan of my talk

• Current status of perturbative QCD 

• Cancelation of u=1/2 renormalon in  
binding energy and quark self energy. 

• Strong IR cancelation in heavy quarkonium 

• Summary

8
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Current status of perturbative QCD

9



/28

“integrating out hard momentum mode”

calculation of the toponium mass

10

Mt¯t(1S) = 2mpole

t + E
bin

The binding energy can be calculated systematically 
with the use of “potential non-relativistic QCD”.

QCD     non-relativistic QCD

non-relativistic QCD     potential non-relativistic QCD
“integrating out soft momentum mode”
Dynamical fields are mesonic composite and ultra-soft gluon. 
Equation of motion of meson becomes usual Schrodinger equation. 
(correction to potential is determined by matching with NRQCD)

Higher dimensional terms are determined by matching with QCD.

All calculation is based on pole-mass scheme.

[Pineda, Soto, 1998, Brambilla, Pineda, Soto, Vairo, 2000]
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calculation of the toponium mass

11

Mt¯t(1S) = 2mpole

t + E
bin

P0(Lµ) = 1, P1(Lµ) = β0 Lµ + c1, (19) p1

P2(Lµ) =
3

4
β2
0 Lµ

2 +

(
−1

2
β2
0 +

1

4
β1 +

3

2
β0c1

)
Lµ + c2, (20) p2

P3(Lµ) =
1

2
β3
0L

3
µ +

(
−7

8
β3
0 +

7

16
β0β1 +

3

2
β2
0c1

)
L2
µ

+

(
1

4
β3
0 − 1

4
β0β1 +

1

16
β2 −

3

4
β2
0c1 +

3

8
β1c1 + 2β0c2

)
Lµ + c3 (21) p3

と書ける。c1, c2, c3 は J/ψ[n = 1, l = 0, s = 1, j = 1]のとき

c1 =
31

6
− 5

9
nt (22) c1jp

c2 =
101

12
+

2917π2

216
− 9π4

32
+

275ζ3
4

+

(
−169

72
− 11π2

18
− 19ζ3

2

)
nt +

(
5

108
+
π2

54
+

2ζ3
9

)
nt

2 (23) c2jp

c3 =2365.93(1) + 474.2892 logαS − 441.0586nt + 27.3508n2
t − 0.447879n3

t (24) c3jp

ηc(1S)[n = 1, l = 0, s = 0, j = 0]のとき

c1 =
31

6
− 5

9
nt (25) c1eta

c2 =
101

12
+

127π2

8
− 9π4

32
+

275ζ3
4

+

(
−169

72
− 11π2

18
− 19ζ3

2

)
nt +

(
5

108
+
π2

54
+

2ζ3
9

)
nt

2 (26) c2eta

c3 =1928.76(1) + 597.111 logαS − 418.003nt + 27.3508n2
t − 0.447879n3

t (27) c3eta

と書ける。それぞれに nt = 3を代入すると J/ψ[n = 1, l = 0, s = 1, j = 1]のとき

c1 =7/2 (28) cc1jp

c2 =142.0182753310384... (29) cc2jp

c3 =1276.83(1) + 474.2892 logαS (30) cc3jp

ηc(1S)[n = 1, l = 0, s = 0, j = 0]のとき

c1 =7/2 (31) cc1e

c2 =165.41289317065764... (32) cc2e

c3 =908.82(1) + 597.111 logαS (33) cc3e

となる。
ここで式 (15),(16),(29),(32)に必要な桁数を議論しておく。

3

E
bin

= �4

9
mpole

t ↵2

S

✓
P
0

+ P
1

↵S

⇡
+ P

2

↵2

S

⇡2

+ P
3

↵3

S

⇡3

◆
+O(↵6

S)

Lµ = log

⇣
µ/CF↵Sm

pole

t

⌘

All calculation is based on pole-mass scheme.
[Kiyo, Sumino, 2014]
[Anzai, Kiyo, Sumino, 2009, Smirnov, Smirnov, Steinhauser, 2009]

+1
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relation between pole mass and MS mass

mpole = m̄

✓
d
0

+ d
1

↵S

⇡
+ d

2

↵2

S

⇡2

+ d
3

↵3

S

⇡3

◆
+O(↵4

S)

• defined perturbatively by subtracting UV-divergence 

• Convenient and widely used choice of the 
renormalization scale is the mass of quark itself.

12

MS mass mMS(µ) m̄ = mMS(mMS)

[Marquard, Smirnov, Smirnov, Steinhauser, 2015]
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Mt¯t(1S) = 2mpole

t + E
bin

E
bin

= �4

9
mpole

t ↵2

S

✓
P
0
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⇡
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S
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+ P
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↵3

S

⇡3

◆

mpole

t = m̄t

✓
d
0

+ d
1

↵S

⇡
+ d

2

↵2

S

⇡2

+ d
3

↵3

S

⇡3

◆
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Cancelation of u=1/2 renormalon in  
binding energy and quark self energy

14
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Bad convergence behavior is reproduced  
by the leading log resummation.

15

}
↵S

µ

CF = 4/3

: strong coupling constant

: renormalization scale

V LL
(q2

) = �4⇡CF↵S

q2

1

1 +

↵S�0

4⇡ log

q2

µ2

= �4⇡CF↵S

q2

1X

n=0

✓
↵S�0

4⇡
log

µ2

q2

◆n

�ELL

bin

��u=1/2

renormalon

= � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆ 1X

n=0

2n+1

✓
↵S�0

4⇡

◆n

n!

There are factorially growing contributions.

Renormalon

just a constant 
(r-independent)

V LL

��u=1/2

renormalon

= �2CF↵Sµ

⇡

NX

n=0

✓
↵S�0

2⇡

◆n

n!

V LL(r) =

Z

q
V LL(q2)eiqr
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V LL(r) [GeV] V LL(r)� V LL

��u=1/2

renormalon

[GeV]

Source of the bad convergence is u=1/2 renormalon.

2mpole

t + ELL

bin

[GeV] 2mpole

t + ELL

bin

� ELL

bin

��u=1/2

renormalon

[GeV]



/28

“renormalization” of renormalon

17

mt¯t(1S) = 2mpole

t + E
bin

= 2(mpole

t � �rmt) +
h
E

bin

� E
bin

|u=1/2
renormalon

i

= 2mr
t +

h
E

bin

� E
bin

|u=1/2
renormalon

i

E
tot

(r) = 2mpole

t + V (r)

= 2(mpole

t � �rmt) +
h
V (r)� V |u=1/2

renormalon

i

= 2mr
t +

h
V (r)� V |u=1/2

renormalon

i

2�rmt + V |u=1/2
renormalon

= 0

V |u=1/2
renormalon

= E
bin

|u=1/2
renormalon

We define         so that�rmt

Note that                 is a constant and thusV |u=1/2
renormalon
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Actually          has u=1/2 renormalon.

18

m
pole

= m
MS

(µ)(1 +�m)

B[�LL
m ] =

CF↵S

2⇡

✓
µ

mMS

◆2u

3(1� u)
�(u)�(1� 2u)

�(3� u)

m
MS

�LL

m

��u=1/2

renormalon

=
CF↵Sµ

⇡

NX

n=0

✓
↵S�0

2⇡

◆n

n!

= �
V LL

��u=1/2

renormalon

2

m
pole

The pole mass is IR sensitive quantity.

If we express the pole mass in IR insensitive mass, 
we can extract u=1/2 renormalon.
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V LL(r) [GeV] V LL(r)� V LL

��u=1/2

renormalon

[GeV]

Source of the bad convergence is u=1/2 renormalon.

2mpole

t + ELL

bin

[GeV] 2mpole

t + ELL

bin

� ELL

bin

��u=1/2

renormalon

[GeV]
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realistic case

20

E
tot

(r) = 2mpole

t + V (r) [GeV] of r [GeV

�1

]All plots are
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realistic case

21

E
tot

(r) = 2mpole

b + V (r) [GeV] of r [GeV

�1

]All plots are

As mentioned before, the improvement of convergence 
 is more visible in the case of bottomonium.
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Strong IR cancelation in heavy quarkonium

22
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What can we learn from the value of d3?

23

mpole = m̄

✓
d
0

+ d
1

↵S

⇡
+ d

2

↵2

S

⇡2

+ d
3

↵3

S

⇡3

◆
+O(↵4

S)

−0.1

0

0.1

d3 − ⟨dexact3 ⟩
⟨dexact3 ⟩ [Marquard, Smirnov, Smirnov, Steinhauser, 2015]

[Sumino 2014]

[Ayala, Cvetic, Pineda, 2014]

nl = 0 nl = 1 nl = 2 nl = 3 nl = 4 nl = 5 nl = 6
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d3 may be dominated by u=1/2 renormalon.

24

dN ' ⇡Nm

✓
�0

2

◆N �(⌫ +N + 1)

�(⌫ + 1)

⇥

1 +

⌫c̃1
N + ⌫

+
⌫(⌫ � 1)c̃2

(N + ⌫)(N + ⌫ � 1)
+

⌫(⌫ � 1)(⌫ � 2)c̃3
(N + ⌫)(N + ⌫ � 1)(N + ⌫ � 2)

+O(
1

N4
)

�

Each points has about 10% uncertainty.

[Ayala, Cvetic, Pineda, 2014]
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Stability of potential is sensitive to d3.

25

[Sumino, 2014]

All plots shows renormalization scale dependence of E
tot

(r) = 2mpole

b + V (r)
���
r=2.8 GeV

�1

exact value (1220) adjusted value (1258)

from renormalon dominance (1324)upper limit from this method (1289)

minimal-sensitivity scale disappears
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What can we learn from the value of d3?

26

−0.1

0

0.1

d3 − ⟨dexact3 ⟩
⟨dexact3 ⟩ [Marquard, Smirnov, Smirnov, Steinhauser, 2015]

[Sumino 2014]

[Ayala, Cvetic, Pineda, 2014]

nl = 0 nl = 1 nl = 2 nl = 3 nl = 4 nl = 5 nl = 6

Renormalon dominance hypothesis holds 
when number of active quark is small.

It does not work 
in these cases.
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What can we learn from the value of d3?

27

−0.1

0

0.1

d3 − ⟨dexact3 ⟩
⟨dexact3 ⟩ [Marquard, Smirnov, Smirnov, Steinhauser, 2015]

[Sumino 2014]

[Ayala, Cvetic, Pineda, 2014]

nl = 0 nl = 1 nl = 2 nl = 3 nl = 4 nl = 5 nl = 6

Estimation from potential stability predicts better values.
This suggests potential is stabilized by  
stronger cancelation than u=1/2 renormalon.
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Summary

• We analyze toponium bound state mass  
at NNNLO in perturbative QCD. 

• Cancelation between the quark self-energy and the binding 
energy is crucial to meaningful predictions. 

• By using proper mass definition, we find that the precision  
of 20 - 30 MeV in the top quark mass is possible in principle. 

• We suggest that the cancelation happens not only in u=1/2 
renormalon but also in more general IR contributions.

28
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Introduction to Borel transformation

29

V LL
(q2

) = �4⇡CF↵S

q2

1X

n=0

✓
↵S�0

4⇡

◆n ✓
log

µ2

q2

◆n
leading-log resumed potential

B[V LL
(q2

)](u) ⌘ �4⇡CF↵S

q2

1X

n=0

un

n!

✓
log

µ2

q2

◆n
Borel transformation is defined as

so that the original function is obtained by

= �4⇡CF↵S

q2

✓
µ2

q2

◆u

V LL(q2) =

Z 1

0
B[V LL(q2)](↵S�0

4⇡ u)e�udu
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shows singularities.

30

B[Ebin]
�Ebin = h1S| �V |1Si

B[�ELL
bin] = h1S| B[�V LL] |1Si

=

Z

p,p0
h1S|pi B[�V LL(q2)] hp0|1Si

q = p� p0

� = CF↵SM/2

=

Z

p,p0

p
⇡�5

4(p2 + �2)2


�4⇡CF↵S

q2

✓
µ2

q2

◆u� p
⇡�5

4(p02 + �2)2

= � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆2u

�(1/2� u) �(3/2 + u)

u =
1

2
,
3

2
,
5

2
, ...

singularities correspond to IR div. 
in the original integral.

IR renormalon

singularities correspond to UV div. 
in the original integral.

UV renormalon

u = �3

2
,�5

2
,�7

2
, ...
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Renormalon contribution shows n! growth.

31

B[�ELL
bin] = � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆2u

�(1/2� u) �(3/2 + u)

⇠ � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆
1

1/2� u

= � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆ 1X

n=0

2n+1un

near

inverse Borel transformation

u = 1/2

�ELL

bin

��u=1/2

renormalon

= � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆ 1X

n=0

2n+1

✓
↵S�0

4⇡

◆n

n!

asymptotic series
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Renormalon contribution shows n! growth.

32

B[�ELL
bin] = � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆2u

�(1/2� u) �(3/2 + u)

�ELL

bin

��u=k+1/2

renormalon

= � (CF↵S)2M

⇡

⇥
✓

µ

CF↵SM

◆
2k+1

(k + 1)!
1X

n=0

2n+1

(2k + 1)n+1

✓
↵S�0

4⇡

◆n

n!

near u = k + 1/2

And we will see the mass of heavy quark  
is a strong suppression factor.

Speed of growth becomes  
milder as    increases.k
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Renormalon contribution shows n! growth.

33

B[�ELL
bin] = � (CF↵S)2M

⇡

✓
µ

CF↵SM

◆2u

�(1/2� u) �(3/2 + u)

near u = �3/2

�ELL

bin

��u=�3/2

renormalon

= � (CF↵S)2M

⇡

✓
CF↵SM

µ

◆
3

1X

n=0

✓
2

3

◆n+1

✓
�↵S�0

4⇡

◆n

n!

sign-alternating asymptotic series 
(better convergence)

IR renormalon
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UV renormalon is controlable.
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for example

�ELL

bin

��u=�3/2

renormalon

/
1X

n=0

(�a)nn! a =
↵S�0

6⇡

1X

n=0

(�a)nn! =
1X

n=0

(�a)n
Z 1

0
sne�sds =

Z 1

0

e�s

1 + as
ds

consider this to be “true value”
Iu=�3/2(a)

�����Iu=�3/2(a)�
NX

n=0

(�a)nn!

����� < aN+1(N + 1)!

Uncertainty of truncated value is  
less than the term of next order.

The best truncation is easy to find.
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There is unavoidable ambiguity in IR renormalon.
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for example

�ELL

bin

��u=1/2

renormalon

/
1X

n=0

ann!

1X

n=0

ann! =
1X

n=0

an
Z 1

0
sne�sds =

Z 1

0

e�s

1� as
ds

ambiguity of how to regularize this

true value? {
where to truncate?

a =
↵S�0

2⇡

an⇤n⇤! ' an⇤+1(n⇤ + 1)! n⇤ = 1/a

The best truncation may be

Uncertainty form truncation ambiguity 
is estimated to be

n⇤+
p
n⇤X

n⇤�
p
n⇤

ann! ' 2
p
n⇤a

n⇤n⇤!

' 2
p
2⇡nn⇤+1

⇤ an⇤e�n⇤

' 2
p
2⇡

a
e�1/a
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There is unavoidable ambiguity in IR renormalon.

36

�ELL

bin

��u=1/2

renormalon

= �2CF↵Sµ

⇡

1X

n=0

ann! a =
↵S�0

2⇡{

Apply ambiguity estimation of previous slide.

Therefore ambiguity form u=1/2 renormalon becomes

This result seems to be reasonable, isn’t it?

2
p
2⇡

a
e�1/a

2
p
2⇡4⇡CF

�0
µ e�

2⇡
↵S�0 =

2
p
2⇡4⇡CF

�0
⇤QCD

Estimated ambiguity is
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Current knowledge of

37

UV renormalon IR renormalon

origin large momentum small momentum

position u = 1/2, 3/2, 5/2, ...u = �3/2,�5/2,�7/2, ...

�ELL

bin

��
renormalon

Borel sum summable not summable

Uncertainty 
estimation

�����Iu=�3/2(a)�
NX

n=0

(�a)nn!

����� < aN+1(N + 1)!

sign of series alternative sign same sign

2
p
2⇡4⇡CF

�0
µ e�

2⇡
↵S�0 =

2
p
2⇡4⇡CF

�0
⇤QCD
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Let us see another aspect, potential.
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B[V LL(r)](u) = �CF↵Sp
⇡r

⇣µr
2

⌘2u �(1/2� u)

�(1 + u)

just a constant 
(r-independent)

V LL(r) [GeV] V LL(r)� V LL

��u=1/2

renormalon

[GeV]

V LL(r) =

Z

q
V LL(q2)eiqr

Source of the bad convergence is u=1/2 renormalon.
(constant shift of the potential)

V LL

��u=1/2

renormalon

= �2CF↵Sµ

⇡

NX

n=0

✓
↵S�0

2⇡

◆n

n!
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Convergence of         is also improved.
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ELL
bin

This may be reasonable once the convergence of potential is confirmed.

2mpole

t + ELL

bin

[GeV] 2mpole

t + ELL

bin

� ELL

bin

��u=1/2

renormalon

[GeV]

※ For the sake of easier comparison, 
I adjust the value of 
as 173 GeV and 172.6 GeV respectively.

mpole

t
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MS mass
• defined perturbatively by subtracting UV-divergence 

• Convenient and widely used choice of the 
renormalization scale is the mass of quark itself.

40

mMS(µ) m̄ = mMS(mMS)

PS mass (potential-subtracted mass)
IR contribution of potential is subtracted.

µf ' ↵Smpole

m
PS

(µf ) ⌘ m
pole

+
1

2

Z

qµf

V (q)

E
tot

(r) = 2m
pole

+ V (r)

= 2m
PS

+ V (r)�
Z

qµf

V (q)

mPS(µf )
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Good convergence is achieved. 

41

We will have closer look of  
two bottom plots in the next slid.
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Prediction becomes extremely accurate.

42

Uncertainty of top mass is about half of that of toponium.

・There are minimal-sensitivity scales. 
・NNLO-NNNLO ~ 60 MeV.

・Leading order prediction is stable. 
・NNLO-NNNLO ~ 60 MeV

Uncertainty from higher order correction can be estimated by scale dependence, 
because formally all-order calculation gives scale independent result.

30 MeV
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values of d3
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−0.1

0

0.1

d3 − ⟨dexact3 ⟩
⟨dexact3 ⟩ [Marquard, Smirnov, Smirnov, Steinhauser, 2015]

[Sumino 2014]

[Ayala, Cvetic, Pineda, 2014]

nl = 0 nl = 1 nl = 2 nl = 3 nl = 4 nl = 5 nl = 6

nl 0 1 2 3 4 5 6

dest3 [3] 3351(152) — — 1668(167) 1258+26
−66 897 +31

−175 —

dest3 [4] 3562(173) 2887(133) 2291(98) 1772(82) 1324(81) 945(92) 629(191)

dexact3 [1] 3551.1(21.5) 2848.4(21.5) 2228.4(21.5) 1687.1(21.5) 1220.3(21.5) 824.1(21.5) 494.3(21.5)

Table 2: Summary table of relevant estimates and exact results of d3. The first line shows the
estimates based on stability of the perturbative prediction for 2mpole + VQCD(r); the second
line shows the estimates based on renormalon dominance hypothesis; the third line shows the
exact results (converted to the values in the nl flavor theory).

−0.1

0

0.1

d3 − ⟨dexact3 ⟩

⟨dexact
3

⟩ Ref. [1]

Ref. [3]

Ref. [4]

nl = 0 nl = 1 nl = 2 nl = 3 nl = 4 nl = 5 nl = 6

Figure 1: Comparison of (d3 − ⟨dexact3 ⟩)/⟨dexact3 ⟩ for the (converted) exact value of d3 and the
two estimates, where ⟨dexact3 ⟩ denotes the central value of dexact3 .

with the same error ±21.5. In the rest of the analysis, we use this d3 for various nl’s.
In Tab. 2 we summarize the two estimates and the exact result for 0 ≤ nl ≤ 6.†

The relative accuracies are compared visually in Fig. 1. Overall, we find a reasonable
agreement of the previous estimates and the exact results, with respect to the assigned
errors. The relative accuracies of the estimates are also fairly good, at order 10% level.
These features provide certain justification to the used assumptions in these estimates.

Furthermore, we can make a closer examination. In particular, the central (optimal)
values of dest3 in the table and figure carry important information on the respective
assumptions. We should also note that the errors of dest3 are only systematic and have
no statistical nature. In the cases nl = 3, 4, 5, corresponding to cc̄, bb̄, tt̄ quarkonium
states, respectively, we see a good agreement of the estimates by [3] with the exact
values, whereas the estimates by [4] are slightly larger. On the other hand, for smaller

† Since we use the converted dexact3 , its values for nl = 3, 4, 5 listed in this table are different from
TABLE III of [1]. In this sense, the comparison in TABLE III of [1] is not consistent, since d3’s in the
different definitions are compared. Numerically the differences due to different definitions are small,
nonetheless.

3
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Uncertainty from other sources
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LO
NLO

NNLO

NNNLO

Αs!MZ""0.1191

Αs!MZ""0.1185

Αs!MZ""0.1179
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M
tt
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Figure 5: Scale dependence of the toponium 1S energy level. The input MS mass is taken as
mt = 165 GeV. Each band for the NNNLO prediction corresponds to variation of dexact3 inside
its error (±21.5), where the upper (lower) line in each band corresponds to the upper (lower)
value of dexact3 . The different bands correspond to different input values of αs(MZ). Predictions
at lower orders are for αs(MZ) = 0.1185.

LO
NLO

NNLO
NNNLO

Αs!MZ""0.1179

Αs!MZ""0.1191
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tt
!1
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Figure 6: Scale dependence of the 1S energy level in the PS scheme at different orders. The
input PS mass is taken as mPS(µf,PS = 20GeV) = 173GeV. Two lines for the NNNLO result
correspond to αs(MZ) = 0.1179 and 0.1191. At lower orders αs(MZ) = 0.1185 is used.
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