Electroweak-Skyrmion as Topological Dark Matter

Masafumi Kurachi KEK

Seminar at Kyoto, November 9, 2016

Reference:

Ryuichiro Kitano, Masafumi Kurachi, JHEP07 (2016) 037 (arXiv:1605.07355)

Introduction

Great success of the LHC experiment

Discovery of the Higgs

Sensitivity to New Physics is already a few TeV

No evidence of New Physics so far

A new era for particle physics phenomenology

Introduction

<u>Question:</u>

What is a (practical) guideline for choosing a research subject

(one of) Answer(s):

Focus on **something** which is:

- simply assumed in the SM, but actually not established experimentally yet
- and, at the same time, significant experimental progress is expected near future

Introduction

<u>Question:</u>

What is a (practical) guideline for choosing a research subject

(one of) Like what??

Focus on **something** which is:

- simply assumed in the SM, but actually not established experimentally yet
- and, at the same time, significant experimental progress is expected near future

Quartic gauge boson coupling (QGC)

Constraints on anomalous QGC parameters (α_4, α_5)

($\alpha_4 = \alpha_5 = 0$ corresponds to the SM)

 α_4, α_5 is something which is:

- simply assumed (to be 0) in the SM, but actually **not** established experimentally yet
- and, at the same time, significant experimental progress is expected near future
- \cdot and the existence of non-zero α_4,α_5 has interesting (qualitative) impacts
 - high-energy growth of WW scattering amplitude
 - \cdot non-trivial topological object in the Higgs sector

Higgs sector of the SM

Higgs doublet:
$$\phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$$
 (conjugate: $\tilde{\phi} = i\sigma_2 \phi^*$)

2x2 matrix notation: $\Phi = \begin{pmatrix} \tilde{\phi} & \phi \end{pmatrix}$

$$\mathcal{L}_{\text{Higgs}} = \frac{1}{2} \text{Tr} \left[D_{\mu} \Phi^{\dagger} D_{\mu} \Phi \right] + \frac{\lambda}{4} \left(\text{Tr} \left[\Phi^{\dagger} \Phi \right] - v_{\text{EW}}^2 \right)^2$$

Invariant under global $SU(2)_L \times SU(2)_R$ trans. $\Phi \rightarrow L\Phi R^{\dagger}$ $SSB \langle \Phi \rangle = \frac{v_{\rm EW}}{\sqrt{2}} \mathbf{1}_{2x2}$ $SU(2)_V$ (custodial sym.)

 $\Phi(x)$ can be rewritten as: $\Phi(x) = \frac{v_{\rm EW} + h(x)}{\sqrt{2}} U(x)$

NG field : $U(x) = e^{i \pi^{i}(x) \sigma^{i}/v_{EW}}$ Scalar (Higgs) : h(x)

Effective Lagrangian of U(x) is appropriate for the study of weak gauge boson scattering processes

 $\Phi(x)$ can be rewritten as: $\Phi(x) = \frac{v_{\rm EW} + h(x)}{\sqrt{2}} U(x)$

NG field : $U(x) = e^{i \pi^{i}(x) \sigma^{i}/v_{EW}}$ Scalar (Higgs) : h(x)

EW Chiral Lagrangian: low-energy effective theory of U(x)

$$\mathcal{L}_{\mathrm{EWCL}} = \mathcal{L}_{\mathcal{O}(p^2)} + \mathcal{L}_{\mathcal{O}(p^4)} + \cdots$$

kinetic term $\longrightarrow \mathcal{L}_{\mathcal{O}(p^2)} = \frac{v_{\rm EW}^2}{4} \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right]$

anomalous QGC $\longrightarrow \mathcal{L}_{\mathcal{O}(p^4)} = \alpha_4 \operatorname{Tr} \left[D_{\mu} U^{\dagger} D_{\nu} U \right] \operatorname{Tr} \left[D^{\mu} U^{\dagger} D^{\nu} U \right]$ $+ \alpha_5 \operatorname{Tr} \left[D_{\mu} U^{\dagger} D^{\mu} U \right] \operatorname{Tr} \left[D_{\nu} U^{\dagger} D^{\nu} U \right] + \cdots$

typical example of physics beyond the SM: new heavy vector resonance

$$\alpha_4 = -\alpha_5 \left(\sim \frac{M_W^2}{M_{W'}^2}\right)$$
$$\mathcal{L}_{\mathcal{O}(p^4)} = -\frac{1}{2}\alpha_5 \operatorname{Tr} \left[D_{\mu}UU^{\dagger}, D_{\nu}UU^{\dagger}\right]^2$$

We take this term as a **minimal addition to the SM**, and study physical consequences

Lagrangian

$$\mathcal{L} = \underbrace{\frac{v_{\rm EW}^2}{4} \left(1 + \frac{h(x)}{v_{\rm EW}}\right)^2 \operatorname{Tr}\left[\partial_{\mu}U(x)\,\partial^{\mu}U(x)^{\dagger}\right] + \frac{1}{2}\partial_{\mu}h(x)\partial^{\mu}h(x) - V(h(x))} + \frac{1}{32e^2}\operatorname{Tr}\left[\partial_{\mu}U(x)\,U(x)^{\dagger},\,\partial_{\nu}U(x)\,U(x)^{\dagger}\right]^2}$$

Standard Model + $O(p^4)$ term

- NG field : $U(x) = e^{i \pi^i(x) \sigma^i / v_{EW}}$
- Scalar (Higgs) : h(x)

$$V(h(x)) = \lambda v_{\rm EW}^2 h(x)^2 + \lambda v_{\rm EW} h(x)^3 + \frac{\lambda}{4} h(x)^4$$

Lagrangian

$$\mathcal{L} = \frac{v_{\rm EW}^2}{4} \left[\left(1 + \frac{h(x)}{v_{\rm EW}} \right)^2 \right] \operatorname{Tr} \left[\partial_\mu U(x) \, \partial^\mu U(x)^\dagger \right] \left(+ \frac{1}{2} \partial_\mu h(x) \partial^\mu h(x) - V(h(x)) \right) \right]$$

 $+\frac{1}{32e^2}\operatorname{Tr}\left[\partial_{\mu}U(x)U(x)^{\dagger},\partial_{\nu}U(x)U(x)^{\dagger}\right]^2$

Standard Model + $O(p^4)$ **term**

If you ignore the scalar,

and replace $v_{\rm EW} \Rightarrow f_{\pi}$

it is equivalent to the Skyrme model

Nucleon ⇔ soliton solution in the chiral Lagrangian (non-trivial configuration of the pion field)

Procedure

- assume the form of static configuration
- derive the expression of the energy
- minimize the energy (solve Euler-Lagrange eq.)

Nucleon ⇔ soliton solution in the chiral Lagrangian (non-trivial configuration of the pion field)

assume the form of static configuration

"hedgehog" solution

$$U(x) = e^{iF(r)\sigma^i \hat{x}_i}$$

$$(r \equiv \sqrt{x_i x_i}, \hat{x}_i \equiv x_i/r)$$

Nucleon ⇔ soliton solution in the chiral Lagrangian (non-trivial configuration of the pion field)

derive the expression of the energy

$$E\left[\tilde{F}(\tilde{r})\right] = 2\pi \left(\frac{f_{\pi}}{e}\right) \int_{0}^{\infty} d\tilde{r} \left[\left(\tilde{r}^{2} + 2\sin^{2}\tilde{F}(\tilde{r})\right) \tilde{F}'(\tilde{r})^{2} + \left(2\tilde{r}^{2} + \sin^{2}\tilde{F}(\tilde{r})\right) \frac{\sin^{2}\tilde{F}(\tilde{r})}{\tilde{r}^{2}} \right]$$
$$\tilde{r} = \frac{r}{R}, \quad \text{where} \quad R \equiv \frac{1}{e f_{\pi}} \qquad \left(F(r) = F(\tilde{r}R) \equiv \tilde{F}(\tilde{r}) \right)$$

Nucleon ⇔ soliton solution in the chiral Lagrangian (non-trivial configuration of the pion field)

minimize the energy (solve Euler-Lagrange eq.)

$$\left(\tilde{r}^2 + 2\sin^2\tilde{F}(\tilde{r})\right)\tilde{F}''(\tilde{r}) + 2\tilde{r}\tilde{F}'(\tilde{r}) + \sin 2\tilde{F}(\tilde{r})\left(\tilde{F}'(\tilde{r})^2 - 1 - \frac{\sin^2\tilde{F}(\tilde{r})}{\tilde{r}^2}\right) = 0$$

(equation does not explicitly depend on Lagrangian parameters)

$$\left(\tilde{r}^2 + 2\sin^2\tilde{F}(\tilde{r})\right)\tilde{F}''(\tilde{r}) + 2\tilde{r}\tilde{F}'(\tilde{r}) + \sin 2\tilde{F}(\tilde{r})\left(\tilde{F}'(\tilde{r})^2 - 1 - \frac{\sin^2\tilde{F}(\tilde{r})}{\tilde{r}^2}\right) = 0$$

$$\left(\tilde{r}^2 + 2\sin^2\tilde{F}(\tilde{r})\right)\tilde{F}''(\tilde{r}) + 2\tilde{r}\tilde{F}'(\tilde{r}) + \sin 2\tilde{F}(\tilde{r})\left(\tilde{F}'(\tilde{r})^2 - 1 - \frac{\sin^2\tilde{F}(\tilde{r})}{\tilde{r}^2}\right) = 0$$

$$\left(\tilde{r}^2 + 2\sin^2\tilde{F}(\tilde{r})\right)\tilde{F}''(\tilde{r}) + 2\tilde{r}\tilde{F}'(\tilde{r}) + \sin 2\tilde{F}(\tilde{r})\left(\tilde{F}'(\tilde{r})^2 - 1 - \frac{\sin^2\tilde{F}(\tilde{r})}{\tilde{r}^2}\right) = 0$$

$$\left(\tilde{r}^2 + 2\sin^2\tilde{F}(\tilde{r})\right)\tilde{F}''(\tilde{r}) + 2\tilde{r}\tilde{F}'(\tilde{r}) + \sin 2\tilde{F}(\tilde{r})\left(\tilde{F}'(\tilde{r})^2 - 1 - \frac{\sin^2\tilde{F}(\tilde{r})}{\tilde{r}^2}\right) = 0$$

We repeat the same procedure in the Higgs sector (+ Skyrme term)

$$\mathcal{L} = \frac{v_{\rm EW}^2}{4} \left(1 + \frac{h(x)}{v_{\rm EW}} \right)^2 \operatorname{Tr} \left[\partial_{\mu} U(x) \partial^{\mu} U(x)^{\dagger} \right] + \frac{1}{2} \partial_{\mu} h(x) \partial^{\mu} h(x) - V(h(x)) + \frac{1}{32e^2} \operatorname{Tr} \left[\partial_{\mu} U(x) U(x)^{\dagger}, \partial_{\nu} U(x) U(x)^{\dagger} \right]^2$$

Differences compared to the Skyrme model:

- scale $f_{\pi} \Rightarrow v_{\rm EW}$
- existence of the scalar

Assume:

 $U(x) = e^{iF(r)\sigma^i \hat{x}_i}$ (hedgehog) $h_0(x)/v_{\rm EW} = \phi(r)$ (spherially symmetric)

Energy: $E\left[\tilde{F}(\tilde{r}), \tilde{\phi}(\tilde{r})\right] = 2\pi \left(\frac{v_{\rm EW}}{e}\right) \int_0^\infty d\tilde{r}\tilde{r}^2 \left[\left(1 + \tilde{\phi}(\tilde{r})\right)^2 \left(\tilde{F}'(\tilde{r})^2 + 2\frac{\sin^2 \tilde{F}(\tilde{r})}{\tilde{r}^2}\right) \right]$ $+ \frac{\sin^2 \tilde{F}(\tilde{r})}{\tilde{r}^2} \left(\frac{\sin^2 \tilde{F}(\tilde{r})}{\tilde{r}^2} + 2\tilde{F}'(\tilde{r})^2 \right)$ $+ \tilde{\phi}'(\tilde{r})^2 + \frac{m_h^2}{e^2 v_{\rm EW}^2} \left(\tilde{\phi}(\tilde{r})^2 + \tilde{\phi}(\tilde{r})^3 + \frac{1}{4} \tilde{\phi}(\tilde{r})^4 \right)$ $\tilde{r} = \frac{r}{R}$, where $R \equiv \frac{1}{e v_{\rm EW}}$

 $\phi(r) = \phi(\tilde{r}R) \equiv \tilde{\phi}(\tilde{r})$

Coupled equations for $\,\tilde{F}\,$ and $\,\tilde{\phi}\,$

$$\left(1+\tilde{\phi}(\tilde{r})\right)^2 \left(-\sin 2\tilde{F}(\tilde{r})+2\tilde{r}\tilde{F}'(\tilde{r})+\tilde{r}^2\tilde{F}''(\tilde{r})\right)+2\left(1+\tilde{\phi}(\tilde{r})\right)\tilde{\phi}'(\tilde{r})\tilde{r}^2\tilde{F}'(\tilde{r})$$
$$-\frac{\sin^2\tilde{F}(\tilde{r})\sin 2\tilde{F}(\tilde{r})}{\tilde{r}^2}+\sin 2\tilde{F}(\tilde{r})\tilde{F}'(\tilde{r})^2+2\sin^2\tilde{F}(\tilde{r})\tilde{F}''(\tilde{r})=0$$

$$\left(1 + \tilde{\phi}(\tilde{r})\right) \left(\tilde{r}^2 \tilde{F}'(\tilde{r}) + 2\sin^2 \tilde{F}(\tilde{r})\right) - 2\tilde{r}\tilde{\phi}'(\tilde{r}) - \tilde{r}^2 \tilde{\phi}''(\tilde{r}) + \frac{1}{2} \frac{m_h^2}{e^2 v_{\rm EW}^2} \tilde{r}^2 \left(2 \tilde{\phi}(\tilde{r}) + 3 \tilde{\phi}(\tilde{r})^2 + \tilde{\phi}(\tilde{r})^4\right) = 0$$

Solution:

<u>Mass</u> (in the unit of $rac{v_{\rm EW}}{e}$)

Mass

Mass <u>experimental constraint</u> $v_{\rm EW} = 246 \,\,\mathrm{GeV}$ M(GeV) $m_h = 125 \text{ GeV}$ 50000 45000 40000 35000 $M \lesssim 8 { m TeV}$ 30000 25000 20000 excluded 15000 10000 5000 0 0.5 0.1 0.2 0.3 0.4 0.6 0.7 0 $16e^{2}$ $-\alpha_5 \lesssim 0.04$ arXiv:1609.05122 (ATLAS)

Mass <u>experimental constraint</u> $v_{\rm EW} = 246 \,\,\mathrm{GeV}$ M(GeV) $m_h = 125 \text{ GeV}$ 50000 45000 40000 35000 $M \lesssim 8 { m TeV}$ 30000 25000 20000 excluded 15000 LHC RUN2 10000 5000 $M \sim 4 \text{ TeV}$ 0 0.5 0.1 0.2 0.3 0.6 0.7 0.4 0 $16 e^{2}$ $-\alpha_5 \lesssim 0.04$ arXiv:1609.05122 (ATLAS)

Cosmology: EW-Skyrmion as Dark Matter

Thermal production?

(strongly) disfavored by the direct detection experiment

We simply assume the right amount of the asymmetry was produced in the history of the Universe

Cosmology: EW-Skyrmion as Dark Matter

Constraint from the direct detection experiment (LUX)

simple assumption for a rough estimate: $\mathcal{L}_{eff} = -2\kappa |S|^2 |H^2|$

$$\sigma_{\rm SI} \approx \frac{\kappa^2 m_N^4 f^2}{\pi M^2 m_h^4}$$

$$\simeq \left(\frac{\kappa}{1.0}\right)^2 \left(\frac{1\,\text{TeV}}{M}\right)^2 \left(\frac{f}{0.3}\right)^2 \times 3.6 \times 10^{-44} \text{ cm}^2 \quad \text{LUX updated}$$

$$f = 0.3$$

$$\kappa = 1.0 \quad (0.5, \pi)$$

$$M \gtrsim 1.5 \text{ TeV}$$

$$(M \gtrsim 1.0, 3.5 \text{ TeV})$$
as of May 2016

<u>Summary</u>

- Topological dark matter exists in the SM with a minimal addition of the higher-dimensional operator
- Its mass is constrained from both sides by
 - DM direct detection & WW scattering

<u>Summary</u>

- Topological dark matter exists in the SM with a minimal addition of the higher-dimensional operator
- Its mass is constrained from both sides by

Wide mass range will be probed from **both** sides! If the DM is directly detected, and we find anomalous gauge couplings at the same time, it could be the **EW-Skyrmion**!!!

 $\sim 4 \text{ TeV}$ LHC RUN2

near future

