行列の幾何とコヒーレント状態

Goro Ishiki (University of Tsukuba)

G. I, PRD 92 (2015) 4, 046009 G. I-Matsumoto-Muraki, JHEP 08 (2016) 042

Introduction

• MR is a sequence of linear maps $(T_N)_N \ (N=1,2,\cdots\infty)$

 $T_N: C^\infty(\mathcal{M}) \to M_N(C)$ is a linear map satisfying

$$\begin{split} & \left[\begin{array}{cc} \lim_{N \to \infty} ||T_N(f)T_N(g) - T_N(fg)|| = 0 & \text{Preserving the product} \\ & \lim_{N \to \infty} ||iN[T_N(f), T_N(g)] - T_N(\{f, g\})|| = 0 & \text{Quantizing Poisson alg.} \\ & \lim_{N \to \infty} \text{Tr}T_N(f) = \int f & \text{Integral} \Leftrightarrow \text{Trace} \\ & \text{[Arnlind-Hoppe-Huisken]} \end{split} \right] \end{split}$$

• For any compact Kahler manifold (including any Riemann surfaces), MR can be constructed by the Toeplitz quantization. [Bordemann-Meinrenken-Shlichenmaier]

Introduction

• Matrix models ⇒ Nonperturbative formulation of M/string theories. [BFSS, IKKT, DVV]

$$Z = \int \prod_{\mu=1}^{D} D X^{\mu} e^{-S}$$

 $X^{\mu}:N imes N$ Hermitian matrices "quantized version" of embedding function $y^{\mu}:\mathcal{M} o R^{D}$

- Strings
- D-branes

Matrix configurations

[Hoppe, de Wit-Hoppe-Nicolai]

Problem

How are matrix configurations related to shapes of strings/membranes ?

Problem 1: Given geometry \Rightarrow Construct matrices

- Construction of the matrix regularization
- Geometric/Toeplitz quantization

Problem 2 : Given matrices \Rightarrow Find the underlying geometry \leftarrow This talk

Inverse of the problem 1

[Hanada-Kawai-Kimura] \Rightarrow Geometry from Infinitely large matrices.

Motivation

\diamond Understanding matrix model as gravitational theory

\diamond Numerical simulations of matrix models,

[Kim-Nishimura-Tsuchiya, Anagnostopoulos-Hanada-Nishimura-Takeuchi, Catterall-Wiseman, Hanada-Hyakutake-Ishiki-Nishimura, Kadoh-Kamata, Filev-O'Connor, Berkovitz-Hanada-Maltz, Asano-Filev-Kovacik-O'connor]

Path-integrals of matrices will numerically generate matrix configurations like

$$X_{11}^1 = 2.53..., X_{12}^1 = 1.62... + i3.24..., \cdots$$

From these numbers, how can we recover geometry of strings/membranes/D-branes?

Matrices \Rightarrow Geometry ?

 \diamond For given matrices X^{μ} , how can we associate a "classical space" $\mathcal{M} \subset R^D$?

- Dirac operator [Berenstein-Dzienkowski, Asakawa-Sugimoto-Terashima]
- Coherent states [Ishiki, Schneiderbauer-Steinaker] This talk
- Morse theory [Shimada, ...]
 - ٠
 - ٠

Contents

1. Introduction

2. Matrix geometry and coherent states

3. Kahler structure

4. Extension to finite N

5. Summary

2. MATRIX GEOMETRY AND COHERENT STATES

How can we recover R² from QM

We know that classical geometry of 1D quantum mechanics (NC plane) is R²

$$[X_1, X_2] = i\hbar$$
 plane (x_1, x_2)

But how can we find this?

\rightarrow COHERENT STATES

$$[X_1, X_2] = i\hbar$$
 \longrightarrow {Canonical coherent states} $\sim R^2$

[Cf. H. Grosse and P. Presnajder]

Canonical Coherent states

Canonical coherent states have minimal wave packets, which shrink to a point in the classical limit.

♦ There exists a coherent state at every point on the phase space.
Coherent states ⇔ points on classical space

{A set of all such states } ~ classical space ?

This works for Fuzzy plane (canonical coherent states) Fuzzy sphere (Bloch coherent states)

 \diamondsuit Let us generalize this for more general X^{μ}

Common feature of coherent states

 \diamond Coherent states can be defined as the ground states of $H(y) = \frac{1}{2}(X^{\mu} - y^{\mu})^2$

• Canonical coherent states $[X_1,X_2]=i\hbar$

$$H(q,p) = \frac{1}{2}(X_1 - q)^2 + \frac{1}{2}(X_2 - p)^2 \quad (q,p) \in \mathbb{R}^2$$

• Bloch coherent states $X_i = \frac{2}{N}L_i$ N-dim irrep of SU(2) generators

$$H(y) = \frac{1}{2}(X_1 - y_1)^2 + \frac{1}{2}(X_2 - y_2)^2 + \frac{1}{2}(X_3 - y_3)^2 \quad (y_1, y_2, y_3) \in \mathbb{R}^3$$

This Hamiltonian is useful to find the shape of the classical space

Classical space = loci of zeros of $E_0(y)$ in the classical limit $(\hbar \to 0, \ N \to \infty)$

Classical Geometry as Zeros of E_o

$$\begin{split} E_0(y) &= \langle H(y) \rangle = \frac{1}{2} \langle (X^{\mu} - y^{\mu})^2 \rangle = \frac{1}{2} \langle X^2_{\mu} \rangle - \langle X^{\mu} \rangle y_{\mu} + \frac{1}{2} y^2_{\mu} \\ &= \frac{1}{2} \langle X^2_{\mu} \rangle - \frac{1}{2} \langle X_{\mu} \rangle^2 + \frac{1}{2} \langle X_{\mu} \rangle^2 - \langle X^{\mu} \rangle y_{\mu} + \frac{1}{2} y^2_{\mu} \\ &= \frac{1}{2} (\Delta X^{\mu})^2 + \frac{1}{2} (y^{\mu} - \langle X^{\mu} \rangle)^2 \to 0 \quad \longleftrightarrow \quad \begin{cases} \langle X^{\mu} \rangle \to y^{\mu} \\ \Delta X^{\mu} \to 0 \end{cases} \end{split}$$

Iff ground state energy vanishes, there exist minimal wave packets
points on the classical space

$$X^{\mu} \longrightarrow H(y) = \frac{1}{2} (X^{\mu} - y^{\mu})^2 \longrightarrow E_0(y) \longrightarrow \mathcal{M}$$

Our definition of classical space

We assume we are given large-N family of D Hermitian matrices

$$\{(X_1^{(N)}, X_2^{(N)}, \cdots, X_D^{(N)}) \mid N = 1, 2, 3, \cdots\}$$

$$N \times N \text{ Hermitian}$$

- We consider Hamiltonian $H(y) = \frac{1}{2}(X^{\mu} y^{\mu})^2$ $y \in R^D$
- Classical space := zeros of $E_0(y)$ in the large-N limit

$$\mathcal{M} = \{ y \in \mathbb{R}^D | f(y) = 0 \} \qquad f(y) = \lim_{N \to \infty} E_0(y)$$

Example 1: Fuzzy sphere

$$X^{\mu} = \frac{2}{\sqrt{N^2 - 1}} L^{\mu}, \quad (\mu = 1, 2, 3) \qquad \sum_{\mu = 1}^{3} (X^{\mu})^2 = 1$$

 $N \text{ dim irrep of SU(2) generators}$

$$H(y) = \frac{1}{2}(X_1 - y_1)^2 + \frac{1}{2}(X_2 - y_2)^2 + \frac{1}{2}(X_3 - y_3)^2 \qquad (y_1, y_2, y_3) \in \mathbb{R}^3$$

$$f(y) = \lim_{N \to \infty} E_0(y) = \frac{1}{2}(1 - |y|)^2$$

Classical space is
$$\mathcal{M} = \{y \in R^3 | f(y) = 0\} = S^2$$

Example 2: Fuzzy torus

 $VU=e^{i\theta}UV \quad (\theta=2\pi/N) \quad \text{Represented by the clock-shift matrices}$ $U=X^1+iX^2, \quad V=X^3+iX^4 \quad \text{``Fuzzy Clifford Torus''}$

$$H(y) = \frac{1}{2} \sum_{\mu=1}^{4} (X^{\mu} - y^{\mu})^2$$
$$f(y) = \lim_{N \to \infty} E_0(y) = \frac{1}{2} \left(1 - \sqrt{y_1^2 + y_2^2} \right)^2 + \frac{1}{2} \left(1 - \sqrt{y_3^2 + y_4^2} \right)^2$$

 \blacktriangleright Classical space is $\mathcal{M}=\{y\in R^4|f(y)=0\}=T^2$

3. KAHLER STRUCTURE

Natural geometric structures?

♦ In general, one can consider some geometric structures on a given manifold

Riemannian, symplectic, Poisson, complex,....

 \Diamond Now, we saw that from matrices X^{μ} , we can define a classical space as

$$\mathcal{M} = \{ y \in \mathbb{R}^D | f(y) = 0 \} \quad f(y) = \lim_{N \to \infty} E_0(y)$$

Do matrices X^{μ} also contain information of geometric structures on \mathcal{M} ?

 \diamond When X^{μ} satisfy some conditions, there exists a natural Kahler structure

$$X^{\mu} \quad \Longrightarrow \quad (g, \omega, J)$$

 $[X^{\mu}, X^{\nu}] = \frac{1}{C_N} F^{\mu\nu}(X) + \mathcal{O}(1/C_N^2) \qquad C_N \to \infty \quad (N \to \infty)$ Polynomial of X^{μ} s.t. degree and coefficients are independent of N

 \diamond Just for simplicity,

$$E_0(y)$$
 is nondegenerate for $\,y\in\mathcal{M}\,$ ($\,\Leftrightarrow\,$ A single brane)

Differential geometry of coherent states

 $H(y)|n,y\rangle = E_n(y)|n,y\rangle \qquad 0 \le E_0 \le E_1 \le \cdots$

$$E_0(y+\epsilon) = E_0(y) + \epsilon \cdot \partial E_0(y) + \frac{1}{2}(\epsilon \cdot \partial)^2 E_0(y) + \cdots$$
$$|0, y+\epsilon\rangle = |0, y\rangle + \epsilon \cdot \partial |0, y\rangle + \frac{1}{2}(\epsilon \cdot \partial)^2 |0, y\rangle + \cdots$$

 \diamond This Taylor series contains geometric information of ${\cal M}$

 \diamond Perturbation theory relates each term with matrix elements of $\,X^{\mu}$

$$\begin{split} H(y+\epsilon) &= H(y) - \epsilon \cdot (X-y) + \frac{1}{2} |\epsilon|^2 \\ \epsilon \cdot \partial E_0(y) &= -\langle 0, y | \epsilon \cdot (X-y) | 0, y \rangle \quad \text{etc.} \end{split}$$

Geometric information \Leftrightarrow matrix elements of X^{μ}

Tangent space of M

 \diamond For example, the following object gives a projection onto tangent vectors on $\, \mathcal{M} \,$

$$P^{\mu}{}_{\nu}(y) = \delta^{\mu}_{\nu} - \lim_{N \to \infty} \partial^{\mu} \partial_{\nu} E_0(y) = 2 \lim_{N \to \infty} \sum_{n=1}^{N-1} \operatorname{Re} \frac{\langle 0, y | X^{\mu} | n, y \rangle \langle n, y | X_{\nu} | 0, y \rangle}{E_n(y) - E_0(y)}$$

Riemannian structure

Apart from the induced metric defined by $P^{\mu}{}_{\nu}$, one can define the information metric.

For state vectors $|\lambda\rangle$ labeled by parameters λ^a $(a = 1, 2, \cdots)$, the information metric (Bures distance) is defined by

$$d(|\lambda\rangle, |\lambda'\rangle) = 1 - |\langle\lambda|\lambda'\rangle|^2$$

In our case,

$$d(|0,y\rangle,|0,y+dy\rangle) = g_{\mu\nu}dy^{\mu}dy^{\nu} + \mathcal{O}(dy^3)$$

$$g_{\mu\nu}(y) = \sum_{n \neq 0} \operatorname{Re} \frac{\langle 0, y | X_{\mu} | n, y \rangle \langle n, y | X_{\nu} | 0, y \rangle}{(E_n(y) - E_0(y))^2}$$

This gives a metric on ${\mathcal M}$ in the large-N limit.

Symplectic Structure

For normalized state vectors $|\lambda\rangle$ labeled by parameters χ^a_r let us consider

$$A_a = -i\langle\lambda|\frac{\partial}{\partial\lambda^a}|\lambda\rangle$$

Under the phase rotation $|\lambda\rangle \to e^{i\eta(\lambda)}|\lambda\rangle$, it transforms as $A_a \to A_a + \frac{\partial\eta}{\partial\lambda^a}$ A_a is called the Berry connection.

In our case ($|\lambda
angle o |0,y
angle$), the Berry curvature gives a symplectic form on $\, {\cal M} \,$

$$\omega_{\mu\nu}(y) = \lim_{N \to \infty} \frac{2}{C_N} \sum_{n \neq 0} \operatorname{Im} \frac{\langle 0, y | X_\mu | n, y \rangle \langle n, y | X_\nu | 0, y \rangle}{(E_n(y) - E_0(y))^2}$$

 $\left\{ \begin{array}{l} {\rm Non-degenerate} \ {\rm on} \ {\cal M} \\ d\omega = 0 \end{array} \right.$

Complex structure

Complex structure is given by a poler decomposition of $\,\omega\,$

$$\begin{split} J &= \frac{1}{\sqrt{\omega^T \omega}} \omega \\ J^{\mu}{}_{\nu}(y) &= \lim_{N \to \infty} \sum_{n \neq 0} \operatorname{Im} \frac{\langle 0, y | X^{\mu} | n, y \rangle \langle n, y | X_{\nu} | 0, y \rangle}{E_n(y) - E_0(y)} \\ & \left\{ \begin{array}{l} J^2 &= -P \\ \text{Integrable} \end{array} \right. \text{(-1 on tangent space)} \end{split}$$

 (g,ω,J) satisfies the compatibility $\omega(u,Jv)=g(u,v)$ \Rightarrow Kahler structure

Poisson structure

$$W^{\mu\nu}(y) = -i \lim_{N \to \infty} C_N \langle 0, y | [X^{\mu}, X^{\nu}] | 0, y \rangle$$

This satisfies

 $\left\{ \begin{array}{l} P\cdot W = W \quad (\Leftrightarrow W \text{ is a tangent bivector on } \mathcal{M}) \\ \text{Jacobi identity} \\ W\cdot \omega = P \end{array} \right.$

 \Rightarrow It gives a Poisson tensor on \mathcal{M} .

Example 1 : Fuzzy sphere

$$X^{\mu} = \frac{2}{\sqrt{N^2 - 1}} L^{\mu}, \quad (\mu = 1, 2, 3) \qquad \qquad \sum_{\mu = 1}^{3} (X^{\mu})^2 = 1$$

 $P^{\mu}{}_{\nu} = \frac{1}{|y|} \left(\delta^{\mu}_{\nu} - \frac{y^{\mu}y_{\nu}}{|y|^2} \right)$ $g_{\mu\nu} = \frac{1}{2|y|^2} \left(\delta_{\mu\nu} - \frac{y_{\mu}y_{\nu}}{|y|^2} \right)$ $\omega_{\mu\nu} = -\frac{1}{2} \epsilon_{\mu\nu\rho} \frac{y^{\rho}}{|y|^3}$ $J^{\mu}{}_{\nu} = \epsilon^{\mu}{}_{\nu\rho} \frac{y_{\rho}}{|y|^2}$ $W^{\mu\nu} = \epsilon^{\mu\nu\rho}y_{\rho}$

For
$$y \in \mathcal{M} \; (|y| = 1)$$

These satisfy mathematical definitions like

$$P \cdot P = P$$
$$J \cdot J = -P$$

Example 2 : fuzzy sphere + fluctuation

Hamiltonian $H'(y) = \frac{1}{2} \sum_{i=1}^{3} (X^{i} + Y^{i}(X) - y^{i})^{2} = H^{(0)}(y) + \sum_{i=1}^{3} \frac{1}{2} \{Y^{i}(X), X^{i} - y^{i}\} + \mathcal{O}(Y^{2})$

$$\mathcal{M} = \left\{ y \in \mathbb{R}^3 | \left| y \right| = 1 + \Phi(y) + \mathcal{O}(Y^2) \right\}$$

Geometric objects: e.g. symplectic form

$$\omega_{ij}(y) = \frac{1}{2} \epsilon_{ijk} \left[-\frac{y_k}{|y|^3} + \Lambda_{ak} \nabla_a \Phi(y) + \frac{y_k}{|y|} \nabla_a C_a(y) + \frac{y_k}{|y|} \Lambda_{c\ell} (\nabla_c \Lambda_{b\ell}) C_b(y) + \mathcal{O}(Y^2) \right]$$

Fluctuation of matrices \Leftrightarrow Fluctuations of \mathcal{M} & geometric structures

Physical interpretations

 \diamond If we consider X^{μ} as bosons of the low energy theory of D O -branes (eg. BMN mm),

Tangential fluctuations \Leftrightarrow gauge fields on D2-brane

[cf. Maldacena-Sheiki-Jabbari-Raamsdonk]

On the other hand, in our computations

Tangential fluctuations \Leftrightarrow fluctuations of the Berry connection

From this, it is suggested that the Berry connection corresponds to gauge field on the emergent D-brane

 $\diamond \ g$ corresponds to the open string metric [Seiberg-Witten] It contains some intrinsic information like the density of D O -branes

4. EXTENSION TO FINITE N

Geometry at finite N

Consider D O -branes forming a fuzzy sphere + another probe D O -brane

[Berenstein-Dzienkowski]

Let consider the lowest energy (non-oscillating) modes of the open string

Energy \propto length of the open string

The open string has zero energy state only if the probe brane is touching the fuzzy sphere

A set of points s.t. the open string has zero energy states \Rightarrow Shape of fuzzy sphere.

Probing the geometry

• Suppose that we do not know the shape of the D O bound state

We can find the shape of the bound state by looking at the massless modes on the open string.

Geometry of the bound state = loci of the massless modes exist

We can find the geometry of X^{μ} in this way.

Action

$$S = \int dt \operatorname{Tr} \left[\frac{1}{2} (D\tilde{X}^{\mu})^2 + \frac{1}{4} [\tilde{X}^{\mu}, \tilde{X}^{\nu}]^2 + i \Psi^T D\Psi - \Psi^T \Gamma_{\mu} [\tilde{X}^{\mu}, \Psi] \right]$$

Off diagonal blocks correspond to the open string connecting N D O and the probe.

Off-diagonal fermionic modes

Geometry of X^{μ} is given by a set of points where λ becomes massless

 $\mathcal{M} = \{ y \in R^9 | \Gamma_\mu (X^\mu - y^\mu) \text{ has zero eigenvalue} \}$

Relation to my work

 $\mathcal{M} = \{ y \in R^9 | \Gamma_\mu (X^\mu - y^\mu) \text{ has zero eigenvalue} \}$

$$[\Gamma_{\mu} \otimes (X^{\mu} - y^{\mu})]^2 = 1 \otimes (X^{\mu} - y^{\mu})^2 + \frac{1}{2} \Gamma_{\mu\nu} [X^{\mu}, X^{\nu}]$$

Thus, if we assume $\ [X^{\mu},X^{
u}]=\mathcal{O}(1/N)$ and consider the large-N limit,

$$\mathcal{M} \sim \{ y \in R^9 | (X^\mu - y^\mu)^2 \text{ has zero eigenvalue} \}$$

This is same as my definition.

However, Berenstein's method has a great advantage that the space is defined at finite fixed N

For surfaces embedded in 3D

$$\nabla(y) = \sigma^i \otimes (X^i - y^i) \qquad (i = 1, 2, 3)$$

 $\langle \nabla(y)|n,y\rangle = E_n(y)|n,y\rangle \quad |E_0| \le |E_1| \le \cdots$

 $\mathcal{M} = \{ y \in R^3 | E_0(y) = 0 \}$

The surface is defined at finite fixed N

Geometric structures

We consider the case where the zero eigenstate has a definite "chirality"

In this case, we found that the geometric structures we found in the previous setup also work in this setup without taking the large-N limit. For example,

$$P^{\mu}{}_{\nu}(y) = 2\sum_{n} \operatorname{Re} \frac{\langle 0, y | X^{\mu} | n, y \rangle \langle n, y | X_{\nu} | 0, y \rangle}{E_{n}^{2}(y) - E_{0}^{2}(y)} \quad \text{ is a projection} \quad \text{ onto } T\mathcal{M}$$

Examples

The chirality condition is satisfied in the following examples.

- Fuzzy plane
- Fuzzy sphere
- The large-N limit of matrices satisfying

$$[X^{\mu}, X^{\nu}] = \frac{1}{C_N} F^{\mu\nu}(X) + \mathcal{O}(1/C_N^2)$$

If we keep only the leading order terms in the large-N limit, the chirality condition is satisfied.

Summary and Outlook

 \blacklozenge Coherent states \Rightarrow Classical geometry

Kahler structure can be expressed in terms of the matrix elements

This holds even at finite N, if the zeromode of Dirac op. has a definite chirality. (3d)

◆ The Hamiltonian can also be understood as a tachyon configuration on non-BPS branes Zero eigenspace ⇔ Stable D-branes after tachyon condensation [Asakasa-Sugimoto-Terashima]

+ Work in progress]

Dirac operators in higher dimensional cases?

 \blacklozenge Geometric structures are gauge invariant \Leftrightarrow observables in matrix models

Geometric interpretation of matrix models? Emergent space-time?