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Introduction

* MR is a sequence of linearmaps (ITn)ny (N =1,2,---00

Ty : C®(M) — My(C) isalinear map satisfying

—

]\;lm TN ()TN (g) —Tn(fg)|| =0 Preserving the product
.

A}im |2V [Tn (f) (9)] — Tn({f,g})|| =0 Quantizing Poisson alg.
-

lim TrTy(f / ¥ Integral < Trace

N — o0

~—

[Arnlind-Hoppe-Huisken]

* For any compact Kahler manifold (including any Riemann surfaces), MR can be
constructed by the Toeplitz quantization. [Bordemann-Meinrenken-Shlichenmaier]




Introduction

* Matrix models = Nonperturbative formulation of M/string theories. [BFSS, IKKT, DVV]

XH - N x N Hermitian matrices

“quantized version” of embedding function

y* : M — RP

Fundamental objects mmm) Matrix configurations

- Membranes ~ ™
- Strings O B

= D-branes
A

]
*
[ ] ] PS
[ ] ] ¢

[Hoppe, de Wit-Hoppe-Nicolai]
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Problem

-

How are matrix configurations related
to shapes of strings/membranes ?

-

~

J

Problem 1: Given geometry = Construct matrices

» Construction of the matrix regularization
= Geometric/Toeplitz quantization

Problem 2 : Given matrices = Find the underlying geometry < This talk

* Inverse of the problem 1

[Hanada-Kawai-Kimura] = Geometry from Infinitely large matrices.




Motivation

< Understanding matrix model as gravitational theory

<> Numerical simulations of matrix models,

[Kim-Nishimura-Tsuchiya, Anagnostopoulos-Hanada-Nishimura-Takeuchi, Catterall-Wiseman,
Hanada-Hyakutake-Ishiki-Nishimura, Kadoh-Kamata, Filev-O’Connor, Berkovitz-Hanada-Maltz,
Asano-Filev-Kovacik-O‘connor

Path-integrals of matrices will numerically generate matrix configurations like

X1 =253, X, =1.62...+i3.24..., - --

From these numbers, how can we recover geometry of strings/membranes/D-branes?




Matrices = Geometry ?

< For given matrices X* how can we associate a “classical space” M C RP?

4 ) ‘ RD

D
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* Dirac operator [Berenstein-Dzienkowski, Asakawa-Sugimoto-Terashima]
- Coherent states [Ishiki, Schneiderbauer-Steinaker] «———— This talk

* Morse theory [Shimada, ...]
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2. MATRIXGEOMETRY AND
COHERENT STATES




How can we recover R2 from QM

We know that classical geometry of 1D quantum mechanics (NC plane) is R?

[ (X1, Xo] =ik ] ‘[ plane (z, z,) ]

But how can we find this?

— COHERENT STATES

[X1,X5] =ih  mm==) {Canonical coherent states} ~ R*

[Cf. H. Grosse and P. Presnajder]



Canonical Coherent states

(X1, Xo] =h AX,
<>

ax,)

A

AX, AO = /(0?) — (0)?

€«>

0

!

general states

AX1AXy > g

>

coherent states

AX1AX, = g

AXleXQZ\/h/Z—)O (h-)O)

< Canonical coherent states have minimal wave packets,
which shrink to a point in the classical limit.

< There exists a coherent state at every point on the phase space.

Coherent states < points on classical space




Coherent States = Geometry

N ) 4 L )
Given matrices Construct states satisfying

Xt "™ AXHE S0

. J . J

{ A set of all such states} ~ classical space ?

i Fuzzy plane (canonical coherent states)

< This works for -

Fuzzy sphere (Bloch coherent states)

< Let us generalize this for more general X*




Common feature of coherent states

1
§(X“ — y")?

<> Coherent states can be defined as the ground states of H(y) =

+ Canonical coherent states [ X1, Xo] = th

1

H(q,p) = 5(X1 — q)% + %(X2 -p)® (¢,p) € R?

2
" Bloch coherent states X, = NLi N-dim irrep of SU(2) generators

1 1

1
H(y) = §(X1 —y1)° + §(X2 — )’ + §(X3 —y3)®  (y1,v2,y3) € R’

This Hamiltonian is useful to find the shape of the classical space

Classical space = loci of zeros of E(y) in the classical limit
(h — 0, N — o0)




Classical Geometry as Zeros of E,

UXE =y = (X2 — (XYt 50

1 1
)+ §<Xu>2 — (XP)y, + 593

(XH) =y
AXH —=0

1

5! = (XM)* =0 = {

O Iff ground state energy vanishes, there exist minimal wave packets
& points on the classical space

1

XH m— Hy) = 5 (X"~ y*)? m Fy(y) mp M




Our definition of classical space

- We assume we are given large-N family of D Hermitian matrices
{(X£N)7X2(N)7 T 7X(DN)) | N =123, }

N x N Hermitian

* We consider Hamiltonian H(y) = %(X“ —y")? yeRP

- Classical space := zeros of Ey(y) in the large-N limit

M= {ye RP|f(y) =0} [f(y)= lim Ey(y)

N — o0




Example 1: Fuzzy sphere

3

2
Xt = ¥, (n=1,23) ) (X")=1

N2 1 N o

N dimirrep of SU(2) generators

1 1 1
= §(X1 — y1)2 + §(X2 — y2)2 + §(X3 — y3)2 (y17y2,y3) € R’

. 1 2
Jim Eo(y) = 5(1 —|yl)

mmm) Classical spaceis M = {y € R®|f(y) = 0} = S*




Example 2: Fuzzy torus

VU = UV (0 =21/N) Represented by the clock-shift matrices
U=X'4+iX% V=X34+iX* “FuzzyClifford Torus"

f(y) = lim Eoly) = =

N—oo 2

m=) Classical spaceis M = {y € R*|f(y) =0} = T*?




3. KAHLER STRUCTURE




Natural geometric structures?

< In general, one can consider some geometric structures on a given manifold

Riemannian, symplectic, Poisson, complex,....

< Now, we saw that from matrices X#, we can define a classical space as

M={y e R"|f(y) =0} [fly)= lim Eo(y)

Do matrices X* also contain information of geometric structures on M?

< When X+ satisfy some conditions, there exists a natural Kahler structure

Xt mm) (g,w,])




Assumptions fy) = lim Ey(y)

N—o0
A

< “Smoothness of M” \
Eo(y) is a smooth function near M \\.
>
\ )

< “Compactness of M"” '
| X#]| <00 (N — 00) M

< “Existence of a good commutative limit”

[(XH, XY] = —F’““’( )+ 0O(1/C%) Cy =00 (N — o0)

w/

Polynomial of X* s.t. degree and coefficients are independent of N

< Just for simplicity,
Fo(y) is nondegenerate for y € M (<> Asingle brane)




Differential geometry of coherent states

H(y)|n7 y> — En(y) |n7 y>

0,y +¢€) =10,y) +€-0|0,y) +

<> This Taylor series contains geometric information of A1

< Perturbation theory relates each term with matrix elements of X*
1
H(y+e€) = H(y) — e (X —y) + ;e
€ an(y) — _<07 y|€ ) (X _ y)|07 y> etc.

[ Geometric information & matrix elements of X# J




Tangent space of M

< For example, the following object gives a projection onto tangent vectors on M

. : <an| “|’I’L,y><?’b,y| V|an>
p _ gH p _ X
P*,(y) = 6" — lim 00, Fy(y) =2 lim Re E,(y) — Bol)

n=1




Riemannian structure

Apart from the induced metric defined by P#,, one can define the information metric.

For state vectors |\) labeled by parameters \* (a = 1,2,---),
the information metric (Bures distance) is defined by

d(|A), IX)) = 1= [(AIN)°

In our case,

d(10,v), 10,y + dy)) = gdy*dy” + O(dy°)

This gives a metric on M in the large-N limit.




Symplectic Structure

For normalized state vectors |\) labeled by parameters )\¢ let us consider
Aa — < | |)‘>

Under the phase rotation |)\> — ei"(A)|)\> ittransformsas A, — A, + aaTn

A, is called the Berry connection.

In our case (|\) — |0, )), the Berry curvature gives a symplectic form on A

2 (0 le |, ) (n, ¥ X0 |0, y)
Suly) = Jim cN%;OI B.(4) - Eoly))

Non-degenerate on M

dw =0




Complex structure

Complex structure is given by a poler decomposition of ()

- (0 le“In y)(n,y|X,|0,y)
ZI E(y) — Boly)

= lim
N—)oo

{ J? = —P (-10ntangent space)
Integrable

(g, w, J) satisfies the compatibility UJ(U, J’U) — g(u, ’U)

— Kahler structure




Poisson structure

W (y) = i lim Civ{0,y][X*, X0,)
—00

This satisfies

- P .VW = W (© Wisatangent bivector on M)
Jacobi identity

W .w=~PFP

— It gives a Poisson tensor on M.




Example 1: Fuzzy sphere

y“yu)
oF —
( |y|2

For y € M (ly| =1)

(5W — y“—%) These satisfy mathematical
|y| definitions like

P-P=P




Example 2 : fuzzy sphere + fluctuation

Tangential/Normal decomposition g/|y|

/Ty(SQ)

Consider matrices

X, =X
1

Fuzzy sphere  Fluctuation (Degree <<N)

Hamiltonian perturbation

= HO)(y +Z {YHX), X' — 4} + O(Y?)




M= {y eR?lyl =1+ d(y) + O(Y?)}

Geometric objects: e.g. symplectic form

1

Yk Yk

Vo.Coly
g VOl

2

wij (Y) = =€ijk [—W + Ak Va®(y) +

+ ZE N (Vo) Co(y) + O(Y2)

Y|

Fluctuation of matrices < Fluctuations of A & geometric structures

[cf. Badyn-Karczmarek-Garnier-Yeh]




Physical interpretations

<& If we consider X* as bosons of the low energy theory of D O -branes (eg. BMN mm),

Tangential fluctuations < gauge fields on D2-brane
[cf. Maldacena-Sheiki-Jabbari-Raamsdonk]

On the other hand, in our computations

Tangential fluctuations < fluctuations of the Berry connection

From this, it is suggested that the Berry connection corresponds to gauge field on
the emergent D-brane

& g corresponds to the open string metric [Seiberg-Witten]

It contains some intrinsic information like the density of D O -branes




4. EXTENSION TO FINITE N




[Berenstein-Dzienkowski]

Geometry at finite N

Consider D O -branes forming a fuzzy sphere + another probe D O -brane

probe brane
XH o [P open string
Fuzzy sphere

=N D O -branes
(a kind of bound state)

Let consider the lowest energy (non-oscillating) modes of the open string
Energy o< length of the open string

The open string has zero energy state only if the probe brane is touching the fuzzy sphere

A set of points s.t. the open string has zero energy states = Shape of fuzzy sphere.




Probing the geometry

= Suppose that we do not know the shape of the D O bound state

probe brane

open string

General XH#

We can find the shape of the bound state by looking at the massless modes
on the open string.

Geometry of the bound state = loci of the massless modes exist

We can find the geometry of X # in this way.




Action

1, | N
S = / dt Tr [5(1))(*‘)2 + X%, XY 449DV — UIT, [ X* \IJ]]

/ N D O -branes
/‘

0 N a N
X'B o=/ @6
\-y“/ \-.j

\ Position of
probe brane

Off diagonal blocks correspond to the open string connecting N D O and the probe.




Off-diagonal fermionic modes

a I
X“l

B8 yF )

probe brane at y*

open string
(off-diagonals)

Sy = iIANTDX + AT, (X* — y*)\

Geometry of X is given by a set of points where )\ becomes massless

M = {y € R°|T,(X* — y") has zero eigenvalue}




Relation to my work

M = {y € R’|l',(X*" — y*) has zero eigenvalue}
Tu® (X* =y =1® (X* —y¥)°
Thus, if we assume | X*, X”] = O(1/N) and consider the large-N limit,

M ~ {y € R’|(X* — y*)* has zero eigenvalue}

This is same as my definition.

However, Berenstein’s method has a great advantage
that the space is defined at finite fixed N




For surfaces embedded in 3D

Y(y) =0 (X —y) (i=1,2,3)
Y (%), y) = Ex(y)In,y)  |Bol < |Eyf < ---

M ={y € R’|Ey(y) = 0}

M

/> The surface is defined
= - atfinite fixed N




[cf. Badyn-Karczmarek-Garnier-Yeh]

Geometric structures

We consider the case where the zero eigenstate has a definite “chirality”

U(y) : normal vector at each point y € M

In this case, we found that the geometric structures we found in the previous setup
also work in this setup without taking the large-N limit. For example,

IS a projection
onto T'M




Examples

The chirality condition is satisfied in the following examples.

* Fuzzy plane
* Fuzzy sphere

* The large-N limit of matrices satisfying

X0, X") = o FP(X) + 0(1/CR)

If we keep only the leading order terms in the large-N limit,
the chirality condition is satisfied.




Summary and Outlook

@ Coherent states = Classical geometry
@ Kahler structure can be expressed in terms of the matrix elements
@ This holds even at finite N, if the zeromode of Dirac op. has a definite chirality. (3d)

€ The Hamiltonian can also be understood as a tachyon configuration on non-BPS branes

Zero eigenspace < Stable D-branes after tachyon condensation

[Asakasa-Sugimoto-Terashima
+ Work in progress]

@ Dirac operators in higher dimensional cases?

@ Geometric structures are gauge invariant < observables in matrix models

@ Geometric interpretation of matrix models? Emergent space-time?




