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Introduction

is a linear map satisfying

・MR is a sequence of linear maps                                                            

[Arnlind-Hoppe-Huisken]

Preserving the product

Quantizing Poisson alg.

Integral ⇔Trace

・For any compact Kahler manifold (including any Riemann surfaces), MR can be 
constructed by the Toeplitz quantization.  [Bordemann-Meinrenken-Shlichenmaier]



Introduction
・Matrix models ⇒Nonperturbative formulation of M/string theories. [BFSS, IKKT, DVV]

Fundamental objects
・Membranes
・Strings
・D-branes

Matrix configurations

・・・

・・・

・
・
・

・
・
・

Hermitian matrices

“quantized version” of embedding function

[Hoppe, de Wit-Hoppe-Nicolai]



Problem

How are matrix configurations related
to shapes of strings/membranes ?

Problem 1 :   Given geometry ⇒Construct matrices

・Construction of the matrix regularization
・Geometric/Toeplitz quantization

Problem 2 :  Given matrices ⇒ Find the underlying geometry

・Inverse of the problem 1

←This talk

[Hanada-Kawai-Kimura] ⇒Geometry from Infinitely large matrices. 



Motivation

Path-integrals of matrices will numerically generate matrix configurations like                  

From these numbers, how can we recover geometry of strings/membranes/D-branes?

◇Numerical simulations of matrix models,

[Kim-Nishimura-Tsuchiya, Anagnostopoulos-Hanada-Nishimura-Takeuchi, Catterall-Wiseman, 
Hanada-Hyakutake-Ishiki-Nishimura, Kadoh-Kamata, Filev-O’Connor, Berkovitz-Hanada-Maltz,
Asano-Filev-Kovacik-O’connor ……..]

◇Understanding matrix model as gravitational theory



Matrices ⇒Geometry ? 

・Dirac operator    [Berenstein-Dzienkowski, Asakawa-Sugimoto-Terashima]

・Coherent states    [Ishiki, Schneiderbauer-Steinaker]

・Morse theory    [Shimada, …]

◇ For given matrices         , how can we associate a “classical space”                        ?

・・・

・・・

・
・
・

・
・
・

This talk
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2. MATRIX GEOMETRY AND 
COHERENT STATES



How can we recover R2 from QM

plane

We know that classical geometry of 1D quantum mechanics (NC plane) is R2

But how can we find this?

⇒ COHERENT   STATES

[Cf. H. Grosse and P. Presnajder]



Canonical Coherent states

◇Canonical coherent states have minimal wave packets,   
which shrink to a point in the classical limit.

general states coherent states 

Coherent states ⇔ points on classical space
◇There exists a coherent state at every point on the phase space.



Coherent States ⇒Geometry

Given matrices Construct states satisfying

{ A set of all such states } ～ classical space ?

◇This works for
Fuzzy plane (canonical coherent states) 

Fuzzy sphere (Bloch coherent states)

◇ Let us generalize this for more general 



Common feature of coherent states
◇Coherent states can be defined as the ground states of 

・Canonical coherent states

・Bloch coherent states 

This Hamiltonian is useful to find the shape of the classical space

Classical space = loci of zeros of              in the classical limit

N-dim irrep of SU(2) generators



Classical Geometry as Zeros of E0

◇ Iff ground state energy vanishes, there exist minimal wave packets
⇔ points on the classical space



Our definition of classical space
・We assume we are given large-N family of D Hermitian matrices 

Hermitian

・We consider  Hamiltonian

・Classical space := zeros of             in the large-N limit



Example 1: Fuzzy sphere

dim irrep of SU(2) generators

Classical space is



Example 2: Fuzzy torus

“Fuzzy Clifford Torus”

Classical space is

Represented by the clock-shift matrices



3. KAHLER STRUCTURE



Natural geometric structures?

Do matrices          also contain information of geometric structures on        ?

◇ In general, one can consider some geometric structures on a given manifold 

Riemannian, symplectic, Poisson, complex,….

◇Now, we saw that from matrices         , we can define a classical space as 

◇When         satisfy some conditions, there exists a natural Kahler structure



Assumptions

is a smooth function near 

Polynomial of         s.t. degree and coefficients are independent of N

◇ “Smoothness of       ”

◇ “Existence of a good commutative limit”

◇ “Compactness of       ”

◇ Just for simplicity, 

is nondegenerate for ( ⇔A single brane)



Differential geometry of coherent states

◇This Taylor series contains geometric information of 

◇ Perturbation theory relates each term with matrix elements of 

etc.

Geometric information ⇔matrix elements of 



Tangent space of M

◇ For example, the following object gives a projection onto tangent vectors on 



Riemannian structure
Apart from the induced metric defined by         , one can define the information metric.

For state vectors          labeled by parameters                                    ,   
the information metric (Bures distance) is defined by  

In our case, 

This gives a metric on          in the large-N limit.



Symplectic Structure
For normalized state vectors          labeled by parameters     ,  let us consider 

Under the phase rotation                                           ,  it transforms as 

is called the Berry connection.

In our case (                         ), the Berry curvature gives a symplectic form on  

Non-degenerate on 



Complex structure

Complex structure is given by a poler decomposition of 

satisfies the compatibility

Integrable

(-1 on tangent space)

⇒ Kahler structure



Poisson structure

This satisfies 

(⇔ is a tangent bivector on        )

Jacobi identity 

⇒ It gives a Poisson tensor on       . 



Example 1 : Fuzzy sphere

For 

These satisfy mathematical 
definitions like



Example 2 : fuzzy sphere + fluctuation

Fuzzy sphere

Tangential/Normal decomposition

Consider matrices

Fluctuation

perturbationHamiltonian

( Degree << N )



Geometric objects: e.g. symplectic form

Fluctuation of matrices ⇔ Fluctuations of         & geometric structures

[cf. Badyn-Karczmarek-Garnier-Yeh]



Physical interpretations

Tangential fluctuations ⇔ gauge fields on D2-brane 

◇ If we consider           as bosons of the low energy theory of D０-branes (eg. BMN mm),

On the other hand, in our computations

Tangential fluctuations ⇔ fluctuations of the Berry connection

From this, it is suggested that the Berry connection corresponds to gauge field on 
the emergent D-brane

◇ corresponds to the open string metric  [Seiberg-Witten]

It contains some intrinsic information like the density of D０-branes

[cf. Maldacena-Sheiki-Jabbari-Raamsdonk]



4. EXTENSION TO FINITE N



Geometry at finite N

Consider D０-branes forming a fuzzy sphere + another probe D０-brane 

[Berenstein-Dzienkowski]

Fuzzy sphere
= N D０-branes
(a kind of bound state)

probe brane

open string

Let consider the lowest energy (non-oscillating) modes of the open string

Energy ∝ length of the open string

The open string has zero energy state only if the probe brane is touching the fuzzy sphere

A set of points s.t. the open string has zero energy states ⇒ Shape of fuzzy sphere.



Probing the geometry
・ Suppose that we do not know the shape of the D０ bound state

???

probe brane

open string

We can find the shape of the bound state by looking at the massless modes 
on the open string.

Geometry of the bound state = loci of the massless modes exist

General 

We can find the geometry of            in this way. 



Action

Position of 
probe brane

N D０-branes

Off diagonal blocks correspond to the open string connecting N D０ and the probe.



Off-diagonal fermionic modes

???

probe brane at 

open string
(off-diagonals)

Geometry of          is given by a set of points where      becomes massless



Relation to my work

However, Berenstein’s method has a great advantage 
that the space is defined at finite fixed N

Thus, if we assume                                                    and consider the large-N limit, 

This is same as my definition.



For surfaces embedded in 3D

The surface is defined 
at finite fixed N



Geometric structures

We consider the case where the zero eigenstate has a definite “chirality” 

: normal vector at each point

In this case, we found that the geometric structures we found in the previous setup 
also work in this setup without taking the large-N limit. For example,

is a projection 
onto 

[cf. Badyn-Karczmarek-Garnier-Yeh]



Examples 
The chirality condition is satisfied in the following examples.

・Fuzzy plane
・Fuzzy sphere

・The large-N limit of matrices satisfying 

If we keep only the leading order terms in the large-N limit,  
the chirality condition is satisfied.



Summary and Outlook

◆Geometric interpretation of matrix models? Emergent space-time?

◆This holds even at finite N, if the zeromode of Dirac op.  has a definite chirality. (3d)

◆ Dirac operators in higher dimensional cases?

◆Coherent states ⇒Classical geometry 

◆ Kahler structure can be expressed in terms of the matrix elements

◆Geometric structures are gauge invariant ⇔ observables in matrix models

◆The Hamiltonian can also be understood as a tachyon configuration on non-BPS branes

Zero eigenspace⇔ Stable D-branes after tachyon condensation

[Asakasa-Sugimoto-Terashima
+ Work in progress]


