Tensor network and a black hole
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Introduction
Recently the relation between Tensor Network of wave function in
guantum critical phase and discrete Anti de Sitter (AdS) space has
been suggested. (B.Swingle 2009)
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Tensor Network
Scalar || Vector Matrix Tensor

Tensor Network: graphical representation of the wave function of

guantum many-body system
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E.g. Tensor Network in 2-site Heisenberg model

2-site anti-ferromagnetic Heisenberg model.
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Ground state and its MPS representation
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A, B are the following vectors.
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Matrix Product States
Matrix Product States: Coefficient of the wave function is the product of

matrices. (gapped n-particle system)
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MERA

Tensor network of ground state wave-function of n-particle system in
guantum critical phase can be written by MERA (Multi-scale
entanglement renormalization ansatz) (G.vidal 2007)

4-site case:
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MERA and RG transformation

t direction: RG transformation (coarse-graining)
A_“projection” along the RG transformation (3-rank tensor)
¥ “disentangler” which removes the short-range entanglement

between each blocks (4-rank tensor)



Entanglement Entropy
Tensor Network is useful for the calculation of the entanglement entropy

Entanglement Entropy Sgg : Number of correlations between region A

and region B.

Seg = —Tr(paln py)

Pag =Trgp;,s : reduced density matrix

Pio: = |P)P| :density matrix of the total SYSIEM | m——f——




Entanglement Entropy of gapped system

Entanglement Entropy in (1+1)-dimensional gapped system is known
to be constant ( independent of system size L).
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Entanglement Entropy by Matrix Product States
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Entanglement Entropy In critical system

Entanglement entropy in (1+1)-dimensional critical system is not
constant but has the In L-dependence for the long range correlation
In the system.




Entanglement entropy in critical phase

tensor dimension : m
Number of boundary bonds (blue bonds) ~ InL

Total degree of freedoms at the boundary ~ m!™t

Entanglement Entropy: Sgp ~ Inm!™ ~1InL



Entanglement Entropy by AdS/CFT

Entanglement Entropy by AdS/CFT (S. Ryu and T. Takayanagi '06)

y . the minimal length in AdS3 space

G : Newton constant
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AdS space-time and MERA

MERA network =2 a discrete version of AdS space

(B. Swingle, 2009)
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MERA network & a discrete version of AdS space

(B. Swingle, 2009)

MERA with periodic boundary condition Anti de Sitter (AdS) space
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MERA at thermal system and AdS black hole
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MERA at thermal system == a discrete version of

AdS black hole




Thermo Field Dynamics Formalism

(Y. Takahashi and H. Umezawa, 1975)

the thermal state for temperature B

B
= the products of state in Hilbert space and that of copy (tilde) space
1 _BH ~ ~
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the Vacuum Expectation Value of the operator A

(A)s = (P(B)|AIY(B)) = TrAp(B)



Tensor Network of Thermal State In single site model

can be written as an Matrix Product States.

Thermal state at T = 20
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MERA at thermal system
By using Thermo Field Dynamics (Y. Takahashi and H. Umezawa, 1975)

, we suggest the following MERA at thermal system and the

interface (red line) corresponds to the AdS black hole horizon.
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Entanglement Entropy by thermal MERA
the degree of freedoms y at the interface (red line)

x=m S
A: number of bonds at the interface h AU .
m: tensor dimensions T-m .

the entanglement entropy Sgr at the interface

L: system size
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Hawking Temperature

Entanglement Entropy in (1+1)-dimensional CFT at finite temperature,

Sgr = In(£ smh( “)) = SIn(E

€ : UV-cutoff (p. calabrese and J. Cardy and J.S. Mech, 2004)
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By comparing these two formula, we can find that
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Estimation of the tensor dimension

Hawking Temperature in AdS-black hole
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By comparing the Hawking temperature with the temperature given by
MERA , we can get the relation between central charge and tensor
dimension near the interface
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Summary

Recently, the relation between AdS/CFT and MERA
becomes interesting topic.

We consider that how the black hole horizon appears in
the MERA network by using thermo filed dynamics (TFD)
formalism and it is appeared as the interface between
MERA and tilde-MERA network.

We can get the Hawking temperature scaling and the
relation between central charge and tensor dimension.



Future Works
Relation between two-dimensional MERA and AdS/CFT

(triangular lattice, square lattice...)

Relation between D-brane and top tensor of MERA (M. Nozaki,
S.Ryu and T. Takayanagi, 2012).
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