Anomaly mediated gaugino mass and path integral measure

Keisuke Harigaya ICRR, the Univ. of Tokyo

Harigaya, Ibe 1409.5029

Plan

- Heavy sfermion scenario
- How important anomaly mediation is
- Review derivation by conformal compensator
- "Puzzle" in superspace formulation
- Solution : Path-integral measure

Heavy sfermion scenario

~Theoretical background and motivation~

Why I consider SUSY

- Natural candidate of dark matter : lightest SUSY particle (LSP)
- Electroweak scale may be (nearly) obtained by dimensional transmutation Witten (1981)

Planck GUT	SUSY EW
V(H)	V(H)
No SUSY breaking	SUSY breaking effect

Heavy sfermion scenario

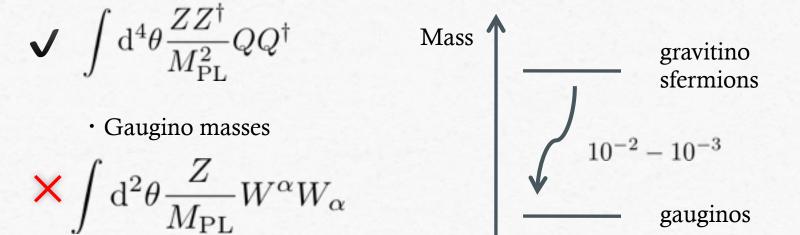
SUSY breaking field is charged or composite

• Soft scalar masses

Giudice, Luty, Murayama, Rattazzi (1998) Wells (2003), Ibe, Moroi, Yanagida (2006) Hall, Nomura (2012)

• Typical for dynamical SUSY breaking models

• No Polonyi problem (moduli problem)



only 1-loop effects: anomaly mediation etc.

Higgs mass and dark matter

 $(m_h)_{\text{tree}} < m_Z$ 140 $\tan\beta = 50$ 135 $(m_h)_{\rm obs} \simeq 125 \,\,{\rm GeV}$ 130 (GeV) 125 Suggest large SUSY breaking 120 1/11 $\alpha_3(m_Z) = 0.1184$ 115 Okada, Yamaguchi, Yanagida (1991) m,=173.1 GeV Ellis, Ridolfi, Zwirner (1991) Haber, Hempfling (1991) 110 Hahn, Heinemeyer, Hollik, Rzehak, Weiglein (2014) 105 10 100 1000 $m_0 = O(100) \text{ TeV}$ 10^{4} M_{SUSY}(TeV) $m_{1/2} = O(1)$ TeV Correct thermal DM abundance $M_2 < 3 \text{ TeV}$ e.g. Anomaly mediation \rightarrow wino LSP Hisano, Matsumoto, Nagai, Saito, Senami (2007)

Anomaly mediation

Randall, Sundrum (1999) Giudice, Luty, Murayama, Rattazzi (1998)

Always present in heavy sfermion scenario

$$M_{\lambda}^{\rm AM}/g^2 = \beta(g^2)m_{3/2}$$

- · Essential ingredient of heavy sfermion scenario
- · Quantum effect, theoretically interesting

Derivation of Anomaly mediation

~Anomalous breaking of Super Weyl symmetry~

Note: \cdot U(1) gauge theory with a massless vector-like matter

 $Q, \ \bar{Q}$

• One-loop analysis

So-called Super conformal formulation

Local Superconformal symmetry

Gauge fixing SUGRA invariant theory super conformal compensator

$$\phi = 1 + m_{3/2}\theta^2$$

Possible gaugino mass

 $\propto \int \mathrm{d}^2 \theta f(\phi) W^{\alpha} W_{\alpha}$

Ex. Consider a Pauli-Villars regularization

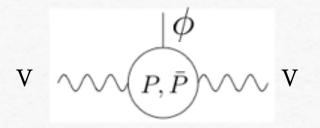
Randall, Sundrum (1999) Giudice, Luty, Murayama, Rattazzi (1998)

 $P, \ \bar{P}$ Pauli-Villars fields

$$\begin{split} K &= Q^{\dagger}Q + P^{\dagger}P + \bar{Q}^{\dagger}\bar{Q} + \bar{P}^{\dagger}\bar{P}, \\ W &= \phi\Lambda P\bar{P} & \Lambda \; : \text{Pauli-Villars mass term} \end{split}$$

(Dependence on the compensator is determined by superconformal symmetry)

Integrate down to



$$\mathcal{L}_{\text{eff}} \supset \frac{1}{16} \int d^2\theta \left(\frac{1}{g^2} + \frac{1}{8\pi^2} \ln \frac{\phi^2 \Lambda^2}{\mu^2} \right) W^{\alpha} W_{\alpha} \qquad \phi = 1 + m_{3/2} \theta^2$$
$$M_{\lambda}/g^2 = \frac{1}{16\pi^2} 2m_{3/2}$$

Similar for other regularization with cut off

 μ

Dimensional reduction : Boyda, Murayama, Pierce (2008)

Local Superconformal symmetry

Gauge fixing

SUGRA invariant theory

Superconformal symmetry must be exact

In gauge theory, dilatation is in general anomalous...

Counter term:

$$\int \mathrm{d}^2\theta \beta(g^2) \ln(\phi) W^{\alpha} W_{\alpha}$$

Superspace formulation

· So-called superspace formalism

Wess, Bagger (1992) and refs. therein

Similar thing as the compensator, i.e. chiral field with non-zero F term:

chiral density $2\mathcal{E} = e(1 - M^* \Theta^2) + \cdots$

EOM: $M^* = -3m_{3/2}$ e: determinant of vielbein

Naïve candidate:

 $\mathcal{L}_{\text{eff}} \supset \frac{1}{16} \int d^2 \Theta \left(\frac{1}{g^2} + \frac{1}{4\pi^2} \ln(2\mathcal{E})^{1/3} \right) W^{\alpha} W_{\alpha}$

 \mathcal{E} is not a scalar, but a density...

Superspace formulation?

So-called superspace formalism

Expression consistent with SUGRA invariance was not known (in local action) c.f. non-local 1PI action: Bagger, Moroi, Poppitz (2000)

Some people suspected vanishing anomaly mediation de Alwis (2008)

No decisive argument against the suspicion so far.

Considered as "Puzzle"

What I will explain

Let us revisit the anomaly mediation from the very beginning, step by step. Harigaya, Ibe (2014) arXiv: 1409.5029

1)How gaugino mass is controlled in SUGRA

• Approximate, classical super Weyl (SW) symmetry

2) How and how much the SW symmetry is broken at quantum level?

- Construct a path-integral measure
- Evaluate the anomaly of the SW symmetry

Find the expression of anomaly mediation consistent with SUGRA in superspace

Approximate SW symmetry

Extension of the Weyl & R symmetry to the superspace

Parameterized by a chiral superfield Σ

Ex. Kinetic terms

$$\int \mathrm{d}^2 \Theta(2\mathcal{E}) W^{\alpha} W_{\alpha}, \int \mathrm{d}^2 \Theta(2\mathcal{E}) (\mathcal{D}^{\dagger 2} - 8R) Q^{\dagger} Q$$

Invariant under the SW symmetry

SW symmetry is broken only by Planck-suppressed interactions

Absence of gaugino mass

$$2\mathcal{E} = e(1 - M^* \Theta^2) + \cdots$$

EOM:
$$M^* = -3m_{3/2}$$

Consider a SW transformation $\Sigma = F(x)\Theta^2$: F-type SW symmetry (FSW)

$$\delta_{\rm SW} M = 6F^*,$$

$$\delta_{\rm SW} \lambda^{\alpha} = \delta_{\rm SW} e = 0 \qquad \qquad \lambda : \text{gaugino}$$

 $eM\lambda\lambda$: forbidden by the approximate FSW symmetry Harigaya, Ibe (2014)

(Planck-suppressed FSW violating interaction $\rightarrow M_{\lambda} = O(m_{3/2}^2/M_{\rm PL})$

Anomaly of FSW symmetry

Path-integral measure contains quantum anomaly

Fujikawa (1979)

 $\int [\mathrm{D}f(Q,\cdots)] \times \exp[iS]$

FSW?

✓ FSW

Gaugino mass May be hidden here

Let us find an appropriate Path-integral measure and evaluate the anomaly of FSW

SUGRA invariant measure

Einstein scalar field

 $\psi(x)$

 $[D(e^{1/2}\psi)]$

Fujikawa, Yasuda (1984)

Chiral scalar field

$Q(x,\Theta) \quad [D(2\mathcal{E})^{1/2}Q]$ $\equiv [DQ_{\text{diff}}]$

Harigaya, Ibe (2014)

Anomaly of FSW symmetry

 $\int [D(2\mathcal{E})^{1/2}Q] \times \exp[iS]$



FSW invariant measure

$\delta_{FSW} \mathcal{E} = 6F\Theta^2 \mathcal{E}$ $\delta_{FSW} Q = -2F\Theta^2 Q$

$[D(2\mathcal{E})^{1/3}Q] \equiv [DQ_{\rm SW}]$

Harigaya, Ibe (2014)

Anomaly mediation

$$\int [DQ_{\text{diff}}] [DQ_{\text{diff}}^{\dagger}] \exp(iS)$$
$$= \int [DQ_{\text{SW}}] [DQ_{\text{SW}}^{\dagger}] \exp(iS + i\Delta S)$$
$$\checkmark \text{FSW} \qquad \textbf{X} \text{FSW}$$

$$\begin{split} \Delta S &= \frac{1}{16} \frac{1}{2\pi^2} \times \int \mathrm{d}^4 x \, \mathrm{d}^2 \Theta \, 2\mathcal{E} \ln(2\mathcal{E})^{1/6} \, W^{\alpha} W_{\alpha} + \mathrm{h.c.} \\ M_{\lambda}/g^2 &= \frac{1}{2} \frac{1}{2\pi^2} \ln(2\mathcal{E})^{1/6} |_{\Theta^2} = + \frac{1}{16\pi^2} \times 2m_{3/2} \\ \mathrm{Harigaya, \, Ibe} \, (2014) \end{split}$$

Anomaly mediation

$$\begin{split} &\int [DQ_{\text{diff}}] [DQ_{\text{diff}}^{\dagger}] \exp(iS) \\ &= \int [DQ_{\text{SW}}] [DQ_{\text{SW}}^{\dagger}] \exp(iS + i\Delta S) \\ &\checkmark \text{FSW} \qquad \thickapprox \text{FSW} \\ &\thickapprox \text{SUGRA} \stackrel{\text{counter !}}{\longleftarrow} \aleph \text{SUGRA} \\ &\Delta S = \frac{1}{16} \frac{1}{2\pi^2} \times \int d^4x \, d^2\Theta \, 2\mathcal{E} \ln(2\mathcal{E})^{1/6} \, W^{\alpha} W_{\alpha} + \text{h.c.} \end{split}$$

J

Harigaya, Ibe (2014)

Superconformal, measure

: Superconformal variant, need counter term $\propto \int \mathrm{d}^2\theta \mathrm{ln}\phi W^\alpha W_\alpha$

PV method :

|DQ|

Integrate our PV

[DQ][DP]

: Superconformal anomaly cancels, Only PV mass term matters

Summary

- Heavy sfermion scenario is a natural consequence of SUSY breaking with charged/composite particle
- Anomaly mediation is important there
- We have derived the anomaly mediation in superspace formulation of SUGRA
- Path-integral measure is important to derive the anomaly mediation in a consistent way with SUGRA



Cosmology

1) $m_{3/2} > 100 \text{ TeV}$: Gravitinos decay before BBN era

2) $\Omega_{\text{LSP}}h^2 = 0.12 \times \frac{m_{\text{LSP}}}{900 \text{GeV}} \frac{T_{\text{RH}}}{2 \times 10^9 \text{GeV}}$ Kawasaki, Kawasaki,

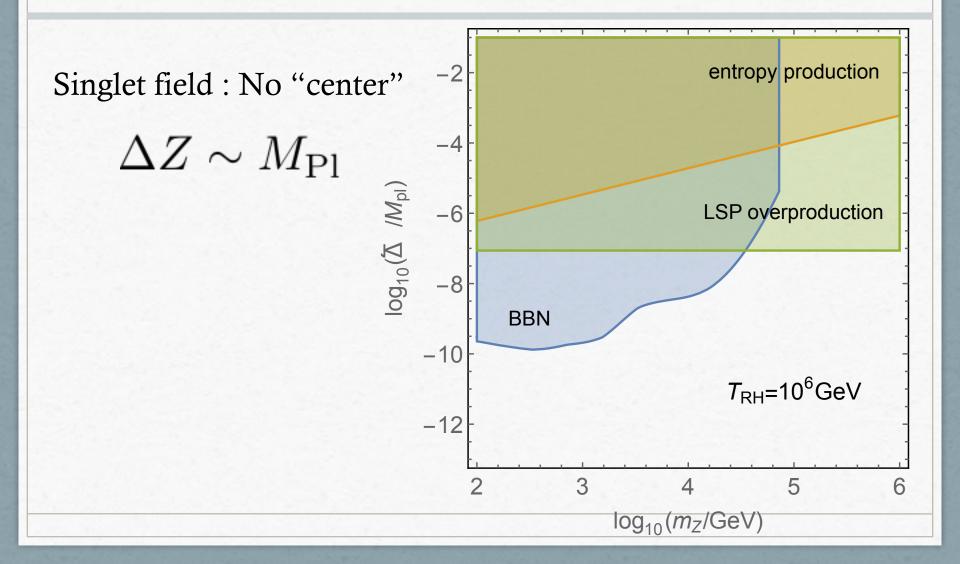
Kawasaki, Moroi (1995) Kawasaki, Kohri, Moroi (2005)

Thermal leptogenesis possible for $T_R > 10^9 \text{ GeV}$ Fukugita, Yanagida (1986)

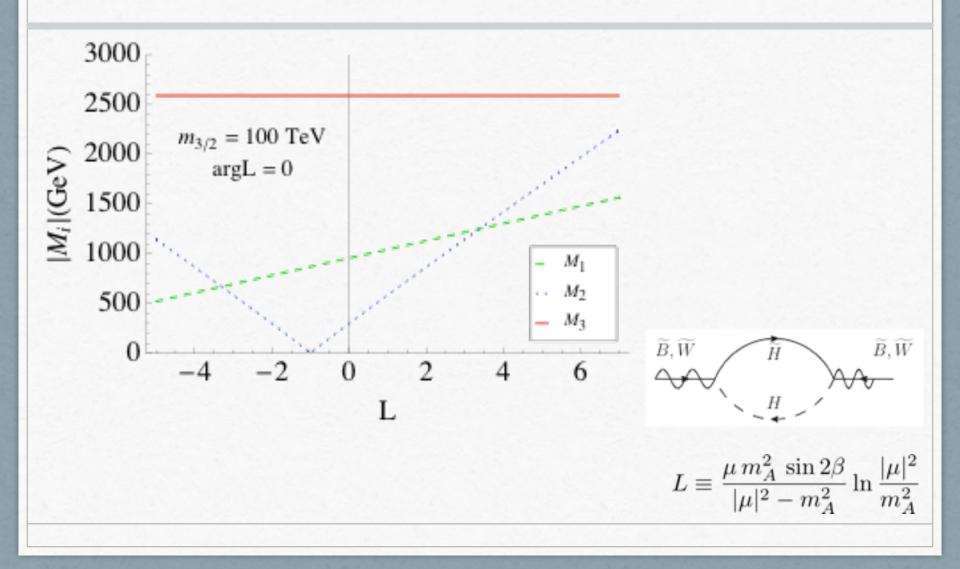
Giudice, Notari, Raidal, Riotto, Strumia (2004) Buchmuller, Bari, Plumacher (2005)

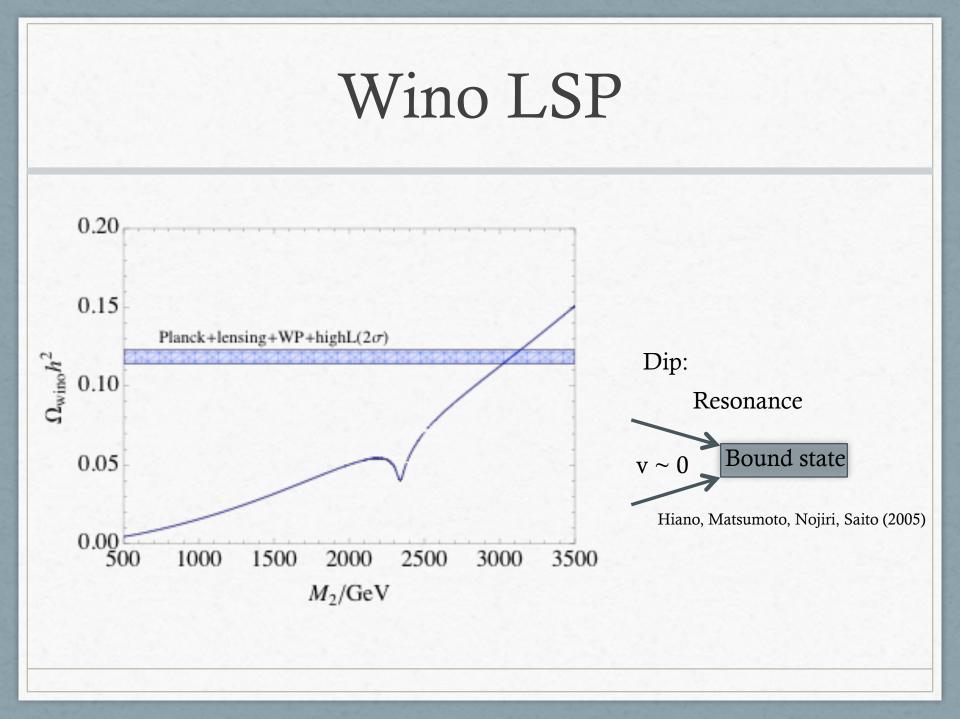
3) No Polonyi problem

Polonyi problem



Gaugino masses





Supergravity, 1PI

Bagger, Moroi, Poppitz (2000)

They found the 1PI term reproducing the anomaly of SW

$$\begin{split} \Delta S \simeq &-\frac{1}{16} \frac{1}{8\pi^2} \int \mathrm{d}^4 x \, \mathrm{d}^2 \Theta \, 2\mathcal{E} \, \frac{1}{\Box_+} \left(\mathcal{D}^{\dagger 2} - 8R \right) R^{\dagger} \, W^{\alpha} W_{\alpha} + \mathrm{h.c.} \\ & \text{Ex.} \quad U(1)_R \quad \text{anomaly} \quad \supset \frac{\partial_a b^a}{\Box} F \tilde{F} \end{split}$$

Super diffeomorphism invariant measure

$$\begin{split} Q' &= Q - \eta^{M}(x,\Theta)\partial_{M}Q , \qquad Z^{M} = (x^{m},\Theta^{\alpha}) \\ \mathcal{E}' &= \mathcal{E} - \eta^{M}(x,\Theta)\partial_{M}\mathcal{E} - (-)^{M} \left(\partial_{M}\eta^{M}(x,\Theta)\right)\mathcal{E} \\ Q_{\text{diff}} &= (2\mathcal{E})^{1/2}Q \\ Q'_{\text{diff}} &= Q_{\text{diff}} - \eta^{M}(x,\Theta)\partial_{M}Q_{\text{diff}} - \frac{1}{2}(-)^{M} \left(\partial_{M}\eta^{M}(x,\Theta)\right)Q_{\text{diff}} \\ & \left[DQ'_{\text{diff}}\right] = \left[DQ_{\text{diff}}\right] \times \exp\left[\operatorname{sTr}_{z',z}\mathcal{O}(z',z)\right] , \\ \mathcal{O}(z',z) &\equiv -\left[\eta^{M}\partial_{M} + \frac{1}{2}(-1)^{M} \left(\partial_{M}\eta^{M}\right)\right]\delta^{6}(z'-z) , \\ & \operatorname{sTr}\mathcal{O}(z',z) = \int d^{6}z d^{6}z' \delta^{6}(z'-z)\mathcal{O}(z',z) \end{split}$$

Super diffeomorphism invariant measure

$$\begin{split} \delta^{6}(z'-z) &= \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} d^{2}\tau \Psi_{-k,-\tau}(z')\Psi_{k,\tau}(z) \ ,\\ \Psi_{k,\tau}(z) &\equiv \exp(ikx+2i\tau\Theta) \\ \mathrm{s}\mathrm{Tr}\,\mathcal{O}(z',z) &= -\int \mathrm{d}^{6}z \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} d^{2}\tau \Psi_{-k,-\tau}(z) \left[\eta^{M}\partial_{M} + \frac{1}{2}(-)^{M} \left(\partial_{M}\eta^{M} \right) \right] \Psi_{k,\tau}(z) \\ \int \mathrm{d}^{6}z\Psi_{k,\eta}(z) \left[\eta^{M}\partial_{M} + \frac{1}{2}(-)^{M} \left(\partial_{M}\eta^{M} \right) \right] \Psi_{k,\eta}(z) &= \frac{1}{2}(-)^{M} \int \mathrm{d}^{6}z\partial_{M} \left[\Psi_{k,\eta}(z) \eta^{M}\Psi_{k,\eta}(z) \right] \\ &= 0 \\ \mathrm{s}\mathrm{Tr}\,\mathcal{O}(z',z) &= -\frac{1}{2} \int \mathrm{d}^{6}z \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} d^{2}\tau \left(\Psi_{k,\tau}(z) + \Psi_{-k,-\tau}(z) \right) \\ &\left[\eta^{M}\partial_{M} + \frac{1}{2}(-)^{M} \left(\partial_{M}\eta^{M} \right) \right] \left(\Psi_{k,\tau}(z) + \Psi_{-k,-\tau}(z) \right) \\ &= -\frac{1}{4}(-)^{M} \int \mathrm{d}^{6}z \int \frac{\mathrm{d}^{4}k}{(2\pi)^{4}} d^{2}\tau \partial_{M} \left[\left(\Psi_{k,\tau}(z) + \Psi_{-k,-\tau}(z) \right) \eta^{M} \left(\Psi_{k,\tau}(z) + \Psi_{-k,-\tau}(z) \right) \right] \\ &= 0 \ . \end{split}$$

Pauli-Villars regularization

PV mass term

 $\int d^2 \Theta 2 \mathcal{E} \Lambda P \bar{P}$

More relevant than kinetic term

 $\delta_{FSW} \mathcal{E} = 6F\Theta^2 \mathcal{E}$ $\delta_{FSW} P = -3F\Theta^2 P$ $[DP_{diff}] = [DP_{SW}]$

Only the measure of massless matter is relevant

Superconformal, measure

: Superconformal variant, need counter term $\propto \int \mathrm{d}^2\theta \mathrm{ln}\phi W^\alpha W_\alpha$

PV method :

|DQ|

Integrate our PV

[DQ][DP]

: Superconformal anomaly cancels, Only PV mass term matters