The Holographic Dual of "Entanglement of Purification"

Koji Umemoto (Kyoto Univ., YITP)

Collaboration with Tadashi Takayanagi (YITP) Based on arXiv:1708.09393

<u>Outline</u>

- Introduction
- Conjecture: $E_W^{(AdS)} \cong E_P^{(CFT)}$
- Consistency check
- A heuristic proof

Quantum states: **Vectors** in Hilbert space \mathcal{H} $|\Psi\rangle$ Pure states **Density matrices** acting on \mathcal{H} $\rho = \sum_{n} p_n |\Psi_n\rangle \langle \Psi_n|, \sum_{n} p_n = 1, p_n \ge 0$ Mixed states

- Lack of information (e.g. thermal, noise).
- A state of subsystems: $|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B \rightarrow \rho_A = \text{Tr}_B[|\Psi\rangle\langle\Psi|] \text{ on } \mathcal{H}_A$ reduced density matrices

Correlation:

$(A \cup B \equiv AB)$

ρ_{AB} on $\mathcal{H}_A \otimes \mathcal{H}_B$

How much do A and B correlate?

Information-theoretic measures of correlation.

For pure states $|\Psi\rangle_{AB}$:

Entanglement entropy

 $S(\rho_A) \coloneqq -\mathrm{Tr}\rho_A \log \rho_A \ (= S(\rho_B)).$

Quantum correlation or **entanglement**:

$$|\mathbf{EPR}\rangle_{AB} = \frac{1}{\sqrt{2}} (|\mathbf{0}\rangle_A \otimes |\mathbf{0}\rangle_B + |\mathbf{1}\rangle_A \otimes |\mathbf{1}\rangle_B)$$
$$= \frac{1}{\sqrt{2}} (|\theta\rangle_A \otimes |\theta\rangle_B + |\theta_{\perp}\rangle_A \otimes |\theta_{\perp}\rangle_B)$$

$$\begin{array}{l} |\boldsymbol{\theta}\rangle & \equiv \cos\boldsymbol{\theta} \; |\mathbf{0}\rangle - \sin\boldsymbol{\theta} |\mathbf{1}\rangle \\ |\boldsymbol{\theta}_{\perp}\rangle & \equiv \sin\boldsymbol{\theta} \; |\mathbf{0}\rangle + \cos\boldsymbol{\theta} |\mathbf{1}\rangle \end{array}$$

Quantum correlation or **entanglement**:

$$|\mathrm{EPR}\rangle_{AB} = \frac{1}{\sqrt{2}}(|\mathbf{0}\rangle_A \otimes |\mathbf{0}\rangle_B + |\mathbf{1}\rangle_A \otimes |\mathbf{1}\rangle_B)$$

 $S_A(=S_B)$ is the number of EPR pairs which is needed to produce/can be extracted from ρ_{AB} using local operations and classical communications. Entanglement entropy in AdS/ CFT

Ryu-Takayanagi formula

[Ryu-Takayanagi '06] [Hubeny-Rangamani-Takayanagi '07]

in CFT $S_A = \min_{\gamma_A} \frac{\operatorname{Area}(\gamma_A)}{4G_N}$ in AdS $A \bigvee_{\gamma_A^{\min}} \overline{A} \xrightarrow{\overline{A}} 2$: codimension-2 surfaces $1. \partial \gamma_A = \partial A$ $2. \gamma_A$ is homologous to A

Information-theoretic interpretation:

Number of EPR pairs \approx Area of RT-surface

Entanglement entropy

$$S(\rho_A) \equiv S_A = -\mathrm{Tr}\rho_A \log \rho_A \ (=S_B).$$

is a **unique** correlation measure **for pure states**. [Donald-Horodecki-Rudolph '02]

(If E(A:B) satisfies the axioms of measure of quantum correlations, $E(A:B) = S_A = S_B$ for pure states.) How about **mixed states**?

- Entanglement entropy is no more entanglement!
- $S_A \neq S_B$ in general.

In quantum information theory, **3 Various** measures of correlation for mixed states.

- Mutual information I(A:B),
- Squashed entanglement $E_{sq}(A:B)$,
- Entanglement of purification $E_P(A:B)$, etc.

RT-formula still works, but S_A has no interpretation!

We seek a new duality between correlation measures for mixed states and geometry, which will bring us an information-theoretic interpretation of AdS/CFT.

Our conjecture

We suggest a new holographic duality: $E_{W}^{(AdS)} \cong E_{P}^{(CFT)}.$ [Takayanagi-KU '17]

• *E_W*: Entanglement wedge cross section in AdS. [Takayanagi-KU '17]

• *E_P* : Entanglement of purification in CFT.

[Terhal-Horodecki-Leung-DiVincenzo '02]

[Note: *Nguyen-Devakul-Halbasch-Zaletel-Swingle* [1709.07424] also suggested the same duality.]

Entanglement wedge

Entanglement wedge

Entanglement wedge of two disjoint subsystems ρ_{AB}

RT-surface of S_{AB}

• Mutual information: $I(A:B) \equiv S_A + S_B - S_{AB}$

Entanglement wedges

• Mutual information: $I(A:B) \equiv S_A + S_B - S_{AB}$ $I(A:B) = 0 \Leftrightarrow \rho_{AB} = \rho_A \otimes \rho_B.$

Entanglement wedges

 $\underline{I(A:B)} = 0 \qquad \underline{I(A:B)} > 0$

Come from correlations

B

• Mutual information: $I(A:B) \equiv S_A + S_B - S_{AB}$ $I(A:B) = 0 \Leftrightarrow \rho_{AB} = \rho_A \otimes \rho_B.$

Definition of "entanglement wedge cross section"

<u>Step 1</u>. Draw an **entanglement wedge** M_{AB} (and forget all the other part of geometry):

Definition of "entanglement wedge cross section"

<u>Step 2</u>. Divide the boundary ∂M_{AB} into two subsets $\tilde{\Gamma}_A$ and $\tilde{\Gamma}_B$ such that $A, B \subset \tilde{\Gamma}_{A,B}$ respectively:

Definition of "entanglement wedge cross section"

<u>Step 3</u>. Find the **RT-surface** Σ_{AB}^{min} of $\tilde{\Gamma}_{A}$ (or $\tilde{\Gamma}_{B}$, either gives the same RT-surface):

Definition of "entanglement wedge cross section"

<u>Step 4</u>. Minimize the area of Σ_{AB}^{\min} over all possible divisions of ∂M_{AB} :

Definition of "entanglement wedge cross section"

<u>Step 5</u>. Its minimal area (divided by $4G_N$) is defined as the entanglement wedge cross section of ρ_{AB} .

<u>Formula example</u> in Poincaré pure AdS₃

Subsystems: $A = [a_1, a_2], B = [b_1, b_2]$

$$E_W(\rho_{AB}) = \frac{c}{6} \log[1 + 2z + 2\sqrt{z(z+1)}]$$

cross ratio: $z \equiv \frac{(a_2 - a_1)(b_2 - b_1)}{(b_2 - a_1)(b_1 - a_2)}$

Cf. mutual information : $I(A:B) = \log[z]$

 \therefore For z > 1 the E.W. is connecting A with B

The entanglement wedge cross section

- is contained in M_{AB} corresponding to ρ_{AB} .
- vanishes for $\rho_A \otimes \rho_B$.
- returns to RT-surface for pure states: $A \cup B = total$.

It may be a **geometrical counterpart** of **a measure of correlation!**

Entanglement of Purification

Purification for mixed states

Purification

s.t. $\operatorname{Tr}_{E}[|\Psi\rangle\langle\Psi|_{XE}] = \rho_{X}$.

Purification for mixed states

Example: Thermal state

Mixed:
$$\rho_X = \frac{1}{Z(\beta)} \sum_n e^{-\beta E_n} |E_n\rangle \langle E_n|_X$$

Purify
Pure: $|\mathbf{TFD}\rangle_{XE} = \frac{1}{\sqrt{Z(\beta)}} \sum_n e^{-\frac{\beta E_n}{2}} |E_n\rangle_X \otimes |E_n\rangle_E$

ThermoField Double State (TFD)

$$\operatorname{Tr}_{E}[|\mathbf{TFD}\rangle\langle\mathbf{TFD}|_{XE}] = \boldsymbol{\rho}_{X}.$$

Purification for mixed states

• Any mixed state ρ_X can be purified.

$$\forall \rho_X, \exists |\Psi\rangle_{XE}$$
 s.t. $\operatorname{Tr}_E[|\Psi\rangle\langle\Psi|_{XE}] = \rho_X.$
 \uparrow
"a purification of ρ_X "

• Purification $|\Psi\rangle_{XE}$ is **NOT unique**.

Entanglement of purification

Definition of "entanglement of purification"

 $E_{P}(\rho_{AB}) \coloneqq \min_{\substack{|\Psi\rangle_{AA'BB'} \in \mathcal{H}_{AB} \otimes \mathcal{H}_{A'B'} \text{ s.t.} \\ \operatorname{Tr}_{A'B'}[|\Psi\rangle\langle\Psi|_{AA'BB'}] = \rho_{AB}}} S(\operatorname{Tr}_{AA'}[|\Psi\rangle\langle\Psi|_{AA'BB'}])$ [Terhal-Horodecki-Leung-DiVincenzo '02]

Step1. Given a state ρ_{AB} , consider a purification : $|\Psi\rangle_{ABE}$

Step2. Divide the environmental system into two subsystems : $E \equiv A' \cup B'$

Step3. Calculate the **entanglement entropy** between AA'and BB': $S_{AA'} = S(Tr_{AA'}[|\Psi\rangle\langle\Psi|_{AA'BB'}])$ Step4. E_P is **the minimal** $S_{AA'}$ over all purifications

and all divisions of E.

Entanglement of purification

Meanings

- A total correlation measure between A and B.
 (NOT a measure of entanglement.)
- It allows an interpretation based on EPR pairs:

 $E_P(\rho_{AB})$ is the minimal number of EPR pairs which is needed to produce ρ_{AB} using only local operations and almost zero communications.

We suggest a new holographic duality: $E_{W}^{(AdS)} \cong E_{P}^{(CFT)}.$ [Takayanagi-KU '17]

• *E_W*: Entanglement wedge cross section in AdS. [Takayanagi-KU '17]

• *E_P* : Entanglement of purification in CFT.

[Terhal-Horodecki-Leung-DiVincenzo '02]

[Note: *Nguyen-Devakul-Halbasch-Zaletel-Swingle* [1709.07424] also suggested the same duality.]

$$E_W \cong E_P$$

- The calculation of *E_P* is hard (because of the optimization).
- We will check that the **properties of them** are consistent.

Properties of E_P

[Terhal-Horodecki-Leung-DiVincenzo '02]

[Bagchi-Pati '15]

- For pure states: $E_P(|\Psi\rangle_{AB}) = S(\rho_A) = S(\rho_B)$.
- For product states: $E_P(\rho_A \otimes \sigma_B) = 0.$
- $E_W(\rho_{AB}) \leq \min\{S(\rho_A), S(\rho_B)\}.$
- $E_W(\rho_{A(BC)}) \ge E_W(\rho_{AB}).$

We check these properties of E_W .

Returns to entanglement entropy for pure states. $E_W(\rho_{AB}) = S_A = S_B$ when ρ_{AB} is pure.

✓ Non-negative & vanishes only for product states. $E_W(\rho_{AB}) = 0$ if and only if $\rho_{AB} = \rho_A \otimes \rho_B$.

Less than the entanglement entropies. $E_W(\rho_{AB}) \leq \min\{S_A, S_B\}.$

✓ Never increasing upon **discarding ancilla**. $E_W(\rho_{A(BC)}) \ge E_W(\rho_{AB})$. From "Entanglement wedge nesting"

[Wall '12]

Quantum mutual information

$$I(A:B) \coloneqq S_A + S_B - S_{AB}.$$

 \square Larger than half of mutual information. $E_W(\rho_{AB}) \ge \frac{I(A:B)}{2}$.

M. Freedman and M. Headrick has proved this inequality using bit threads formalism in [Commun. Math. Phys. 352 (2017)].

Mutual information satisfies monogamy inequalityin holographic theories.[Hayden-Headrick-Maloney '11]

 $I(A:BC) \geq I(A:B) + I(A:C).$

$$(\therefore E_W(\rho_{A(BC)}) \ge \frac{I(A:BC)}{2} \ge \frac{I(A:B) + I(A:C)}{2})$$

$$\bigvee E_W(\rho_{A(BC)}) \ge \frac{I(A:B)}{2} + \frac{I(A:C)}{2} .$$

Remark: *E_P* always satisfies this inequality regardless of monogamy of M.I. [Bagchi-Pati '15]

A heuristic proof

Holographic picture of "purification"

- $E_P(\rho_{AB}): \bullet \operatorname{Tr}_E[|\Psi\rangle\langle\Psi|_{ABE}] = \rho_{AB} \Rightarrow M_{ABE} \supset M_{AB}.$
 - pure $\Rightarrow S_A = S_{\bar{A}}$
 - $\Rightarrow \partial M_{ABE}$ is closed & no holes in M_{ABE} .
 - RT formula $\Rightarrow \partial M_{ABE}$ is convex.

Dual to ho_{AB}

Dual to $|\Psi\rangle_{A\cup B\cup \Gamma_{AB}}$

A heuristic proof

 $= E_W(\rho_{AB}).$ $\therefore \text{The holographic definition of } E_P$ $\cong \text{ the definition of } E_W$

A heuristic proof

The surface/state correspondence of tensor network description of AdS/CFT justifies the purification step. [Swingle '09]

[Swingle '09] [Miyaji-Takayanagi '15] [Caputa-Kundu-Miyaji-Takayanagi-Watanabe '17]

 Σ : any closed convex surfaces

$$\begin{split} |\Psi(\Sigma)\rangle_{\Sigma} &\equiv U(\Sigma)|\Omega\rangle_{total}, \\ U^{\dagger}U &= I \\ &\clubsuit \\ \Sigma &= A \cup B \cup \Gamma_{AB}, \\ \mathrm{Tr}_{\Gamma_{AB}}[|\Psi(\Sigma)\rangle\langle\Psi(\Sigma)|] \\ &= \mathrm{Tr}_{\overline{AB}}[|\Omega\rangle\langle\Omega)|] = \rho_{AB}. \end{split}$$

We conjectured a new duality between information and geometry:

$$E_W \cong E_P.$$

Future works

[Work in progress with Bhattacharyya-Takayanagi]

- Calculation of E_P in holographic CFTs
- Proof of the conjecture
- Holographic counterpart of LOCC/LOq in AdS/CFT
- Dual of multipartite correlation measures

Thank you for your attention.

Appendix

Definition:

$$E(\rho_{(A\tilde{A})(B\tilde{B})}) \ge E(\rho_{AB}) + E(\rho_{\tilde{A}\tilde{B}}).$$

- It is thought to be a nature of **quantum** correlation.
- Monogamy $E(A:BC) \ge E(A:B) + E(A:C)$ immediately implies SSA.

Strong superadditivity of E_W $E_W(\rho_{(A\tilde{A})(B\tilde{B})}) \ge E_W(\rho_{AB}) + E_W(\rho_{\tilde{A}\tilde{B}}).$

For the third case: No crossing bridge

If M_{AB} is connected, then $M_{\tilde{A}\tilde{B}}$ is disconnected (and vice versa). Proof: If M_{AB} is connected, a + b < c + d should hold. Then, for $M_{\tilde{A}\tilde{B}}$, at least

the disconnected wedge $M'_{\tilde{A}} \cup M'_{\tilde{B}}$ is preferred.

- We expect *E_P* to be strong superadditive in holographic CFTs.
- It tell us some "quantum" aspect of holographic correlations.

Cf. Monogamy of mutual information.

Appendix

Additivity

• $E_P(\rho_{AB} \otimes \sigma_{\tilde{A}\tilde{B}})$ is known to be additive **if and only if** an optimal purification of $\rho_{AB} \otimes \sigma_{\tilde{A}\tilde{B}}$ is just a tensor product of optimal purifications of ρ_{AB} and $\sigma_{\tilde{A}\tilde{B}}$ (up to unitary equivalence).

"Regularized" E_P

"The minimal number of EPR pairs which is needed to produce ρ_{AB} using only local operations and vanishing communications."

$$E_{LOq}(\rho_{AB}) \coloneqq \prod_{r \in LOq} \left[\inf_{\Lambda \in LOq} D_{tr} \left(\rho_{AB}^{\otimes n}, \Lambda(\Phi_{2}^{+}n) \right) \right] = 0 \right\}.$$

$$\underline{\text{Thm}}. E_{LOq}(\rho_{AB}) = \lim_{n \to \infty} \frac{E_{P}(\rho_{AB}^{\otimes n})}{n}.$$

$$\underline{\text{Thm}}. E_{LOq}(\rho_{AB}) = \lim_{n \to \infty} \frac{E_{P}(\rho_{AB}^{\otimes n})}{n}.$$

 \therefore When it's additive, $E_{LOq} = E_P$.

Time-dependent case

• Replacing the "minimal surface Σ_{AB}^{\min} " \rightarrow "**extremal surface** Σ_{AB}^{ext} " following HRT formula.

[Hubeny-Rangamani-Takayanagi '07]

 All properties are proven by using of the "maximin surfaces" prescription discussed by A.Wall in [Class. Quant. Grav. 31 (2014) no.22, 225007]

Relative entropy of entanglement

$$E_{R}(\rho_{AB}) \coloneqq \min_{\sigma_{AB} \in \text{Seprable states}} R(\rho_{AB} || \sigma_{AB}).$$

where $R(\rho_{AB} || \sigma_{AB})$ is relative entropy.

• However... It must be less than I(A:B):

$$E_R(\rho_{AB}) \leq I(A:B).$$

Appendix

Origin of the monogamy of M.I.

• "Squashed entanglement":

$$E_{sq}(\rho_{AB}) \coloneqq \frac{1}{2} \min_{\operatorname{Tr}_{C}\rho_{ABC}=\rho_{AB}} I(A:B|C)$$
$$= \frac{1}{2} \min_{\operatorname{Tr}_{C}\rho_{ABC}=\rho_{AB}} [S_{AC} + S_{BC} - S_{ABC} - S_{C}].$$

- *E*_{sq} is the most promising measure of entanglement for mixed states, and known to be **always monogamous**.
- In our picture $E_{sq} = \frac{I}{2}$ in holography.
- This is discussed in [Hayden-Headrick-Maloney '11].