- Chiral ring and twisting

$$
Q_{A}:=\bar{Q}_{+}+Q_{-}, \quad Q_{B}=\bar{Q}_{+}+\bar{Q}_{-}
$$

$Q_{A}{ }^{2}=Q_{B}^{2}=0 \quad$ There are four choices of a pair of mutually anti-com. SUSY gen.
$\Rightarrow Q_{A}, Q_{B}, \bar{Q}_{A}, \bar{Q}_{B}$ (Witten's origical choice was \bar{Q}_{A} instead of Q_{A})
Def An operator Q is called chiral $\Longleftrightarrow\left[Q_{B}, Q\right]=0$
Similarly θ is called twisted chiral $\Longleftrightarrow\left[Q_{A}, Q\right]=0$

Rok The name comes from the fact that the lowest component ϕL^{2} of a chiral superfield Φ satisfies $[\bar{Q} \pm, \phi]=0$.
Similarly the lowest component v of a twisted chiral superfield U satisfies $\left[\bar{Q}_{+}, v\right]=\left[Q_{-}, v\right]=0$

Prop If Q is (twisted) chiral operator the world sheet derivatives of Q is Q_{B} (or Q_{A})-exact.

$$
\left(\begin{array}{rl}
(\because) \quad \partial_{+} \theta \sim[H+P, Q]=\left[\left\{Q_{+}, \bar{Q}_{+}\right\}, Q\right] \\
\left.J_{\text {acobi }}\right) & =\left\{\left[Q_{+}, Q\right], \overline{\left.Q_{+}\right\}+\left\{Q_{+},\left[\bar{Q}_{+}, Q\right]\right\}}\right. \\
{\left[Q_{B}, Q\right]=0 \sim} & =\left\{\left[Q_{+}, Q\right], \bar{Q}_{+}\right\}-\left\{Q_{+},\left[\bar{Q}_{-}, Q\right]\right\} \\
\left\{Q_{+}, \bar{Q}_{-}\right\}=0 & =\left\{\bar{Q}_{+},\left[Q_{+}, Q\right]\right\}+\left\{\bar{Q}_{-},\left[Q_{+}, Q\right]\right\} \\
& =\left\{Q_{B},\left[Q_{+}, Q\right]\right\}
\end{array}\right.
$$

$$
\begin{aligned}
\partial_{-} Q & \sim[H-P, Q]=\left[\left\{Q_{-}, \bar{Q}_{-}\right\}, Q\right] \\
& =\left\{\left[Q_{-}, Q\right], \bar{Q}_{-}\right\}+\left\{Q_{-}\left[\bar{Q}_{-}, Q\right]\right\} \\
& =\left\{\bar{Q}_{-},\left[Q_{-}, Q\right]\right\}-\left\{Q_{-}\left[\bar{Q}_{+}, Q\right]\right\} \\
& =\left\{\bar{Q}_{-},\left[Q_{-}, Q\right]\right\}+\left\{\bar{Q}_{-},\left[Q_{-}, Q\right]\right\} \\
& =\left\{Q_{B},\left[Q_{-}, Q\right]\right\}
\end{aligned}
$$

Hence, Q_{B}-cohomology (Q_{A}-cohomology) class of a (twisted) chiral op. does not change under the translation on the world sheet. We can write $\theta=[\theta(\bar{z}, \bar{z})] \Sigma$ cohomology lass
Prop If θ_{1} and θ_{2} are two (twisted) chiral operators then the product $Q_{1} \cdot Q_{2}$ is also a (twisted) chiral op.

The Q-cohomology classes of (twisted) chiral operators form L4 a ring. We call it chiral ring or twisted chiral ring.

$$
\left\{\phi_{i}\right\}_{i \in I} \quad \phi_{i} \cdot \phi_{j}=\phi_{k} C_{i j}^{k}+[Q, \wedge]
$$

(The singularity of $\lim _{w \rightarrow z} \phi_{i}(w) \phi_{j}(z)$ is Q-exact.)
Associativity of the operator product implies $C_{i l}^{m} C_{j k}^{l}=C_{l k}^{m} C_{i j}^{l}$
The structure constants $C_{i j}{ }^{k}$ of the chiral ring are captured by three point functions of topological theory on the Riemann sphere (genus 0 carve).

Up to now we assumed that our world sheet \sum is "flat".
In principle there is no obstruction to formulating susy theory on a curved Riemann surface Σ. by taking care of spin structure on Σ.
However, the action is not necessarily supersymmetric, since

$$
\delta S=\int_{\Sigma} \sqrt{h} d^{2} x\left(\nabla_{\mu} \varepsilon_{+} G_{-}^{\mu}-\nabla_{\mu} \varepsilon_{-} G_{+}^{\mu}-\nabla_{\mu} \bar{\varepsilon}_{+} \bar{G}_{-}^{\mu}+\nabla_{\mu} \varepsilon_{-} \bar{G}_{+}^{\mu}\right)
$$

$\varepsilon_{ \pm}, \overline{\varepsilon_{ \pm}}$: spinors on Σ that parametrize SUSY transformations
$G \pm^{\mu}, \bar{G}_{ \pm}^{\mu}$: Neother currents for SUSY.
$\delta S=0$ only for a covariantly const. spiners

$$
\nabla_{\mu} \varepsilon_{ \pm}=\nabla_{\mu} \bar{\varepsilon}_{ \pm}=0 \quad \text { (}{ }^{\text {covariantly const spinov }} \Leftrightarrow \text { Ricci-flat) }
$$

Hence, $\delta S \neq 0$ unless $\Sigma=T^{2}$ (torus)
One can make a modefication of the theory, called twisting. to preserve (half of) SUSY. \rightarrow Topological sigma model
Topological theory coincides with the original theory on flat space-time, but they are different on carved space-time,

$$
(\text { space-time }=\text { world sheet })
$$

We make use of R symmetry of $N=(2,2)$ theory which acts on the superfield $F\left(x, \theta^{\ddagger}, \bar{\theta}^{ \pm}\right)$as follows

$$
\begin{aligned}
& U(1)_{v}: e^{i \alpha F_{v}} \cdot \mathcal{F}=e^{i \alpha q_{v}^{k R c h a r g e ~ o f ~ F} F\left(x, e^{-i \alpha} \theta_{ \pm}, e^{+i \alpha} \bar{\theta}^{ \pm}\right)} \\
& U(1)_{A}: e^{i \beta F_{A}} \cdot F=e^{i \beta q_{A}} \mathcal{F}\left(x, e^{\mp i \beta} \theta_{ \pm}, e^{ \pm i \beta} \overline{\theta_{ \pm}}\right)
\end{aligned}
$$

$\int d^{2} x d^{4} \theta K\left(\Phi^{I}, \bar{\Phi}^{\bar{J}}\right)$ has $U(1)_{v} \times U(1)_{A}$ symmetry for any. Recharge assignment of Φ^{I}.
In the following we assume Φ^{I} has vanishing R-charge.

$$
\begin{array}{ll}
U(1) V & : \delta \psi_{ \pm}^{I}=-i \alpha \psi_{ \pm}^{I} \\
U(1) A & : \delta \psi_{ \pm}^{I}=\mp i \alpha \psi_{ \pm}^{I}
\end{array} \quad \text { infinitesimal trf. }
$$

We will consider the Euclidean version of the theory by $x^{0}=-i x^{2}$ then $z=x^{1}+i x^{2}$ is a complex coordinate of Σ.

After the Wick rotation, the Lorentz group $S 0(1,1)$ becomes $S O(2)_{E}=U(1)_{E}$ Sol

From the viewpoint if algebra, the twisting is done by "redefing"

$$
\widetilde{U(1)_{E}}=U(1)_{E} \times U(1)_{R} \quad \text { where we choose }
$$

$U(1)_{R}=U(1)_{V}$ for A-twist and $U(1)_{R}=U(1)_{A}$ for B-twist
At Lagrangicanlevel, this is regarded as a ganging of $R-s y m$. by introducing a coupling of the Neother current with the spin connection (= the gauge field for $U(1)_{E}$) on Σ.

On a curved world sheet the covariant derivative are

$$
\begin{aligned}
& D_{\bar{z}} \psi_{+}^{I}=\partial_{\bar{z}} \psi_{+}^{I}-\frac{i}{2} \omega_{\bar{z}} \psi_{+}^{I}+\Gamma_{K L}^{I} \partial \bar{z} \phi^{K} \psi_{+}^{L} \\
& D_{z} \psi_{+}^{I}=\partial_{z} \psi_{+}^{I}+\frac{i}{2} \omega_{z} \psi_{+}^{1}+\Gamma_{K L}^{I} \partial_{z} \phi^{K} \psi_{+}^{L}
\end{aligned}
$$

Noether currents of $U(1)_{V}$ and $U(1)_{A}$
$U(1) v \quad j_{v}^{z}=g_{I \bar{J}(\phi)} \bar{\psi}_{+}^{\bar{J}} \psi_{+}^{I}, j_{v}^{\bar{z}}=g_{I \bar{J}}(\phi) \bar{\psi}_{-}^{\bar{J}} \psi_{-}^{I}$
$U(1) A \quad j_{A}^{Z}=g_{I \bar{J}}(\phi) \bar{\psi}_{+}^{\bar{J}} \psi_{+}^{I}, j_{A}^{\bar{Z}}=-g_{I \bar{j}}(\phi) \bar{\psi}_{-}^{\bar{J}} \psi_{-}^{I}$ the kinetic term of fermions (after the wick rotation)

$$
\begin{aligned}
& S_{f, \text { kin }}=\int_{\Sigma_{g}} d^{2} z g_{I \bar{J}}(\phi)\left[\bar{\psi}_{+}^{\bar{J}} D_{z} \psi_{+}^{I}+\bar{\psi}_{-}^{\bar{J}} D_{\bar{z}} \psi_{-}^{I}\right] \\
& \begin{array}{c}
\text {-dependent } \\
\text { term. }
\end{array} \frac{i}{2} \int_{\Sigma_{g}} d^{2} z g_{I \bar{J}}(\phi)\left[\bar{\psi}_{+}^{\bar{J}} \omega_{z} \psi_{+}^{I}-\bar{\psi}_{-}^{\bar{J}} \omega_{\bar{z}} \psi_{-}^{I}\right] \\
& S_{f, \text { kin }}+\frac{i}{2} \int_{\Sigma_{g}}^{d^{2} z} \omega_{\mu} j^{\mu} V \sim i \int_{I_{g}}^{d^{2} z} g_{I \bar{J}}(\phi) \bar{\psi}_{+}^{\bar{J}} \omega_{\bar{z}} \psi_{+}^{I} \\
& S_{f, \text { kin }}+\frac{i}{2} \int_{\Sigma_{g}} d^{2} z \omega_{\mu} j^{\mu} A \sim i \int_{\Sigma_{g}}^{d^{2} z} g_{I \bar{J}}\left(\bar{\psi}_{+}^{\bar{J}} \omega_{\bar{z}} \psi_{+}^{I}-\bar{\psi}_{-}^{\bar{J}} \omega_{z} \psi_{-}^{I}\right)
\end{aligned}
$$

Hence

$N=(2,2)$ SUSY transformation

$$
\begin{array}{ll}
\delta \phi^{I}=\varepsilon_{+} \psi_{-}^{I}-\varepsilon_{-} \psi_{+}^{I}, & \delta \bar{\phi}^{\bar{I}}=-\bar{\varepsilon}_{+} \bar{\psi}_{-}+\bar{\varepsilon}_{-} \bar{\psi}_{+} \bar{I}^{I} \\
\delta \psi_{+}^{I}=2 i \bar{\varepsilon}_{-} \partial_{+} \phi^{I}+\varepsilon_{+} F^{I} & \delta \bar{\psi}_{+}^{I}=-2 i \varepsilon_{-} \partial_{+} \bar{\phi}^{\bar{I}}+\bar{\varepsilon}_{+} \overline{F^{I}} \\
\delta \psi_{-}^{I}=-2 i \bar{\varepsilon}_{+} \partial_{-} \phi^{I}+\varepsilon_{-} F^{I} & \delta \bar{\psi}_{-}=2 i \varepsilon_{+} \partial_{-} \bar{\phi}^{\bar{I}}+\bar{\varepsilon}_{-} \bar{F} \bar{I}
\end{array}
$$

on shell condition $F^{I}=\Gamma_{J K}^{I} \psi_{+}^{J} \psi_{-}^{K}, \bar{F}^{\bar{I}}=\Gamma_{\bar{J} \bar{K}}^{\bar{I}} \bar{\psi}_{-}^{\bar{J}} \bar{\psi}_{+}^{\bar{K}}$

$$
\delta=\varepsilon_{+} Q_{-}-\varepsilon_{-} Q_{+}-\bar{\varepsilon}_{+} \bar{Q}_{-}+\bar{\varepsilon}_{-} \bar{Q}_{+} \text {ordering! }
$$

Neother currents

$$
\begin{array}{ll}
G_{ \pm}^{0}=2 g_{I \bar{J}} \partial_{ \pm} \bar{\phi}^{\bar{J}} \psi_{ \pm}^{I}, & G_{ \pm}^{1}=\mp 2 g_{I \bar{J}} \partial_{ \pm} \bar{\phi}^{\bar{J}} \psi_{ \pm}^{I} \\
\bar{G}_{ \pm}^{0}=2 g_{I \bar{J}} \bar{\psi}_{ \pm}^{\bar{J}} \partial_{ \pm} \phi^{I} & G_{ \pm}^{1}=\mp 2 g_{I \bar{J}} \bar{\psi}_{ \pm} \partial_{ \pm} \phi^{I}
\end{array}
$$

A-twist Change the notation according to $U(1)_{E}^{\prime}$-spin L^{12}

$$
x^{I}=\psi_{-}^{I}, \bar{X}^{\bar{I}}=\bar{\psi}_{+}^{\bar{I}}, \rho_{z}^{\bar{I}}=\bar{\psi}_{-}^{\bar{I}}, \rho_{\bar{z}}^{I}=\psi_{+}^{I}
$$

$Q_{A}=\bar{Q}_{+}+Q_{-}$becomes a scalar supercharge "BRST"-op.
Q_{A} - variation (BRST transformation) $\quad\left\{\begin{array}{l}\varepsilon_{-}=\bar{\varepsilon}_{+}=0 \\ \varepsilon_{+}=\bar{\varepsilon}-\end{array}\right.$

$$
\begin{aligned}
\delta \phi^{I}=\varepsilon \chi^{I}, \delta \bar{\phi}^{\bar{I}} & =\varepsilon \bar{\chi}^{\bar{I}}\left\{\varepsilon_{+}=\bar{\varepsilon}-\right. \\
\delta \rho_{z}^{\bar{I}}=\varepsilon\left(2 i \partial_{z} \bar{\phi}^{\bar{I}}+\bar{F}_{z}^{\bar{I}}\right) & =\varepsilon\left(2 i \partial_{z} \bar{\phi}^{\bar{I}}+\Gamma_{\bar{J}}^{\bar{I}} \bar{\chi}^{\bar{J}} \rho_{z} \bar{I}\right) \\
\delta p_{\bar{z}}^{I}=\varepsilon\left(-2 i \partial_{\bar{z}} \phi^{I}+F_{\bar{z}}^{I}\right) & =\varepsilon\left(-2 i \partial_{\bar{z}} \phi^{I}+\Gamma_{J K}^{I} \chi^{J} p_{\bar{z}}^{K}\right)
\end{aligned}
$$

(on-shell)
Twisted chiral ring $=$ BRST cohomology of A-twisted mode

B-twist Change of the notation

$$
\rho_{z}^{I}=\not \chi_{1 / 2}^{I} \psi_{-}^{I}, \quad \rho_{\bar{z}}^{I}=\not 2 \psi_{+}^{I}, \quad x_{1}^{\bar{I}}=\bar{\psi}_{+}^{\bar{I}}, \chi_{2}^{\bar{I}}=\bar{\psi}_{-}^{\bar{I}}
$$

more convenient to take

$$
\bar{\eta}^{\bar{I}}=\chi_{1}^{\bar{I}}+x_{2}^{\bar{I}}, \quad \theta_{I}=g_{I \bar{J}}\left(x_{1}^{\bar{J}}-\chi_{2}^{\bar{J}}\right)
$$

$Q_{B}=\bar{Q}_{+}+\bar{Q}_{-}$becomes a scalar supercharge
Q_{B} variation $\left(\varepsilon_{+}=\varepsilon_{-}=0, \quad \bar{\varepsilon}-=-\bar{\varepsilon}_{+}=\varepsilon\right)$

$$
\begin{aligned}
& \delta \phi^{I}=0, \quad \delta \bar{\phi}^{\bar{I}}=\bar{\eta}^{\bar{I}}, \quad \delta \rho_{z}^{I}=i \partial z \phi^{I}, \quad \delta \rho_{\bar{z}}^{I}=i \partial \bar{z} \phi^{I} \\
& \delta \theta_{I}=\delta g_{I \bar{J}}\left(X_{1}^{\bar{J}}-\chi_{2}^{\bar{J}}\right)-g_{I \bar{J}}\left(2 \bar{F}^{\bar{J}}\right) \quad \overline{\bar{F}} \overline{\bar{J}}=\Gamma_{\overline{\bar{K}} \overline{\bar{J}}}^{\bar{J}} \chi_{2}^{\bar{K}} \chi_{1}^{\bar{L}} \\
& =g_{I \bar{J}}\left(\Gamma_{\bar{K} \bar{J}}^{\bar{L}} \eta^{\bar{K}}\left(X_{1}^{\bar{L}}-\chi_{2}^{\bar{L}}\right)-2 \bar{F}^{\bar{J}}\right)=0, \quad(\text { on shell })
\end{aligned}
$$

Chiral ring $=$ BRST cohomology of B-twisted model.

In quantum theory R-sym has a chiral anomaly due to fermion zero modes.
$U_{V}(1)$ has no anomaly (fermion zero modes balance)
UA(1) has anomaly proportional to $C_{1}(M)$
(the difference of the number of zero modes $1 s t$ chern class of M

$$
\propto C_{1}(M) \quad \sim \operatorname{Tr}\left(\frac{i}{2 \pi} R_{i j}\right)
$$

Hence, the B-model is well-defined only for
${ }^{\uparrow}$ Ricci 2-form.
the Calabi-Yau target space.
$C_{1}(M) \longrightarrow M$ has SU (n) holonomy $\rightarrow K_{M}$ is trivial

$$
K_{M}^{-1} \sim \operatorname{det} T M \quad \rightarrow{ }^{\exists} \Omega \text { : non-vanishing hol. } n \text {-form }
$$

