Brief review on complex manifolds and Kähler geometry
［Ref］P．Candelas，in Superstrings＇ 87
（Trieste Spring School）
Def A complex manifold is a topological space M with a holomorphic atlas
$\exists\left(U_{i}, Z_{i}\right)$ a collection of charts $M=\bigcup_{i \in I} U_{i}$
$Z_{i}: U_{i} \longrightarrow V_{i} \subset \mathbb{C}^{n}$ one to one

$$
\begin{array}{ll}
U_{j} \cap U_{k} \neq \phi & V_{k j}=\left\{z_{k}(p) \mid p \in U_{j} \cap U_{k}\right\} \subset V_{k} \\
& V_{j k}=\left\{z_{j}(p) \mid p \in U_{j} \cap U_{k}\right\} \subset V_{j}
\end{array}
$$

$\tau_{j k}:=Z_{j} \cdot Z_{k}^{-1}: V_{k j} \longrightarrow V_{j k}$ bi holomorphic
$\operatorname{dimec} M=n$
（双正则同相写像）

Example Complex projective space $\mathbb{C} \mathbb{P}^{n}(n \text { 次元複素射影空間 })^{2}$ $M=\mathbb{C}^{n+1} \backslash\{0\} / \sim$ ：the set of complex lines through the origin
$\zeta=\left\{\left(\lambda S_{0}, \lambda S_{1}, \cdots, \lambda \zeta_{n}\right): \lambda \in \mathbb{C}\right\}$ complex line （ $\left.\zeta_{0}, \zeta_{1}, \cdots, \zeta_{n}\right)$ homogeneous coordinates of ζ ．

$$
\begin{aligned}
& \left(\zeta_{0}^{\prime}, \ldots \zeta_{n}^{\prime}\right) \sim\left(\zeta_{0}, \cdots, \zeta_{n}\right) \Leftrightarrow \quad \Longleftrightarrow_{j}^{\exists} \lambda \in \mathbb{C}^{x} \quad \zeta_{i}^{\prime}=\lambda \zeta_{i} \\
& U_{j}=\left\{\zeta \mid \zeta_{j} \neq 0\right\} \quad U_{j} \\
& \zeta \in U_{0} \quad \zeta=\left(1, z^{\prime}, \cdots, z^{n}\right) \quad z^{\mu}=\frac{\zeta_{\mu}}{\zeta_{0}}
\end{aligned}
$$

inhomogeneous coordinates of S

$$
z_{j}: \quad \zeta \rightarrow z_{j}(\zeta)=\left(z_{j}^{0}, \cdots z_{j}^{j-1}, z_{j}^{j+1}, \cdots z_{j}^{n}\right)
$$

$$
U_{j} \cap U_{k} \neq 0 \quad \Rightarrow \quad z_{j}^{k}=\frac{1}{z_{k}^{j}} \quad z_{j}^{\mu}=\frac{z_{k}^{\mu}}{z_{k}^{j}} \quad(\mu \neq j, k)
$$

$\tau_{j k}: z_{k} \rightarrow z_{j}$ is biholomorphic
Def M : an n-dim complex manifold
$\left\{z^{\mu}\right\}$ local coordinates on a chart U
Define $(1,1)$-tensor J by

$$
J=i d z^{\mu} \otimes \frac{\partial}{\partial z^{\mu}}-i d z^{\bar{\mu}} \otimes \frac{\partial}{\partial z^{\bar{\mu}}}
$$

J is called almost complex structure.
Rok If we introduce real coordinates by $z^{\mu}=x^{\mu}+i y^{\mu}$

$$
J=d x^{\mu} \otimes \frac{\partial}{\partial y^{\mu}}-d y^{\mu} \otimes \frac{\partial}{\partial x^{\mu}}: \text { manifestly real } \begin{aligned}
& \text { tensor }
\end{aligned}
$$

$$
J=\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right) \quad \text { in }(\bar{z}, \bar{z}), \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \text { in }(x, y)^{4}
$$

With an almost complex structure $J, \quad\left(J^{2}=-1\right)$
we can define two projections

$$
\begin{aligned}
& P_{m}^{n}=\frac{1}{2}\left(\delta_{m}^{n}-i J_{m}^{n}\right), \quad Q_{m}^{n}=\frac{1}{2}\left(\delta_{m}^{n}+i J_{m}^{n}\right) \\
& P^{2}=P, \quad Q^{2}=Q, \quad P Q=0, \quad P+Q=1
\end{aligned}
$$

In the frame which diagonalizes $J, \quad P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \quad Q=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$
By P and Q, we can define projections to the holomorphic and the anti-holomorphic components of tensors We can regard $J \in E n d\left(T_{x} M\right), J\left(\frac{\partial}{\partial x^{m}}\right)=J_{m}{ }^{n} \frac{\partial}{\partial x^{n}}$ $\uparrow(1,1)$-tensor

Def A complex manifold M is called Hermitian if it is endowed with a metric which satisfies

$$
g_{m n}=J_{m}^{k} J_{n}^{l} g_{k l} \Longrightarrow\left\{\begin{array}{r}
d s^{2}=g_{\mu \bar{v}} d z^{\mu} \otimes d z^{\bar{v}} \\
g_{\mu v}=g_{\bar{\mu} \bar{v}}=0
\end{array}\right.
$$

Rm For any metric $h_{m n}$
$g_{m n}=h_{m n}+J_{m}^{k} J_{n}^{\ell} h_{k l}$ is hermitian.

$$
\begin{array}{r}
(\because) \quad J_{m}^{k} J_{n}^{l}\left(h_{k l}+J_{k}^{i} J_{l}^{j} h_{i j}\right) \\
=J_{m}^{k} J_{n}^{l} h_{k l}+(-1)^{2} h_{m n}
\end{array}
$$

Prop If $g_{m n}$ is hermitian ($J_{m}^{k} g_{k n}=-J_{n}^{j} g_{m j}$)

$$
J_{m n}:=J_{m}^{k} g_{k n} \text { is anti-symmetric }
$$

On a hermitian manifold
the almost complex structure defines a natural 2-form

$$
\begin{aligned}
& J=\frac{1}{2} J_{m n} d x^{m} \wedge d x^{n}=\frac{i}{2}\left(g_{\mu \bar{v}} d z^{\mu} \wedge d z^{\bar{v}}\right. \\
& =i g_{\mu \bar{v}} d z^{\mu} \wedge d z^{\bar{v}} \quad-g_{\left.\bar{v} \mu d z^{\bar{v}} \wedge d z^{\mu}\right) ~}^{\text {}}
\end{aligned}
$$

Up to now, we started with a complex manifold.
New let us ask a question; if a real $2 n$-dim manifold M admits a globally defined $(1,1)$ tensor $J_{m}{ }^{n}$ s.t $J^{2}=-1$, M is a complex manifold?

Def If a real manifold M admits a globally defined (1.1)-tensor J_{m}^{n} with $J^{2}=-1$, Misc called almost complex manifold. If in addition M admits a metric $g_{m n}$ with $g_{m n}=J_{m}^{k} J_{n}^{\ell} g_{k \ell}$ (or $J_{m n}=-J_{n m}$) M is called almost hermitian manifold.

Thy (Newlander-Nirenberg)
An almost complex str. $J_{m}{ }^{n}$ defines a complex structure the almost complex str, comes from a complex manifold
\Longleftrightarrow the $N_{\text {ijenhuis tensor }} N_{i j}{ }^{k}(J)=0$ vanishes
Def $\quad N_{i j}{ }^{k}(J)=0 \Longleftrightarrow J$ is integlable.

Def If an almost complex str J is integlable we call J complex str.
Rok The almost complex str, of a complex manifold is integlable $\Rightarrow J$ is a complex str.

Thm On a hermitian manifold, there is a unique connection with the properties
(1) The covariant derivatives of $g_{m n}, J_{m}{ }^{n}$ vanish.
\Rightarrow The projections P and Q are covariantly const. (compatible with pallarel transport)
(2) The mixed components of the torsion $\Gamma_{[m n]}{ }^{k}=\Gamma_{m n}{ }^{k}-\Gamma_{n m}^{k}$ vanish.
We call it hermitian connection.

Prop The hermitian connection Γ is "pure" in its indices, namely only non-vanishing components are $\Gamma_{\mu v}^{k}$ and $\Gamma_{\bar{\mu}}^{\bar{k}} \bar{v}$.
(\because) Since P and Q are covariantly constants

$$
\Gamma_{\mu v}{ }^{\bar{k}}=\Gamma_{\mu \bar{v}}{ }^{k}=\Gamma_{\bar{\mu} v}^{\bar{k}}=\Gamma_{\bar{\mu} \bar{v}}^{k}=0
$$

Since the mixed components of the torsion vanish,

$$
\Gamma_{\bar{v} \mu}^{k}=\Gamma_{v \bar{\mu}}{ }^{\bar{n}}=0
$$

Recall that $\nabla_{m} g_{n r}=\partial_{m} g_{n r}-\Gamma_{m n}^{k} g_{k r}-\Gamma_{m r}^{k} g_{n k}=0$
Jake $(m, n, r)=(\mu, v, \bar{p}) \quad \partial_{\mu} g_{v} \bar{p}=\Gamma_{\mu v}^{k} g_{k} \bar{p}$

$$
\therefore \quad \Gamma_{\mu v}^{k}=g^{k \bar{p}} \partial_{\mu} g_{v} \bar{p}
$$

For a hermitian connection the structure of Riemann 10 curvature tensor is also much simplified.
Namely only non-vanishing components are those that are "mixed" in both the first and the second pairs of indices

$$
\begin{aligned}
& R_{\mu \bar{v} p \bar{\sigma},} R_{\bar{v} \mu p \bar{\sigma},} R_{\mu v} \bar{\sigma} \rho, R_{\bar{v} \mu \bar{\sigma} p} \\
& R_{\mu \bar{v} \bar{p}} \bar{\sigma}=-R_{\bar{v} \mu \bar{p}} \bar{\sigma}=\partial_{\mu} \Gamma \bar{v} \bar{p} \\
& R_{\mu \bar{v} k \bar{p}}= \\
& =-R_{\mu \bar{v} \bar{p} k}=-g_{k} \bar{\sigma} \partial_{\mu} \Gamma_{\bar{v} \bar{p}} \bar{\sigma} \\
& = \\
& =
\end{aligned}
$$

Recall that a hermitian manifold has the natural two-form $\ 1$

$$
J=\frac{1}{2} J_{m n} d x^{m} \wedge d x^{n}
$$

Def A hermitian manifold is Kähler if $d J=0$
In this case J is called Kähler form.
Rm All one-dimensional complex manifolds are Kähler, since $d J$ is a three form and hence vanishes.
Since $d J=\partial J+\bar{\partial} J=i \partial_{k} g_{\mu \bar{v}} d z^{n} \wedge d z^{\mu} \wedge d z^{\bar{v}}$

- $i \partial_{\bar{p}} g_{\mu \bar{v}} d z^{\mu} \wedge d z^{\bar{p}} \wedge d z^{\bar{v}}$
$\partial_{\mu} g_{\mu \bar{v}}=\partial_{\mu} g_{n \bar{v}}, \quad \partial_{\bar{p}} g_{\mu \bar{v}}=\partial_{\bar{v}} g_{\mu \bar{\sigma}} \quad$ for Kählev
which means on each chart \dot{j}_{j} (namely locally)
${ }^{\exists} \varphi_{j}$ (potential on U_{j}) sit $\quad g_{\mu \bar{v}}=\partial_{\mu} \partial_{v} \varphi_{j}$ or $J=i \partial \bar{\partial} \varphi_{j}$

Rok The potential function φ_{j} on each U_{j} cannot L^{12} come from a globally defined function on M, if M is compact. $\quad \varphi$ on M st $\varphi_{j}=\left.\varphi\right|_{U_{j} \text { " }}$
(\because)

$$
\begin{aligned}
J \wedge \cdots \wedge J= & i^{n} n!\sqrt{g} d z^{\prime} d \bar{z}^{-} \cdots d z^{n} d \bar{z}^{n} \\
M: \text { compact } & \int_{M} J \wedge \cdots n J \propto \operatorname{vol}(M)
\end{aligned}
$$

On the other hand, if $J=d \varphi$ (globally) $J \wedge-n J=d(*)$
$\therefore \quad \int_{M} J \cap \cdots \cap J=0$ by Stokes the.
Since $\partial_{n} g_{\mu \bar{v}}=\partial_{\mu} g_{n \bar{v}}, \partial_{\bar{p}} g_{\mu \bar{v}}=\partial \bar{v} g_{\mu \bar{p}}$ for Kähler manifold, the hermitian connection is torsion free $\Gamma_{\mu v}^{n}=\Gamma_{v \mu}^{n}, \Gamma_{\bar{\mu} \bar{v}}^{\bar{n}}=\Gamma_{\bar{v}}^{\bar{\mu}}$ and coincides with the Levi-Civita connection //

