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2 Splitting Property of Delta Function

We define a delta function as follows,
S(w,w) = S wW" = 3w (2.1)

where w and w’ are complex coordinates. If f(w) has no pole without the
origin, the delta function satisfies

flw) = f, 22
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d(w,w") f(w), (2.2)

where Cjy denotes a contour which encircles the origin along the unit circle.
Let us consider the integration along a left unit half circle, the path of
which are depicted in Fig. 1. We find that

dw' N1 1 1 .. ((n—FKk)r
/CL w0 (w, w') SW szénn— i sm( 5 (2.3)

This implies that the delta function of Eq. (2.1) is not a delta function if
the integration path is the left half only.

Figure 1:
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We perform the left integration of Eq. (2.3) once more. We find that, if
m+mn # 0,
dw m—1 dw/ m /
/CL w /CL —w"d(w, w)
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Lt g ()

T™Tm+n 2

IS ! jsin (%) sin ((k - ”;_ ”)”) L (2.4)

us k#£0, m+n k(k —m-—-n

if m+n=20,

1 1 . 5 (knm
= — —sin” | — . 2.5
4—1—;0]{2811&(2) (2.5)
Using the formula

3 ;_n) sin (%) sin (@) = %25”,0, (2.6)

m#£0,n m(m
we can calculate the infinite series and find the following equation,
dw L dw' o, dw
e m— ™S A il m—}—nfl. 2.7
Jou 37" fo g8 w) = [, g (2.7)

Therefore, if f(w) and g(w) have the Laurent expansions within the
unit circle around the origin, we find

dw

oy o oy @B, 0) = [, S8 fwig(w). (28)

Thus, the delta function of Eq. (2.1) behaves as a delta function in the
double left integrations. From Egs. (2.1) and (2.8), other formulas are
given by

dw
~—f
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[ 2 fwg(w)sw,w) = [, 22 fug(w)

2mi JCr 2mri
dw duw’ , ,
/CL o Jon Qm.f(w)g(w )o(w, w’) = 0. (2.9)
These formula of Egs. (2.8) and (2.9) are generalizations of the formulas
for the delta function with the Neumann boundary condition [Takahashi
and Tanimoto].




3 Marginal Solutions

We consider the ghost field ¢(w), and a U(1) current J(w), namely a di-
mension one primary field. These fields are expanded by

c(w) =Y c,w™, J(w)=>jw " (3.1)
n n
The commutation relations of the components j, are given by

From Eq. (3.2), the commutation relation of J(w) becomes

[J(w), J(w')] = =0 (w, w'). (3-3)
Here, we introduce the following operators,
d d
Vlf) = [, s f e T(w), Ve(f) = [, = Fw)e(w),
d d
Culf) = [, s few), Ca() = [, = flwew),  (34)

where f(w) is a holomorphic function within the unit circle except the
origin, and f(%i) = 0.
From the delta function formulas, it follows that

Qo)) = — [, o0 [ 8 pw)gfus)eu)eu)ud e, w)
= w)g(w)ede(w)
= —{Qs, CL(f9)}- (3.5)

Similarly, we find that

{Ve(/), Va(9)} = —{@s, Cr(f9)},
{VL(f), Vr(9)} = 0.



Let us consider the fields defined by u!M(w) = w"™" — (=) ="
and v (w) = w" " 4 (=1)"Pw ™", where n is an integer. If w changes

w' = —1/w, the fields is transformed into
dw\"
h h
) = - (G) wlw)
dw \"
h h
Ww) = (G) W) (339

The N-string vertex is defined by gluing the boundaries |w;| = 1 (i =
1,2,---,N) of N unit disks with the identifications,

W; Wiy = —1, for ‘Z7| ,Rezi S 1, (39)

where wy 11 denotes wy. If ¢(w) is a dimension h primary field, one forms

of dwul~"¢ and dwv("*Y¢ are transformed into

dwiul, " (wisn)p(wirn) = —dwiul, " (wi)g(w;),
—h+

dwi 105 " (i) d(wi) = dwiv" Y (wy)d(w;). (3.10)

Then, considering J(w) and c(w) as the primary fields, we obtain the
following equations related to * product of string fields:

(V(FYA) * B = (—)AA x (Vi (FMB), (3.11)
(Cr(F{)A) + B = —(—)Ax (CL(FP)B), (3.12)

where A and B are arbitrary string fields and |A| is 0 if A is Grassmann
even and 1 if it is odd, and Fj(Eh)(w) is defined by

F"(w) = Y apul? (w),

F (w) =3 o™ (w), (3.13)
Similarly, we find that
VL (FNY = Ve(FY I,  CL(FPYI = —Cr(F)I, (3.14)

where I denotes the identity string field. Here, the function F’ J(rz) (w) must

satisfy FJ(FQ)(ii) = 0, because the ghost ¢(w) has the midpoint singularities
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on the identity string field, which are evaluated by the oscillator expressions
as

w— wd w? 1+ w? 4+ wt

Awlll) = =y p Tagp ten

+ c,nv,(fl) w)||1).
Crar el w)| 1D




Now, we obtain a classical solution for the U(1) current J,

1 2
U, = diag <aiVL(F£1>) + 54 c(FY )) I, (3.15)

where a; are parameters and i corresponds to the Chan-Paton indices. The
function F(©)(w) satisfies FV)(+i) = 0. From Egs. (3.5), (3.11), (3.12) and
(3.14), we find that the classical solution satisfies the equation of motion,

Q¥ + ¥, * U, = 0. The solution for FEI)(w) = uél) + ugl) are give by
Takahashi and Tanimoto. Indeed, we find that F EO)(j:z') =0 and

F@(w)2 = 3u8? + 41}52)(10) + o (w). (3.16)

Since the classical solution of Eq. (3.15) dose not refer to any boundary
condition, it is a generalization of the solution given by Ref. [?].

If we expand the string field around the classical solution, the BRS
charge becomes

2 1 2
Qb = Qn + ai(FY) = Ve (FY) + SafCu(FY) + SaiCr(FY)3.17)
Supposed that there is the dimension ‘zero’ field ¢(w) which satisfies

[o(w), J(w')] = id(w,w’), [@s, p(w)] = —icJ(w). (3.18)

We introduce the left and right integrated operators for ¢

au(f) = [,
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From Eq. (3.18), it follows that

[D1(f), @] = —VL(f), [@L(f), VL(S)] =iCL(f9g). (3.20)
The shifted BRS charge can be written by

fw)pw), on(f)= [ 2y

Cr 27i (w)p(w). (3.19)

Qpy = P QpeP ), (3.21)
where B is defined by

B(F"Y) = ia; @ (F) — ia;®r(FY). (3.22)



Therefore, it seems that the shifted theory transformed into the original
theory by the redefinition of the string field and the classical solution is
trivial. However, it is true only if the field p(w) exists and the redefinition
is well-defined for the zero-mode part of ¢. For example, we consider
J ~ 10X and ¢ ~ X. In this case, if the direction X is compactified,
the redefinition is generally ill-defined for the zero-mode of X. Indeed, the
shifted theory represents strings in the Wilson lines background, and the
classical solution corresponds to the condensation of the gauge fields.
Using the operator ®y,, the classical solution can be rewritten by

U, = exp(—i a;®p(FNI) + Qp exp(i a;®p(FY)I). (3.23)

It implies that the classical solution is the gauge transformation from zero
string field, namely pure gauge. However, as well as the string field re-
definition, there are cases in which the gauge transformation is ill-defined
because of the zero-mode of ®;. For the Wilson lines solution, the classical
solution is locally pure gauge, but it is globally non-trivial configuration,
analogously to field theoretical situations.
Let us consider the potential height S|V ,,] at the classical solution. Since
the classical solution has parameters a;, it follows that
2 dVy,

d%s[‘l’m] = = Qo+ W ) G =0 (3.24)

Then, we find that S[¥,,(a;)] = S[¥(a; = 0)] = 0.

a;
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4 Scalar Solution

The BRS current is defined by

1 3
Js(w) = ¢ <TX +3 gh) (1) + 50Pc(w), (4.1)
where c(w) is a ghost field and Tx(w) and Ty, (w) denote the energy mo-
mentum tensors of string coordinates and reparametrization ghosts, re-
spectively. The operator product expansions (OPEs) of the BRS current
and the ghost field are given by

—(d — 18)/2 —(d —18)/4

Jp(w)Jg(w') = (@ —w) cOc(w') + (w = w)? cd*c(w') — ——
—4 Ny T2 52 4
— (wl—w’)3cac(w)+ (10— w')? Fe(w') + -+,
Jg(w)c(w') = — w/cac(w') + -

where d = 26 is the matter central charge of the conformal field theory. We
can expand the BRS current and the ghost field using oscillation modes,

(o.9]

Jp(w) = ; an—n—l,
clw) = n_iozoocnwnﬂ. (4.3)

Since {Qp, c(w)} = cdc(w), the OPEs of Eq. (4.2) can be rewritten in the
form of anti-commutation relations of these oscillators,

{Qm; Qn} - 2mn{QBa cm+n,}7 {Qm; Cn} — {QB; Cm—l—n}- (44>

From Eq. (4.4), we find the anti-commutation relation of the BRS current
and the ghost,

{Js(w), Je(w)} = {@s, 20,0 (c(w)d(w, w'))},
{Js(w), c(w)} = {Qs, c(w)d(w, w)}. (4.5)

10

(d — 26)/12

cPe(w') + -

(4.2



We now define the following operators,

Qu(f) _/c
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O fus(w), Qu(f) = [ o fw) (), (46

where f(w) is a holomorphic function within the unit circle except the
origin, and, in addition, its values at the midpoint is zero, f(£i) = 0. From
Eq. (4.5), we can calculate the anti-commutation relation of the operators
as follows,

{Qu(f), @ ( )}
— {QB; /C’ o7 dwf(w)g(w/)2awaw’ (C(w)é(w7 w/))}
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- Q{QB’ [ [ 0 w)ogw)e(w)i e, w'>}, (4.7)
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where surface terms are vanished due to f(4i) = g(£i) = 0. Using the
delta function formula, we find that

{Qu(f), Qulg)} = 2{Qs, CL(0fDg)}. (4.8)

Similarly, other anti-commutation relations are given by

{Qr(f), @r(9)} =2{Qs, Cr(0f09)},

{Qu(f), Culg)}t ={@s, CL(f9)},

{Qr(f), Cr(9)} ={Q@s, Cr(f9)},

1QL(f), Qr(9)} ={QL(f), Cr(9)} = {Qr(f), CL(g9)} = 0. (4.9)

11



We consider the properties of the Qp,g) related to * product and the
identity string field. Since dwiFJ(ro)(wi)JB(wi) is a globally defined one form
on the gluing N-string surface, we obtain a similar equation to Eqgs. (3.11)
and (3.12),

(Qu(F)) A% B = —(—)4A+ (QuF)B). (4.10)
Similarly, we find that
QuFNT = —Qr(F)I. (4.11)

12



Now, we can show that a classical solution is given by

Uy = Qu(FY)I + Cr(GY)I (4.12)
where G (w) is
2
OF" (w
¢ (w) = GEAD) (4.13)

14+ FOw)

Here, G(f)(:i:i) must be zero in order to cancel the midpoint singularity of
the ghost on the identity, as in the case of the marginal solutions. Indeed,

from Eqgs. (3.12), (4.8), (4.9), (4.10) and (4.11), we find that the classical
equation satisfies the equation of motion:

Q¥ = {Qs, CL(GP)}.
Wy ¥y = {Qs, CL((OF")? + FVGP)} . (4.14)

Then, it follows that Qp¥y+ ¥y x ¥y = 0.
If we expand the string field around the classical solution, the shifted
theory has the following BRS charge,

Qb = Qs+ QFY) + C(GY), (4.15)
where we define
Qf) =Qu(f) +Qr(f), C(f)=CL(f) + Cr(f). (4.16)

If we take FJ(FO)(w) = exp(h(w)) — 1, the classical solution and the shifted
BRS charge are rewritten by

Uy =Qr(e" —1)I — Cy, ((0h)%e") I, (4.17)
Qi = Q(e") — C ((0h)*e"). (4.18)

13



Let us consider the redefinition of the string field. The ghost number
currents are given by

Jon(w) = cb(w), (4.19)

where c(w) and b(w) are ghost and anti-ghost fields, respectively. The
OPEs of the ghost current with the BRS current and with the ghost field
are given by

/ 4 / 2 / 1 /

Jan(we(w)) = ——c(w) 4. (4.21)

w — w’

We introduce three operators for an holomorphic function f(w) within the
unit circle without the origin,

_jdw

q(f) = f(w) Jgn(w). (4.22)

271

The OPEs of Egs. (4.20) and (4.21) give the following commutation rela-
tions,

[4(f), Q(g9)l = Q(fg) —2C(0fdg), (4.23)
, Cl9)] =C(f9). (4.24)

From the commutation relations of Egs. (4.23) and (4.24), we find that,
through the transformation generated by ¢(f), the BRS charge becomes

D Que D = Qu+ lalf), Qu] + la(h), [ah), Qs+

= Qs +QU) + o {QU) — 20(0F)) + -
~ QT —C ((orel). (4.25)

Therefore, if the string field ¥ is redefined as ¥ = ¢4 ¥’ the shifted BRS
charge is transformed into the original BRS charge.

]
]

14



In order to identify the redefined theory as U = e?™ ¥’ from the shifted
theory, let us consider the conservation law of ¢(h) on the N-strings vertex.
The gluing N-strings surface can be transformed into the whole complex
z-plane by the mapping

2w

2(k-ni (1 4 1wy
2= 2% (1—iwk) C(k=1,---,N). (4.26)
Here, exp(2n(k —1)i/N) (k=1,---, N) correspond to the N punctures in
the z-plane, which represent N strings insertions, and the origin and the
infinity in the z plane correspond to the midpoints of the N strings. Since
h(w) is an analytic scalar and FJ(FO)(ii) = 0, we find that h(z =0) = h(z =
o0) = 0. Therefore, the conservation law in the z plane is given by

(Vi z /C 2)Tan(2) = 0, (4.27)

s 27rz

where the contours (' encircle the puncture at the k-string in the z plane.
The anomalous terms at the infinity vanishes due to h(co) = 0. We can
express the contour integral around the k-string’s puncture in terms of the
local coordinate wj. Since the transformation low of the ghost number
current Jg, is given by

2 1
dz 3dz<dz> | (4.98)

I (2) = T ot Bied
dw " (2) anlw) + 2 dw? \dw
we obtain the following identity,

Vil 2, G ) Jn(an) = () (Vi

2

K ———cho WOk b ) L2 (dz >_1. (4.29)

2 i 2m dwy,

From Eq. (4.26), we find that

ix(h) = —2 % 2

213 2m N1+w] 1+w?
dw 1 dw 2w
= —6 —h 3N —h . (4.30
2%00271'2 (w )1—}—w2+ Co 21 (w >1—}—w2 ( )

15



The action involves a reflector and a three strings vertex as constitutions,
which are 2-strings and 3-strings vertex, respectively. Supposed that the
first term of Eq. (4.30) has non-zero value. In this case, the shifted theory
becomes the theory with the original BRS charge and the different coupling
constant by the redefinition of the string field, ¥ = e’ If the first
term vanishes, the shifted theory might become the original one through
the redefinition. However, each cases should be investigated more carefully.
Because, there is a possibility that the string field redefinition itself is ill-
defined.
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Let us consider the classical solution for

he(w) = log (1 + % (w + %)2) , (4.31)

where a is a real parameter which is larger than or equal to —1/2. For this
hq(w), J(ro)(w) and G (w) are given by

a 1\? a
FOw) = 1= (wt ) =5 (o @)+ @),
2 1)\2
GP(w) = —(0h(w))?" ™ = —a’w? ik, 3 (4.32)

1+ g (0 2)

Indeed, we find that Fio)(:ti) = 0 and G(+O>(:I:i) = 0, and this h(w) gives
the classical solution by Eq. (4.17). The function h,(w) has the Laurent
expansion as follows,

haw) = —tog(1 = 2@ - & Sl 2@ ().
Z(a) = 1*“_;5135 (4.33)
Using this expansion of h,(w), we can evaluate k(h,) as
kn(he) = 3Nlog(l— Z(a)). (4.34)

Here, the first term of Eq. (4.30) vanishes. Therefore, we may naively
expect that the shifted action is reduced to the original one and the classical
solution should be pure gauge.

We consider the string field redefinition in detail. From Eq. (4.33), the

operator ¢(h,) can be expressed by using the mode expansion Jy,(w) =
n—1

YnQuw T as
() = —alos(t - 2@ + 3 L+ 2) 200"
= —glog ZY 1 491 + ¢ (), (4.35)

2a
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where ¢t and ¢(7) denote the positive and negative modes part of ¢,
namely

q_onZ(a)"(4.36)

From the OPE of the ghost number currents
1

Jan (W) Jgn(w') = oy (4.37)
the oscillator g, satisfies (¢, ¢n] = Mdy+n. Therefore, we find the commu-
tation relation of ¢*) as follows,
|
[ (he), ¢ 7(h)] =23 —Z(a)* = —2log(1 — Z(a)?).  (4.38)
n=1T
Using Eq. (4.38), we can rewrite the operator expq(&,) by the ‘normal
ordered’ form

edlha)  — (1 — Z(a)Q)i1 exp (—qo log(1 — Z(a))z) eq(f)(h“)eqm(h“@él.SQ)

This is a well-defined operator since |Z(a)| < 1 for a > —1/2. Therefore,
the classical solution for a > —1/2 should be pure gauge solution. However,
in the case of Z(a = —1/2) = —1, this operator e?") has a singularity and
the string field redefinition is ill-defined. Thus, we can obtain a non-trivial
classical solution for a = —1/2.
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In the case of a = —1/2, the classical solution is given by

¥, = O (—i (w + %)j I+cn (w—2 <w + %)2) I (4.40)

Each term of Eq. (4.40) has a well-defined Fock space expression as follows,
1 1\2 < (=1)" 2 1 1
I =— — — o1 1),
QL( <w+ ))H 2 o <2n+1 2n + 3 2n—1>Q2 i)
1 2
CL (w2 (w + —) ) |T)

B A T S O 1

3T T 2n+1 2n+3 2n-—1

If we expand the string field around the classical solution, the shifted
BRS charge is given by

Qp = %QB - % (Q2+Q 2) +2c)+cy+c o (4.41)

19



We propose that the classical solution of Eq. (4.40) represents the con-
densation of the tachyon. The reasons are the following. First, it is impos-
sible to connect the shifted theory to the original one by the string field
redefinition, and so, the classical solution represents a non-trivial solution.
Secondly, the classical solution is scalar. Thirdly, the physical states of the
original theory are no longer physical in the expanded theory around the
classical solution. Indeed, we can find that Qf|phys) # 0 for all states
Iphys) such that Qp |phys) = 0.

Of course, in order to clarify this conjecture, we must prove at least
two propositions. First, there exists no BRS singlet in the Hilbert space.
Secondly, the potential height S[W] is equal to the D-brane tension. At
present, we can not deny the possibilities to prove two propositions. It
should be noted about the latter proposition. As in the case of the marginal
solutions, we find that

%S[%] = [ (QeWo+ Wy x Wp) » % = 0. (4.42)
So, the potential height S[¥,] is equal to zero for a > —1/2. However,
it may become non-zero value at a = —1/2, because the classical solution
is ill-defined for a < —1/2 and so d¥y/da may have a discontinuity at
a=—1/2.

20



5 Summary

1. We proved the splitting property of the delta function.

2. We constructed the marginal solutions with well-defined Fock space
expressions related to the U(1) current in CSFT, and showed that the
critical value in the level-truncated solution given by Sen and Zwiebach
should be gauge artifact.

3. We constructed the scalar solution with a well-defined Fock space ex-
pression in CSF'T, and proposed that it should be the classical solution
corresponding to the tachyon condensation.
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