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1. Introduction

Understanding after the discovery of the string
dualities: (“¢5~)
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Perturbative\gﬁ:ﬁg theories (5 kiss)

= Various limits of ‘M-theory’ whose definition
is Nnot known.

In one of the limits (the strong coupling limit

of 10D type IIA string), theory becomes 11-
dimensional.

In the low-energy approximation, 11D M-theory
iIs described by 11D SUGRA. However, ‘'micro-
scopic’ description of 11D M-theory is not known.

e What is the fundamental d.o.f. of (11D) M-
theory~




It is naturally expected that supermembrane plays
crucial role in the 11D M-theory,

e Supermembrane can be consistently coupled
to 11D SUGRA. (Bergshoeff, Sezgin and Townsend,
1987)

e Upon double dimensional reduction (simul-
taneous dim. red. of spacetime and world-
volume), reduces to 10D type IIA super-
string. (Duff, Howe, Inami and Stelle, 1987)
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However, there are difficulties for considering
the quantum supermembrane as a fundamental
theory.

e Non-linear interacting 3D theory which is non-
renormalizable.



Proposals for the definition of M-theory

Matrix theory (Banks, Fischler, Shenker and Susskind,
1996): (0+41)D U(N) SYM

S = f dtTr( L DX.DuX; + i0D6
EQSES
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Proposed as the definition of 11D M-theory in
the light-cone frame.

e Known as matrix-regularization of the super-
membrane in the light-cone gauge

e Reinterpreted as the theory of N DO-branes

String d.o.f. is not directly visible

Relation to (110D or even 10D) SUGRA is not
evident

11D physics «+ large N limit, difficult to analyze.
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Matrix string theory (Dijkgraaf, Verlinde and Verlinde,
1997): (1+1)D U(N) SYM

5 = fdﬂ'zTr(E{Fﬂ_-"iJE + E(ﬂu;{t}i e E‘E{:‘Xj]z

FUM D + ~Uri[X, w])
s

Proposed as the non-perturbative definition of
10D type IIA string theory.

e '‘Heuristic derivation’: Obtained from Matrix
theory by a sequence of string dualities.

DO D1 = F1 = F1
(14) (x8) (xe) (TA)

e Interpretation of the diagonal elements: light-
cone Green-Schwarz type IIA string

e Argued that in the g« — 0O limit, effectively
described by the SVR® CFT of diagonal el-
ements. (‘IR reduction’)

It weuld desevibe /0D SU4RA I:ﬁh";i-tﬁuﬂ'}f
How 11-th dimension appear is not clear.




Qur work:

Gave a direct correspondence between super-
membrane wrapped around a circle and matrix
string theory

e not relying on string dualities

e provide a hint for the large N behavior of
matrix string theory

e Clarify the 11D interpretation of matrix string
theory

— Starting point for analyzing 11D dynamics
from matrix string theory

In addition, attempt at

|Quantum theory of wrapped supermembrane
(‘Quantum double dimensional reduction’:
integration of KK modes on the membrane)
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2. Light-cone supermembrane wrapped around
a circle

e Supermembrane action in the light-cone gauge
(de Wit, Hoppe and Nicolal, 1988)

1 r 2w L 2wl
A:-B-/d’r/ d-:r/ dp L,
&3y 0 0

(2% = Z(DoX)? + ir-Dot - T({X*, X*})?
+iy_a{ X%, ¥}, (a=1,...,9)
where 7 is proportional to the light-cone time
G, PTr/(2rL)° =Xt
and ¥« Y=0

e Derivatives in spatial coordinate enter through
Poisson bracket(PB)

[A, B} = (27)°%(8,A8,B — 8,40, B)

e Area preserving diffec. (residual sym. in the
|.~-C. gauge)

5X* = {N(o,p), X'},
IS gauged by introducing gauge field Ag
DpX® = 8- X"~ {Ap, X*},---

dAg = A7, o, p) + {A(r,0,p), Ag}



Consider a membrane wrapped around a com-
pact direction X2 =Y. (M- theory direction)

radius of ¥ = L = g €,

e VWe choose p along Y-direction and set

Y(P+rax) )
Y(r,o,p) =p+Y(7,0,p) SR (RS
where Y is periodic in p
¥ = Z Valr, J)Eiﬂp”".
Tt
Also for other fields (X!, v, A), (i=1,...,8)

X (r,o,p) =z'(r,0) + X(r,0,p),...
Xt =% Xi(r,0)emrlL

e If we simply drop p-dependent fields (X*, V)
action reduces to that of type IIA string,

However, guantum mechanically, there is no jus-
tification for dropping the d.o.f.

(— last part of the talk)



3. Correspondence between wrapped mem-
brane and matrix string

Preliminaries

e To relate the membrane to matrix string, first
note that by the substitution Y = p+ ¥, ¥ can
be seen as ‘A;".

{X',Y} = 8,X' - {¥, X"} = D, X
DDY = 80? L 3644 - {As?} = FD.-”

The action takes the form of 2D gauge theory.

. 2% 2r
A= (Ew}ELfﬂijjchf a:fcr-/ dp
D 0

1 1 i 1 - s S

i _DXJ,E__DH_X:E__ 4 i12
|5F80 + 5(DoX*)? = S(DaX')? - (X', X7}
+ip" Doy — iy’ To Doty + %wfn{x *,w}]

where we have rescaled p — Lp, Tolr, t=2=5T
e 1/L plays the role of gauge coupling.
+ What we are going to do is different from ‘or-

dinary’ matrix regularization (which would give
a 1D theory)



[dentification of the variables

Variables of wrapped supermembrane;

X7 o,p) =2 (r,0) + ZX (r,0)e™ ,
where O < o < 2.

Variables of matrix string theory: N xN matrices
Xi,(r,0)

where 0 < 8 < 2r. We denote 2% (7,8) = X}, (,6)

¢ We assume that p-independent mode of the

membrane «'(o) corresponds to diagonzl ele-
ments of matrix string .

Decompose ¢ into N segments and identify
(o) & r} (8)

_2k-1) , 0
=—n~ "Twn

where we have imposed the ‘long string b.c.’' for
matrix string:

Ih(ﬂ'-l"z'ﬂ') —fﬂk_l_l(a), (;ﬂ=112,... ,N—l),
:EN(E?**-ZW:I -_ :1':1(\9)



e Further assume the correspondence between
off-diag. elements and KK modes.

Xi(o) & XL/(8)
with (for N=o0dd; similarly for N=even)
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b.c. for the matrix string fields:

M6+ 27) = sm(e)st, su=|"

i

We also require all the fields of matrix string
theory are periodic under o — o + 7.

o KK-momentum [n| is cut off at (N —-1)/2. (i.e.
p 1s discretized)
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Mapping of the products

e With the above identification, we can see that
P.B of membrane variables corresponds 10 ma-
trix commutator (to the leading order in the
large N limit)

=3 3 1 :
{X*, /EJ}’H(UJ "ii"ﬁ(_j (X" X] i(6) fnok-)

¥ }e g. commutator of 3 dlaganal and an arbitrary
matrix:

[2(8), X9 (0)]xe = (x5(8) — 2(6)) X1, (8)

= E(k; E)Waawi(ﬂfkf)-"fj (o) + O(1/N?)

—-1(—){3? XY _e(org) + O(1/N?)

where oz = =27 + & (when k — £ < N/2)

e Similarly, we obtain a map between general
product of membrane variables and matrix string
variables.

1 1 ;. (¢
EfdﬂTr(Mf )(6)M2)(g) - - - M )(HJJ
1 ™ :
= — ufp de exp l— 71— Z (a:,r,-a'pf — aﬂxaﬂfﬁ)
21'1',/ f N e>isi>1 J 4 |
M (e, 01)--- MO (o, F‘E’)I

o=, p=p
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Matrix string action

e Using the above mapping ({ , } = [ , ]
and [dodp — [d8Tr), supermembrane action is
rewritten as the matrix string action

2 2m
(2?1':} Lf{i?'—f i Tr (;Fﬂﬂ-l- — (L X7 }2 ENEEDE'X }E

i 1 i
4L2(—j3[}: X/ + " Dow — Nig"ToDyp — Z54TTX", vl)

where

: . 1 ;
DX = 8yXt — i——[V, X1,
g 9 EEHL[ ]

T .
DDXE p— dTXI —_— Em[('ﬂl, Xg],
By performing the redefinition

r—T71/N, L—=L/2m, 1 —= VvNy,

the N dependence is eliminated and the action
is reduced to the standard matrix-string theory
action.
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Matrix string in a curved b.g. (example)

Important aspect of our correspondence:

It should serve as a principle for constructing
matrix_string theory in curved b.g. (starting
from supermembrane in general b.g.)

Simple example of exact (not a weak-field ex-
pansion) matrix string action on a curved (RR)
b.g.

Kaluza-Klein Melvin background
10D spacetime obtained from flat 11D by a
compactification with non-trivial topology:;

(T: Y, {a‘?) = (T! Yy + 2'?TL'?TL, ¥ -I' zqum ‘|' 21'1"?1)
where y = 22 and z7 + iz8 = re¥,
Define the coordinates which are single-valued
in the y-direction.

m}fm + i‘r?fﬂt = ' W(z" 4 iz®), Vflat = E-%r?ayﬂb

— Dimensional reduction along y
dsio = f(r)[=dt® + dui + -+ + d2g + dr® + 122 (r)dp® + dudg)

e? = f22(r), A, =qr?f3(r)
firy=(1+4+ qErE)lfIE
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Rewrite the light-cone membrane action in the
‘single-valued’ variables. Simply replace the deriva-
tive d, with the following ‘covariant derivatives’

vuxrn = 8{_}_-}{?“ + qac}_- Ylfmn}{ﬂ,
VaX?= 8.X° VoY = 8,Y,...

where 2t (i = 1,...,6): ‘trivial’ transverse direc-
tions.

Applying the membrane-matrix string mapping,
we obtain matrix string action

A= AP 4+ AT 4 42
where AY: same as the flat space action,

.Al — qj {i‘]"dﬂ"dﬂt”m[— DQYEDX"‘X”+ {XE-,Y}{X{,XHT}X”
"I"{-XP; ?}{Xpsxm}xn e 'ilfT,'.rJTrmXH{ F:-'!p'-l)}'
—%wllrmnﬂiﬂ[}y - inI't-rmﬂ'a_.i:{X"._ Y} y

A2 = ¢ f drdodp [S(DoY)2(X™)? = Z1X. Y P(X")?

1 e Tl
-5 (xX™X .y})?].

e Stability of the b.g., etc. from this formalism.
(future study)
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4. Attempt at the quantum study of wrapped
supermembrane

e SUpermembrane wrapped around a circle is ex-
pected to reduce to superstring in the L — 0
limit. (double dimensional reduction)

To justify double dim. red. quantum mechani-
cally, we must integrate out KK modes.

¢ Naively, KK modes are expected to become
infinitely massive and decouple in the L — 0O
limit.

(ﬂpwmﬁ = (n*/L%)¢* for ¢ ~ e*”’*ﬁ*’ﬂ)
However, in our case, decoupling is not straight-
forward. Instead of mass term, we have inter-
action term

1 ¢ 1oy i i 1 ie O
E{XTuxj}E = E(daﬂ!? )2(8,X7)° — E(ﬁﬂ,u; BXV:+ -

e We obtain effective action for string (z%(r,o),
Y(r,o)) in the L — 0 limit as an expansion in L
(strong coupling expansion).

Correction to the free string action in powers of
L = gsfs = e%45 is not expected
— Confirmed up to order L2
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Backgrounds: p-independent modes (', )

Fluctuations: p-dependent modes (X, W, 4, ¥V, C, T)

e Adopt the background field gauge
1 1 i ]
Lg,j’_ = _Efaﬂﬂ - {H':A} + {:-‘-'r !X } + {.I':"': Y}}E

and introduce ghosts ¢ and C.

¢ The part of the action which contain no spinor fields
(¢, W) are

L5 =Lppg+ Loo+ L Lu1+ L Lpy,
1 : .. 1
Lpby = E(ﬂg:ﬂ"}z -+ E(dn:l:’}z + E(dnu)zj

Loo = 5((00) + @rx)2) (0,00 + 5((00a)? + (05')?) (9,Y )2

+%({Bﬂa)2 + (8,2)2)(8,4)2 — i((8,0)? + (8,2)2)8,C8,C.,

L£p1 = =28u'{A, X} —28,u{Y, A} — 28,2 {Y, X'}
—8pabg Ay A — 8padgY 8,Y — Jpadpo X'9,X"
—8,ad,Y {Y, A} = 8,a0,X'{ X', A}
=By’ Ty A{ A, X'} = Oo' Y {Y, X'} = Bpu' B, X XY, X'}
+itdyadnCA,C + idrad, ,CioC
+i0.ad,C{C, A} + i0,x'8,C {C, X},
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W T, DUE PN e TN WO SOy ST Y
Loz = S(B0A) + 50X + S(80Y)? + S(8:A) + 5(8:X")
+-21-(anr)2 T O ALAY Y + B XX YT + XX, A)

FOYLY, A} + (A XV 4 A VP + L0 YR+ X X
—idgCHHC — id.CIC + idpC{A,C} +id,C{Y,C}.

e T he part containing spinor fields are

Lr=Lrog+ Lro+ LY2Lp 0+ L Cry,
Libg = v dotp + i)' Cadayp,
Lro=—VT8,a8,¥ — VIT8,28,V,
Lpia = 2WT 8,48, + 20V Mg, Y 8,9 + 2iVTT,0,X 0,4,

Lry = WigW 4+ Vilgd,w
~WT AW - {Y, W} — W, (X', W]
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e Leading term in L which we treat as free action
for the fluctuations (X*, A, Y, ¥ C and Q)

1 . ;
Lo = E((ﬂgajg + (052")2)(8,X7)2 + -
VT (8ra + Mi0,2")0,W

does not contain derivatives (8-, ds).

Propagators are proportiaonal to the delta func-
tion (y=T, )

(XL (OXIEN = 6,8,
(V_n(E)Wa(€) = —(Bpa = iFdoz')G(E. ),

G, &) = 52 (¢ - ¢,

(Fra)? + (Fgxt)2

e UV divergences §(0) upon loop integration.
Definite regularization is needed for a rigorous
treatment.

= /| F



We treat the divergence formally as §(0) and see
whether its coefficient vanish.

* VWe are considering general configurations of
strings ( net restwicted to stahe , FPS <fc.)

e LU contribution to the effective action (one-
loop determinant of the propagator) vanish due
to the matching of the bosonic and fermionic
d.o.f. (8 (=10-2)bosons: X", Y, A,C,C,; 8(=16/2)
fermions: W)

e Next non-trivial order is one-loop, LZ2.

O @, -

Covg-loop) (ome~loep) (oug = ocp )

(Lar Lo1> { €82 7 KL &6t S

aree—Lonaa ) _ L ) l
{ﬁ:ﬂ,lﬂﬂ,l){ o) = _4 ‘/.;Fgf d°¢ T;”_E
(B850, 20, G (&, €YG(E. &) + 0,20, 8, 20, G (€, €)G(E. €],

- G




n? E—¢

(Lp2)ntow) = —a f e Y —lim [0 G &, €) + 8,0,0(6.2)]

VWe rewrite this term by inserting the delta function

iml1= | &2¢'8(c-¢) = f d*€'Bpu' A0 G(E, &)

=

d5

; 1 :
{EH.E}[rmr*—-!-rmp:l ] [d?£/ ﬂ:ch# Z _i g{ﬂta;ﬂ!? [E}gﬂf}ﬂ{&', EF}G(E' Ef}
: e

+8,0,G(£,£)G(£,8")].

CFFLE ==L T I I 1
(L1 Ly ylometoon) = 4] dzﬁj dE‘szn_E

gD
[Oaa' 8,2 G(£,£)008,G (€. £) + Baa’ 8,2’ G(E, £')B,3,G(E, &)
+8ya' B2 G(€,€)00G(€, €) + 8,208, G(£,€)0.G(E,£)].

The sum of the one-loop L2 contribution vanish

{LpsLp1)o P 4 (Lpa)'o™ P 4 (L Lp gyt tP =

e In our treatment, higher-order terms are am-
biguous and we do not have definite answer.

e T he problem of ‘guantum double dimensional
reduction’ is essentially equivalent to that of the
Infra-red reduction in matrix string theory.
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5. Concluding remarks
Summary

Established a direct correspondence between light-
cone supermembrane and matrix string.

e EXplicit mapping of the variables not relying
on string-duality arguments.

e Clarified the 11D-interpretation of the off-
diagonal elements of matrix string.

e Should serve as a principle for construct-
ing matrix string in curved b.g. (Example:
Matrix string action on Kaluza-Klein Melvin

b.g.)

Analyzed the effective action for strings by inte-
grating out KK modes on the membrane

e Gave (some) justification to the double di-
mensional reduction quantum mechanically.
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Future problems

e 11D Supergravity from supermembrane or
matrix string

e String interaction from membrane picture

e Further (rigorous) analysis of guantum dou-
ble dimensional reduction

¢ Matrix string on Kaluza-Klein Melvin b.g.;
(Stability of the b.g., fate of type 0 tachyon)

e Covariant matrix string theory?
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