Alternative Signature of TeV Strings hep-ph/0111298

Kin-ya Oda (KEK, ICEPP)

with N. Okada (Maryland)

- Introduction
 - Large Extra Dimensions
 - Signature of TeV strings
 - 1. Regge resonances
 - 2. BH/SB production
 - 3. OURS!
- Our prediction
 - Hard scattering amplitudes in string theory
 - Stringy form factors in TeV scale string theory
 - Exponential suppression of high p_T jet productions in LHC.
- Conclusions & Discussions

Large extra dimensions

(Arkani-Hamed, Dimopoulos & Dvali '98)

 $L \sim mm-fm$ M_P: for n=2-6 large dimensions.

L: size of extra dimension M_P: 4-dimensional Planck scale M: (4+n)-dim Planck scale

Gauss law

 $M^{2+n} = M_P^2 L^{-n}$ free! exp free

Fundamental gravitational scale may be as low as M ~ TeV!

- Accessible!!
- Solution to the hierarchy m_{Higgs}/M_P

Extra dimensions are **not** new.

- It was proposed 20 years ago.
 (Rubakov & Shaposhnikov '83,"Do we live inside a domain wall?"; also, Antoniadis '90, "A possible new dimension at a few TeV.")
- However, just putting -functions in the (higher-dim) action by hand does not look very nice.

(...years of silence...)

 Discovery of D-branes in string theory nicely provided theoretical background (Polchinski '95).

D-brane:

a dynamical object on which strings can end;

(or in other words, collection of open string end points)

Only string theory can supply the basis. It is important to consider string realization of large extra dimension.

TeV scale string theory

(Antoniadis, Arkani-Hamed, Dimopoulos & Dvali '98)

 $L \sim 10^3 \times |_{st}$

- We are living in the D3-brane.
- SM fields = massless modes of open strings
- gravitons = massless modes of closed strings

Simplest case:

- 6 spatial dimension:
 - compactified with L ~ fm
- our (3+1)-dim:

not compactified (or compactified with lengh scale larger than the Universe)

Note: **The only difference** (with conventional scenario) is the **compactification scale**, which is **totally free parameter!**

Signatures of TeV strings

1. String massive modes (Regge resonances)

(Dudas & Mourad '99,

Accomando, Antoniadis & Benakli '99, Cullen, Perelstein & Peskin '00)

direct observation (determines M_s)

- x difficult to exclude other possibilities (especially in hadron colliders such as LHC)
 - e.g. "techni-hadrons" or other exited states from **other field theoretical models** such as technicolor or preon (sub-quark) models

Complementary signature WANTED

2. Black hole production (at LHC)

(Giddings & Thomas '01, Dimopoulos & Landsberg '01)

BH is produced whenever $b < R_S$? Production cross section of BH is R_S^2 ?

This claim is based on the classical hoop conjecture applied to quantum process of parton scatterings.

Still being debated.

•Voloshin '01

•cross section: exponentially suppressed by exp[-(Euclidian action)].

•CPT therem tell us that "few partons BH" is rare because "BH few partons" is rare.

•Giddings '01

- •Classically allowed process is not suppressed.
- •T-conjugate of BH should be white hall!
- •Voloshin '01

• R_S² would lead to exponentially growing cross section (with energy) due to many "small" BH productions.

Not yet established.

Stringy justification of BH formation

(Dimopoulos & Emparan '01)

Highly excited string state is string ball!

- String ball is believed to behave similarly (or identically) to BHs.
- Correspondence between BH and massive string state is confirmed in entropy counting. (Horowitz & Polchinski '96 '97)
- 1. Production cross section of string massive mode (i.e. string ball) is obtained by applying optical theorem to the tree level string amplitude. $\sigma_{sB} \propto \hat{s}$
- 2. As we raise \hat{s} , _{SB} hits **unitarity bound**, above which _{SB} is (claimed to be) **constant**.
- 3. As we raise energy further, production cross section of BH $\propto \hat{s}^{1/n+1}$ becomes bigger than _{SB} (at some **correspondent point**). BH picture is (claimed to be) valid above it.

Difficulties:

- There are no evidence of the correspondence for dynamical process (S-matrix).
- Black hole formation is nonperturbative process while string massive mode production may be calculated at the tree level.

• Deeper understanding of the correspondence is required.

In summary: Alternative and complementary signature to Regge resonance, SB or BH production WANTED

3. Exponential suppression of high p_T jet production (OURS)

Hard scatterings in string theory

(Gross & Mende '87, '88)

We can explicitly calculate and show that any **tree level** cross sections are **exponentially suppressed** in the high energy limit s

 $A \sim \exp[-s/M_s^2]$

Therefore, higher order amplitude are dominated by processes where momentum transfer is **divided equally**.

All sub-processes are hard.

We may use saddle point method to obtain

$$A(s,t) \sim \exp[-\frac{s}{M_s^2}f(\theta)/N]$$

at the N-th order perturbation.

$$0 < f(\theta) < O(1), f(0) = f(\pi) = 0$$

$$\sin^2(\theta/2) = -t/s$$

Universal behavior $A(s,t) \sim \exp[-\frac{s}{M_s^2}f(\theta)/N]$ $0 < f(\theta) < O(1), f(0) = f(\pi) = 0$ $\sin^2(\theta/2) = -t/s$

- Regge region (~0) is not exponentially suppressed. We have to see hard scattering region, i.e. high p_T region ~ /2 to see this effect.
- This behavior is independent of
 - the theory (bosonic, super, hetero etc.)
 - the external states (of the scattering)
 - the perturbative vacuum.
- The origin of this universality is that the integrand is controlled by the plane wave part of the vertex operator, exp[ipX].
- The series of leading terms in this limit
 A ~ exp[-s/N] is badly divergent.

Borel resummation

(Mende & Ooguri '90)

 It is possible to give finite result resummed to all orders:

$$A(s,t) \sim \exp[-\sqrt{\frac{s}{M_s^2}f(\theta)}]$$

by Borel transform techniques (inserting

$$1 = \frac{1}{(10N)!} \int_{0}^{\infty} dt \, t^{10N} e^{-t}$$

Stringy form factors in TeV scale string theory

 At the tree level, it is shown that every SM amplitudes is multiplied by a COMMON stringy form factor. (Cullen, M. Perelstein & Peskin '00)

We estimate the suppression effect using the resummed factor:

$$A(s,t) = \exp\left[-\sqrt{\frac{s}{M_s^2}f(\theta)}\right]$$

QCD jet production rate

$$\hat{s} = x_1 x_2 s$$

 $x_1(x_2)$: momentum fraction carried by i(j)-parton.

i,j,k,l: quark & gluon flavor

$$\times \sum_{ijkl} \frac{1}{1 + \delta_{kl}} f_{i}[x_{1}, Q_{(\hat{s}, \hat{t})}] f_{j}[x_{2}, Q_{(\hat{s}, \hat{t})}]$$

$$\times \frac{d\hat{\sigma}_{ij \to kl}(\hat{s}, \hat{t})}{d\hat{t}} \Big|_{SM} |A(\hat{s}, \hat{t})|^{2} \qquad A_{1} \qquad A_{1}$$

Conclusions

- High p_T jet productions are dramatically suppressed at LHC if M_s < 2 TeV. (Sufficient to be observed in the 1st year running!)
- This universal prediction of TeV scale string theory will confirm that preceding resonance observation is truly stringy.

Discussions

- Universal behavior Leptons colliders will see stringy factor better.
- What happens if extra-dim is warped? (Polchinski & Strassler '01 claims power law damping.)
- Correspondence with BH production? Final radiation:
 - BH isotropic

strings concentrated on beam axis since **Regge region** is least suppressed.