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g1 Introduction

Our purpose: I

1) Constructing a matrix theory, in which the creation and
annihilation process of D-branes is incorporated.

(a) It is important to find a non-perturbative formulation of
string theory = matrix theory.

(b) The creation and annihilation process of non-BPS D-branes
or D-D pairs plays an important role = K-theory.
non-BPS D9-branes(ITA) and D9-D9 system(IIB).
= lower dim. D-branes are constructed from them.

However,

(a) = the K-theory structure is not clear in the framework
of existing matrix theories.

(b) = since a 10-dim. gauge theory is non-renormalizable, it
is hard to consider it as a fundamental theory.

We propose a new matrix theory based on

non-BPS D-instantons in type ITA,
D-instanton/anti-D-instanton system in type IIB.

—> We call it as K-matrix theory




2) Another classification of D-branes.

e The D-brane charge is defined by the behavior of RR-
fields on the spacetime X. Therefore, D-branes should
be naively classified by cohomology.

{ they have gauge theory on them.

K-theory (refined cohomology theory).

e The D-brane worldvolume is naively thought of as a ho-
mology cycle in spacetime X.

| it has gauge theory on it.

K-homology (refined homology theory).

We propose that

D-branes are classified by the K-homology group.

e it is dual to the K-theory group.

Moreover, we see that

K-matrix theory is the natural framework for K-homology.
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32 K-matrix theory

Type IIA K-matrix theory'

The theory of N non-BPS D-instantons:

e gauge group is U(N).
e the bosonic fields consist of

®* (u =0,...,9) : scalar fields
T : tachyon,

which are self-adjoint (Hermitian) N X N matrices and
belong to the adjoint repr.

In order to create arbitrary numbers of non-BPS D-instantons,
we must take N = oo.

U

We assume:

e H: oo dim. separable Hilbert space.

e ®¥ and T': linear operators acting on H.

Note:

e There is a tachyon T'.
= matrix model + tachyon system.

e "H ~ I?(N): the space of Chan-Paton indices.
= we should also choose H.

e We consider the bosonic part only.



The action is roughly given as

2

S ~ 'I\r% <e—T2[@H’, @V]z _|_ e—Tz[@H, T]2 _|_ e—T _|_ ...> ,
which is estimated by
_T2 »
S| < Trye™™ (|| [@*, @] |1 + || [®*,T] |* +1) +---.

Finite action configurations:

_? v
Trye™ <oo, |[[®",®@"][[<oo, | [®",T] < oo

4
We deal with the configurations satisfying

[®H, 7], [®",T] € B(H) for p,v=0,1,...,9,
(T —XN)"'eK(H) for "X ¢R.

B(#): the algebra of bounded linear operators on .
K(#): the set of compact operators on H.

Note:
e K(H) ~ M, (C) (naive large N).

e The tachyon T is not a bounded operator.
& eigenvalues of T? accumulate to the min. of the
potential.



It 1s sometimes convenient to use

T
T,= ~——_cB
’ 7 & B

normalized such that 77 = 1 is the min.
of the potential.

U

(@, Y] € B(H) (p,v=0,1,...,9),
T, € B(H), T;—1€K(H), [®", Ty € K(H).

Note:
An op. K on H is said to be compact if it has an expansion

n>0

with u,, — 0 as n — oo,
where {¥, }nen and {¢, }nen are orthonormal sets.



Type IIB K-matrix theoryl

This is based on the D-instanton/anti-D-instanton system.
The theory of N D(-1) and M D(-1) has U(N) x U(M)
gauge group and
¢ ¢ (adj.,1) (L =0,...,9) : scalar fields on D(-1)
" € (1,adj.) (0 = 0,...,9) : scalar fields on D(-1)
T € (N,M) : a complex tachyon

We take both N = M = oc.

U

o H =HdHM: the Chan-Paton Hilbert space.
e &: operators acting on H().
e &": operators acting on H).

e T: an operator from H® to HO).

Finite action configurations:

In terms of the normalized tachyon T;, such that the min.
of the potential is T;T;, = T, = 1, and using matrix repre-
sentation:

_ (HO\ ., (& 0 - (0T
H=jo ) #= (% o) F=(p -

U

[®*, ®*] € B(H) (u,v =0,1,...,9),
FeB(H), F’—-1ecK(H), [®" F]ecK(H).




Chern-Simons terms I

Chern-Simons terms for N non-BPS D-instantons:
Scs = SymTrnTrs <0'1Tr¢ (ée(_T2+§[@u,cbv]¢§‘¢5+i[¢»u,T]¢gal))) ’

where

—

C = 3 Cproyn (B) Y41+ 1,
Clyop, (®) : symmetric function in ®&*
{"Pflv 7#5} = 0", {";bfv ’l,b§} — {"ng 7#5} = 0.
S0O(10,10) gamma matrices.

Taking the limit N — oo, we obtain the Chern-Simons term
for the ITA K-matrix theory. (Try is replaced by Try.)

It is estimated by

1 2
Sosl <3 1| Cureopn (®) | Trae (€777
I || [T, @] | or || [, &) || .

{pr}

Thus the CS-term is finite if || C,,,.. ., (®) ||< co.



Basic examplel

BPS D(2m)-brane configuration:

H = LZ(R2m—I—1) ® S
where S: 2™ dim. SO(2m + 1) spinors.
2m
T=uD=u X_:Oﬁa®7a7
P*=z"®1 (a=0,---,2m),
=0 (i=2m+1,---,9).

Inserting this into the CS-term,
2
SCS = u2m+1C’01...2mTer <€ T)
= W2 Chp0m2™ [ AP (kle” k)
— M2m001---2m/d2m+1c’139
where po, = 1/(2™1/7°""): a numerical constant.

U

e The tachyon T is a Dirac operator.
=Try (e‘T2> x volume.

= for noncompact space, we can relax Try (e_T2> < 0.
e The correct coupling between D(2m)-brane

and RR (2m + 1)-form.
= BPS commutative D-branes are constructed.



83 Spectral triples and D-branes

Extracting geometric information from (#, {®*},T),

U

Each configuration in the K-matrix theory defines a spectral
triple, and interpreted as a higher dim. D-brane.

Geometry of CID“I

Let A = {®"} be the algebra generated by the operators
®* (up =0,--+-,9) for a fixed configuration.

@4, 8], C(®) € B(H)
= We can assume that A is a C*-algebra.
Def: a C*-algebra is a norm closed self-adjoint subalgebra

of the bounded operator algebra B(#H).

If ®#(pu = 0,1,...,9) are mutually commuting operators,
A is a commutative C*-algebra.
Example:

e If A is the algebra generated by ®* = z# (u = 0,...,n)
with a relation Zﬁ:O(CIW)2 = R? then A = C(S™).

e ¥ = z* (u = 0,...,mn) and if all elements vanish at
infinity, then A = Cy(R").

Recall the correspondence between space and algebra.

e A space M <— an algebra A = Co(M).
e A point p € M <— a character ¢, of A.




In our case A = {®*},

e The character ¢, is determined by ¢,(®*),
which is given by picking up one spectrum of ®~.
= a point p is given by ¢,(®) = (P, (B°), - - - pp(D?)).
= This agrees with the standard interpretation that the
eigenvalues of the matrix ®* represents the position of
the non-BPS D-instantons.

e The whole set of spectrum of (®°, ®1,..., #?) should agree
with some space M (i.e. a set of co number of points).
= M is interpreted as the world-volume of higher di-
mensional D-branes made from infinite number of non-
BPS D-instantons.

If A= {®#} is noncommutative, corresponding space
becomes noncommutative.



Geometry of TI

Def: A spectral triple is a triple (H,.A, T'), where
e 7: a Hilbert space.
e A: a C*-algebra acting on H.

e T': a self-adjoint operator on H, satisfying

(T —AN)"!'eK(H) for "X\ ¢R, [a,T] € B(H) for "a € A.

This agrees with the configuration of the K-matrix theory.

e H: the Chan-Paton Hilbert space.
o A= {d"}.
e T: (unbounded) tachyon.

Note: A spectral triple is the basic ingredient for noncom-
mutative geometry. In particular, T carries the additional
information, mertic and gauge field etc. on A.

Canonical triples

(H, A, T) = (L*(M,S),C>*(M), D)
e M: a closed Riemannian spin manifold,

e L?(M, S): the Hilbert space of square integrable sections
of the spinor bundle S on M,

e D: the Dirac operator associated with the Levi-Civita
connection on S.



Mertic aspects
In general, the distance between two states is

d(¢1; p2) = sup{ |¢p1(a) — ¢a(a)| | || [T,e] [[< 1},

acA

where states ¢; (i = 1, 2) are linear functions ¢; : A — C such
that ¢;(a*a) > 0 for Ya € A and normalized as ¢;(1) = 1.

= agrees with the geodesic distance for the canonical triple.
= roughly, ds =~ 1/|T|.

More explicitly, for the canonical triple, the heat kernel ex-
pansion gives

oln/2
~ (amt)n/? s

= we can measure the volume of M.

t
Try (e_tT2> d"x./g (1 + ER + O(tz)) ,

Note: the metric here is not the induced metric from the
background, but the worldvolume metric.

Dimension
The dimension spectrum is defined by a subset > C C of the
singularities of the analytic function

Cr(z) = Tra(|T|77).

= gives the dimension n for the canonical triple.




Diffeomorphism
In general, the automorphism of A generated by unitary
operators U(?#) in B(H) can be interpreted as

Aut(A) = {local gauge transf.} x {diffeo.}.

A curved D(2m)-brane:

¢ = fH(z') (i=0,...,2m)
1

T = {yel (@), (bi + wi"(@) 7))

where [2', 3] = 0, [&*, p;] = 25; and {~%,~°} = 2n?, and
e f#(2): embedding function,

e e’ (£): vielbein,

e w?(&): spin connection.

The unitary operators ug = exp(¢3{p;, €/(£)}) corresponds to
the diffeomorphism of the world-volume.
For infinitesimal trf. §° = ' + €'(&),

Ud‘I’”UJI ~ ("),

1 : . ~ :
’U,dT’U,gl = 5 {7“6'2(?)’), <p,z' ‘|— wl?b(gz)'yab)} :

Inserting them into the K-matrix action, we obtain a Polyakov
type action

S ~ /dw2m+1\/§ (1 + 2log ZGW&f”@jf"gij + .- ) ’

where g" = ezanabejb is the world-volume metric

and G, = n,, is the background metric.
= invariant under the diffeo.



34 D-branes and K-homology

Embedding of D-branes'

We fix a spacetime manifold X
and consider a D-brane world-volume M embedded in X.
= the inclusion 7 : M — X is a proper map.

U

In algebraic description,

A = Cy(X) and A = Cy(M): the corresponding algebras.
A *-homomorphism i* : A = A~ A/Jy,.

= generalized to the noncommutative cases.

e A: C*-algebra of the fixed spacetime manifold,
which could be noncommutative.

e ¢: A— B(H): a *homomorphism
= A = Image ¢ = A/ ker ¢ gives the world-volume
of the D-brane embedded in .A.

Note: We do not apriori have the notion of spacetime in ma-
trix theory.

Example: commutative D-branes embedded in R
= A = Cy(R') and consider A = {®* = ¢(x")}.




Analytic K-homology'

Def: A odd Fredholm module over A is a triple (H, ¢, F'),
where

e H is a separable Hilbert space,
e »: A— B(H) is a *-homomorphism,
e F' is a self adjoint operator in B(H), which satisfies

F? 1€ K(H), [F,¢(a)]€K((#H) for "a € A.

Note: The direct sum (Ho P Hi, po D ¢1, Fo D F}) is again a
Fredholm module.

A Fredholm module (H, ¢, F) describes a configurations of
the ITA K-matrix theory, the D-branes embedded in the fixed
space-time algebra .A.

e H: the Chan-Paton Hilbert space.
® ¢ specifies the world-volume A = Image ¢.

e F': the normalized tachyon Tj.

U

the classification of the D-brane configurations
= the classification of the Fredholm modules.

Def: K-homology K'(.A) is defined by
K'(A) = {(#, ¢, F) : odd Fredholm module}/ ~ .




The equivalence relation ~ is generated by

a) unitary equivalence:
(a) y
(Hiy ¢diy F;) (¢ = 0,1) are unitary equivalent if there is a
unitary operator in B(#H, 1) intertwining ¢; and F;.

(b) operator homotopy:
They are operator homotopic if Ho = H1, ¢g = ¢1 and
there is a norm continuous path between F; and Fj.

(c) addition of a degenerate Fredholm module:
which satisfy F? — 1 = [F, ¢(a)] = 0.

Physical interpretations

(a) the gauge equivalence of Fredholm modules.
(b) the continuous deformation of the tachyon configuration.

(c) the addition of non-BPS D-instantons that would be an-
nihilated by the tachyon condensation.

The K-homology K'(.A) classifies the D-brane configurations
in the ITA K-matrix theory.




The K-homology which classifies the D-brane configurations
in the IIB K-matrix theory is K°(A).

Def: An even Fredholm module over A is a triple (H, ¢, F),

where
. () ~ b0 O _ 0 F*
e (do ) o=(Ta) F=(r %)

e 7)) are separable Hilbert spaces (i = 0, 1),
¢ ¢;: A — B(#H)) are *-homomorphisms (i = 0, 1),
e I c B(H) satisfies
F? —1cK(H), [¢(a),F] €K(H), for ac A.

A Fredholm module (?-/L\, o, F\) describes a configurations of
the IIB K-matrix theory.

Def: K-homology K°(.A) is defined by
K°(A) = {(H, ¢, F) : even Fredholm module}/ ~ .




K-homology vs K-theoryl

Note: For A = Cy(X) : commutative, we also denote

K*(Cy(X)) = K;(X) : K-homology,
K;(Co(X)) = K'(X) : K-theory.

Example: A = Cy(R"),

Z (n :even)
0 (n:odd),

0 (n:even)

Ko(R") = { Z (n :odd).

Ky (R") = {

U

Flat Dp-brane is classified by
K;(RP™) (Ko(RP*1)) in the ITA (IIB) K-matrix theory.

In K-theory, flat Dp-brane charges are classified by K*(R°%P).
R%~? is Poincaré-dual to RP*! in the space-time R'.

This comes from

e K-homology of X classifies the world-volume M of the
D-brane embedded in the space-time manifold X.

e K-theory of X classifies the D-brane charge defined by
RR-fields on the space transverse to M in X.




In general, for a n-dimensional compact manifold X,

K-homology K-theory
K;(X) K" Y(X) : K-dual
7 s
H,;(X;7) H"*(X;Z) : Poincaré dual
homology cohomology

12

12

Physical interpretation: In type ITA (: = 1),

e K1(X) classifies the D-brane constructed by
non-BPS D-instanton system.

e K" 1(X) classifies the D-brane constructed by
non-BPS D(n — 1)-brane system(n: even), or
D(n — 1)-brane - anti D(n — 1)-brane system(n: odd).

The spectrum of the D-branes should not depend on how
they are constructed, and hence K;(X) ~ K" 1(X).



Topological K-homologyl

When the algebra A is commutative, we have a topological
definition of K-homology.

Def: An even(odd) K-cycle on X is defined to be a triple
(M, E, ), where

e M is an even(odd) dim. closed Spin® manifold.
e F is a complex vector bundle on M.

®  is a continuous map from M to X.

Note: the disjoint union (Mj, Ey, @) U (M7, E1, 1) is again
a K-cycle.

Physical interpretation
K-cycle (M, E, ¢) givess the world-volume geometry of the
D-brane (massless modes of open strings):

e NM: the world-volume of the D-brane.
e FE: Chan-Paton gauge bundle FE on M (gauge field).

e ©: the embedding of the D-brane to the space-time X
(tranverse scalar fields).

Def: The topological K-homology K!°?(X) is defined by

Ki?(X) = {(M, E, ) : even K-cycle}/ ~ .
K!°?(X) = {(M, E, ¢) : odd K-cycle}/ ~ .

Note: {(M, )}/ ~ = ordinary homology.




The equivalence relation ~ is generated by
(a) Bordism :
(Mo, Eo, po) ~ (M, E1, 1), if E(Wv E, ) s.t.
(OW, E|aw, plaw) =~ (Mo, Eo, po) U (—Mi, E1, ¢1).
Here —M; denotes M; with the reversed Spin€ str..

(b) Direct sum:
(Mv E, ® E27 90) ~ (M9 Ela 90) U (Ma E29 90)‘

(c) Vector bundle modification:
(M,E,p) ~ (M,H Q p*(E), ¢ o p), where

® p: M — M: a sphere bundle on M
with fiber S, = p~!(p), even dim. sphere.

e H: a vector bundle on M, such that the restriction
H|s, is the generator of K(S,) = Z.

Physical interpretation

(a) the deformations of the world-volume of the D-brane.

(b) the gauge symmetry enhancement for
coincident D-branes.

(c) the descent relation of the D-branes:
{a spherical D-brane with a non-trivial gauge bundle}
~ {a lower dimensional D-brane}.

The topological K-homology K:?(X) (K¢ (X)) classifies the
stable D-brane configurations in type ITA (IIB) string theory.




Isomorphisml

The topological K-homology is isomorphic to the analytic K-
homology:

pit K°(X) = Ki(X) (i=0,1)
(M, E,p) — (H,¢,D)

Let (M, E,p) € K;°?(X). Since M is an odd dimensional
closed Spin® manifold, we can define a spin bundle S on M.

e H=L?*(M,S ® E): the space of L?-section of the vector
bundle S K FE.

e We can define a Dirac operator D on H by choosing a
connection on the bundle S ® F as usual.

e ¢: C(X) — B(#H) is defined by the multiplication of the

function ¢(f(x)) = f(p(x)) for f(x) € C(X).
(< Image ¢ = C(M).)

Note: This is a genralization of the canonical triple, includ-
ing gauge fields.

We can always obtain a configuration in the K-matrix theory

corresponding to a conventional world-volume description of
the D-brane.




Chern character and Chern-Simons terms'

There is a Chern-character map from the K-homology group
to the ordinary homology group:

Ch. . KO(X) _> Hefven(X; Q)7
ch. : Kl(X) — Hodd(X; Q)
ch.(M, E, p) = p.(ch(FE) U Td(TM) N [M]).
The coupling of homology to RR-fields are as usual
Scs = /éh-(M,E,so) ¢
= [, ¥"C A ch(E) A Td(TM),

where C € 2(X) is the formal sum of RR-fields.
— This agrees with the CS-term for a BPS D-brane.



85 Conclusion and Discussion

Conclusion'

e We proposed the K-matrix theory, based on non-BPS D-
instantons in type ITA string theory and D-instanton/anti-
D-instanton system in type IIB string theory.

e The configurations with finite action are identified with
spectral triples, which are algebraic description of the
geometry on the world-volume of higher dimensional D-
branes.

e We claimed that the configurations in the K-matrix the-

ory are classified by K-homology.
More ganerally, D-branes embedded in spacetime are clas-

sified by K-homology.

Omitted todayl

e KK-theory

e Boundary states



Discussion'

e Chern-Simons term (Myers’ term).
e Consistency of the theory as a quantum theory.

e K-matrix theory in general curved backgrounds.
An ad hoc resolution: embedding the manifold to a higher
dimensional Euclidean space RY (N > 10).

e Relation between the closed string background and the
space-time algebra we can choose.

e The appearance of the closed strings.
Unfortunately, K-homology is not powerful enough to
classify the fundamental strings and NS5-branes.

e Applications to the formulation of M-theory.

e Relation to the description of D-branes as objects of the
derived category of coherent sheaves.



