D-branes, Matrix Theory and K-homology

Tsuguhiko Asakawa
(YITP, Kyoto Univ.)

October, 2001, at Komaba, Osaka and Kyoto based on hep-th/0108085 in collaboration with S. Sugimoto and S. Terashima

§1 Introduction

Our purpose:

- 1) Constructing a matrix theory, in which the creation and annihilation process of D-branes is incorporated.
- (a) It is important to find a non-perturbative formulation of string theory ⇒ matrix theory.
- (b) The creation and annihilation process of non-BPS D-branes or D-D pairs plays an important role ⇒ K-theory.
 non-BPS D9-branes(IIA) and D9-D9 system(IIB).
 ⇒ lower dim. D-branes are constructed from them.

However,

- (a) ⇒ the K-theory structure is not clear in the framework of existing matrix theories.
- (b) \Rightarrow since a 10-dim. gauge theory is non-renormalizable, it is hard to consider it as a fundamental theory.

We propose a new matrix theory based on

non-BPS D-instantons in type IIA,
D-instanton/anti-D-instanton system in type IIB.

 \Longrightarrow We call it as K-matrix theory

- 2) Another classification of D-branes.
 - The D-brane charge is defined by the behavior of RR-fields on the spacetime X. Therefore, D-branes should be naively classified by cohomology.
 - **↓** they have gauge theory on them.

K-theory (refined cohomology theory).

• The D-brane worldvolume is naively thought of as a homology cycle in spacetime X.

↓ it has gauge theory on it.

K-homology (refined homology theory).

We propose that

D-branes are classified by the K-homology group.

• it is dual to the K-theory group.

Moreover, we see that

K-matrix theory is the natural framework for K-homology.

Outline

§1 Introduction

- §2 K-matrix theory
 - basic structure of the K-matrix theory
 - configurations with finite action

§3 Spectral triples and D-branes

- geometric interpretation of the configurations
- physical interpretation of the configurations

§4 D-branes and K-homology

- D-branes embedded in spacetime
- analytic K-homology
- topological K-homology

§5 Conclusion and Discussion

§2 K-matrix theory

Type IIA K-matrix theory

The theory of N non-BPS D-instantons:

- gauge group is U(N).
- the bosonic fields consist of

```
\left\{ egin{array}{l} \Phi^{\mu} \; (\mu=0,\ldots,9) : 	ext{scalar fields} \ oldsymbol{T} : 	ext{tachyon,} \end{array} 
ight.
```

which are self-adjoint (Hermitian) $N \times N$ matrices and belong to the adjoint repr.

In order to create arbitrary numbers of non-BPS D-instantons, we must take $N = \infty$.

We assume:

- \mathcal{H} : ∞ dim. separable Hilbert space.
- Φ^{μ} and T: linear operators acting on \mathcal{H} .

Note:

- There is a tachyon T. \Rightarrow matrix model + tachyon system.
- ${}^{\forall}\mathcal{H} \simeq l^2(\mathbf{N})$: the space of Chan-Paton indices. \Rightarrow we should also choose \mathcal{H} .
- We consider the bosonic part only.

The action is roughly given as

$$S \, \sim \, {
m Tr}_{\mathcal{H}} \left(e^{-T^2} [\Phi^\mu, \Phi^
u]^2 + e^{-T^2} [\Phi^\mu, T]^2 + e^{-T^2} + \cdots
ight),$$

which is estimated by

$$|S| \, \leq \, \operatorname{Tr}_{\mathcal{H}} e^{-T^2} \left(\parallel \left[\Phi^\mu,\Phi^
u
ight] \parallel^2 + \parallel \left[\Phi^\mu,T
ight] \parallel^2 + 1
ight) + \cdots.$$

Finite action configurations:

$$\operatorname{Tr}_{\mathcal{H}} e^{-T^2} < \infty, \quad \parallel \left[\Phi^\mu, \Phi^
u
ight] \parallel < \infty, \quad \parallel \left[\Phi^\mu, T
ight] \parallel < \infty.$$

We deal with the configurations satisfying

$$egin{aligned} [\Phi^\mu,\Phi^
u],\ [\Phi^\mu,T] \in \mathrm{B}(\mathcal{H}) & ext{for} \quad \mu,
u=0,1,\dots,9, \ (T-\lambda)^{-1} \in \mathrm{K}(\mathcal{H}) & ext{for} \quad ^orall \chi
ot\in \mathrm{R}. \end{aligned}$$

 $B(\mathcal{H})$: the algebra of bounded linear operators on \mathcal{H} .

 $K(\mathcal{H})$: the set of compact operators on \mathcal{H} .

Note:

- $K(\mathcal{H}) \simeq M_{\infty}(C)$ (naive large N).
- The tachyon T is **not** a bounded operator. \Leftrightarrow eigenvalues of T^2 accumulate to the min. of the potential.

It is sometimes convenient to use

$$T_b = rac{T}{\sqrt{1+T^2}} \in \mathrm{B}(\mathcal{H})$$

normalized such that $T_b^2 = 1$ is the min. of the potential.

$$egin{aligned} [\Phi^\mu,\Phi^
u] &\in \mathrm{B}(\mathcal{H}) \quad (\mu,
u=0,1,\dots,9), \ T_b &\in \mathrm{B}(\mathcal{H}), \quad T_b^2-1 &\in \mathrm{K}(\mathcal{H}), \quad [\Phi^\mu,T_b] &\in \mathrm{K}(\mathcal{H}). \end{aligned}$$

Note:

An op. K on \mathcal{H} is said to be compact if it has an expansion

$$K = \sum\limits_{n \geq 0} \mu_n \, | \, \psi_n \,
angle \, \langle \, \phi_n \, |$$

with $\mu_n \to 0$ as $n \to \infty$, where $\{\psi_n\}_{n \in \mathbb{N}}$ and $\{\phi_n\}_{n \in \mathbb{N}}$ are orthonormal sets.

Type IIB K-matrix theory

This is based on the D-instanton/anti-D-instanton system.

The theory of N D(-1) and M $\overline{\mathrm{D}(\text{-}1)}$ has $U(N) \times U(M)$ gauge group and

$$\begin{cases} \Phi^{\mu} \in (\mathrm{adj.},1) \ (\mu=0,\ldots,9) : \mathrm{scalar\ fields\ on\ } \overline{\mathrm{D}(\text{-}1)} \\ \overline{\Phi}^{\mu} \in (1,\mathrm{adj.}) \ (\mu=0,\ldots,9) : \mathrm{scalar\ fields\ on\ } \overline{\mathrm{D}(\text{-}1)} \\ T \in (N,M) : \mathrm{a\ complex\ tachyon} \end{cases}$$

We take both $N = M = \infty$.

- $\widehat{\mathcal{H}} = \mathcal{H}^{(0)} \oplus \mathcal{H}^{(1)}$: the Chan-Paton Hilbert space.
- Φ^{μ} : operators acting on $\mathcal{H}^{(0)}$.
- $\overline{\Phi}^{\mu}$: operators acting on $\mathcal{H}^{(1)}$.
- T: an operator from $\mathcal{H}^{(0)}$ to $\mathcal{H}^{(1)}$.

Finite action configurations:

In terms of the normalized tachyon T_b , such that the min. of the potential is $T_b^*T_b = T_bT_b^* = 1$, and using matrix representation:

$$\widehat{\mathcal{H}} = \left(egin{array}{c} \mathcal{H}^{(0)} \ \mathcal{H}^{(1)} \end{array}
ight), \;\; \widehat{\Phi}^{\mu} = \left(egin{array}{c} \Phi^{\mu} & 0 \ 0 & \overline{\Phi}^{\mu} \end{array}
ight), \;\; \widehat{F} = \left(egin{array}{c} 0 & T_b^* \ T_b & 0 \end{array}
ight),$$

$$[\widehat{\Phi}^{\mu}, \widehat{\Phi}^{\nu}] \in \mathrm{B}(\widehat{\mathcal{H}}) \quad (\mu, \nu = 0, 1, \dots, 9), \ \widehat{F} \in \mathrm{B}(\widehat{\mathcal{H}}), \quad \widehat{F}^2 - 1 \in \mathrm{K}(\widehat{\mathcal{H}}), \quad [\widehat{\Phi}^{\mu}, \widehat{F}] \in \mathrm{K}(\widehat{\mathcal{H}}).$$

Chern-Simons terms

Chern-Simons terms for N non-BPS D-instantons:

$$S_{ ext{CS}} \ = \ ext{Sym} ext{Tr}_N ext{Tr}_2 \left(\sigma^1 ext{Tr}_\psi \left(\widehat{C} e^{\left(-T^2 + rac{1}{2} [\Phi^\mu, \Phi^
u] \psi_2^\mu \psi_2^
u + i [\Phi^\mu, T] \psi_2^\mu \sigma^1
ight)
ight)
ight),$$

where

$$egin{aligned} \widehat{C} &= \sum\limits_{n} C_{\mu_{1}...\mu_{n}}(\Phi) \ \psi_{1}^{\mu_{1}} \cdots \psi_{1}^{\mu_{n}}, \ & C_{\mu_{1}...\mu_{n}}(\Phi) : ext{ symmetric function in } \Phi^{\mu} \ \{\psi_{1}^{\mu}, \psi_{2}^{
u}\} &= \delta^{\mu
u}, \ \ \{\psi_{1}^{\mu}, \psi_{1}^{
u}\} = \{\psi_{2}^{\mu}, \psi_{2}^{
u}\} = 0. \ & SO(10, 10) ext{ gamma matrices.} \end{aligned}$$

Taking the limit $N \to \infty$, we obtain the Chern-Simons term for the IIA K-matrix theory. (Tr_N is replaced by Tr_H.)

It is estimated by

$$egin{aligned} |S_{ ext{CS}}| & \leq \sum\limits_{n} rac{1}{n!} \parallel C_{\mu_{1}...\mu_{n}}(\Phi) \parallel \operatorname{Tr}_{\mathcal{H}}\left(e^{-T^{2}}
ight) imes \ & \prod\limits_{\{\mu_{k}\}} \parallel [oldsymbol{T}, \Phi^{\mu_{k}}] \parallel \operatorname{or} \parallel [\Phi^{\mu_{k}}, \Phi^{
u_{l}}] \parallel. \end{aligned}$$

Thus the CS-term is finite if $\|C_{\mu_1...\mu_n}(\Phi)\| < \infty$.

Basic example

BPS D(2m)-brane configuration:

$$egin{aligned} \mathcal{H} &= L^2(\mathrm{R}^{2m+1}) \otimes S \ & ext{where } S \colon 2^m ext{ dim. } SO(2m+1) ext{ spinors.} \ T &= u \, D = u \, \sum\limits_{lpha=0}^{2m} \widehat{p}_{lpha} \otimes \gamma^{lpha}, \ \Phi^{lpha} &= \widehat{oldsymbol{x}}^{lpha} \otimes 1 \ \ (lpha=0,\cdots,2m), \ \Phi^i &= 0 \ \ (i=2m+1,\cdots,9). \end{aligned}$$

Inserting this into the CS-term,

$$egin{array}{lll} S_{ ext{CS}} &=& u^{2m+1} C_{01...2m} ext{Tr}_{\mathcal{H}} \left(e^{-T^2}
ight) \ &=& u^{2m+1} C_{01...2m} 2^m \int d^{2m+1} k \, \langle k | e^{-u^2 k^2} | k
angle \ &=& \mu_{2m} C_{01...2m} \int d^{2m+1} x, \end{array}$$

where $\mu_{2m} = 1/(2^{m+1}\sqrt{\pi}^{2m+1})$: a numerical constant.

- ullet The tachyon T is a Dirac operator.
 - $\Rightarrow {
 m Tr}_{\mathcal{H}}\left(e^{-T^2}\right) \propto {
 m volume}.$
 - \Rightarrow for noncompact space, we can relax $\mathrm{Tr}_{\mathcal{H}}\left(e^{-T^2}\right)<\infty$.
- The correct coupling between D(2m)-brane and RR (2m+1)-form.
 - ⇒ BPS commutative D-branes are constructed.

§3 Spectral triples and D-branes

Extracting geometric information from $(\mathcal{H}, \{\Phi^{\mu}\}, T)$,

Each configuration in the K-matrix theory defines a spectral triple, and interpreted as a higher dim. D-brane.

Geometry of Φ^{μ}

Let $\widehat{\mathcal{A}} = \{\Phi^{\mu}\}$ be the algebra generated by the operators Φ^{μ} $(\mu = 0, \dots, 9)$ for a fixed configuration.

$$[\Phi^{\mu},\Phi^{
u}],C(\Phi)\in\mathrm{B}(\mathcal{H})$$

 \Rightarrow We can assume that $\widehat{\mathcal{A}}$ is a C^* -algebra.

<u>Def</u>: a C^* -algebra is a norm closed self-adjoint subalgebra of the bounded operator algebra $B(\mathcal{H})$.

If $\Phi^{\mu}(\mu=0,1,\ldots,9)$ are mutually commuting operators, $\widehat{\mathcal{A}}$ is a commutative C^* -algebra.

Example:

- If $\widehat{\mathcal{A}}$ is the algebra generated by $\Phi^{\mu} = \widehat{x}^{\mu} \ (\mu = 0, \dots, n)$ with a relation $\Sigma_{\mu=0}^{n}(\Phi^{\mu})^{2} = \mathbb{R}^{2}$, then $\widehat{\mathcal{A}} = C(S^{n})$.
- $ullet \Phi^{\mu} = \widehat{x}^{\mu} \ (\mu = 0, \dots, n)$ and if all elements vanish at infinity, then $\widehat{\mathcal{A}} = C_0(\mathbb{R}^n)$.

Recall the correspondence between space and algebra.

- ullet A space $M \longleftrightarrow {
 m an\ algebra}\ \widehat{\mathcal{A}} = C_0(M).$
- A point $p \in M \longleftrightarrow$ a character ϕ_p of $\widehat{\mathcal{A}}$.

In our case $\widehat{\mathcal{A}} = \{\Phi^{\mu}\},$

- The character ϕ_p is determined by $\phi_p(\Phi^\mu)$, which is given by picking up one spectrum of Φ^μ . \Rightarrow a point p is given by $\phi_p(\vec{\Phi}) = (\phi_p(\Phi^0), \cdots \phi_p(\Phi^9))$. \Rightarrow This agrees with the standard interpretation that the eigenvalues of the matrix Φ^μ represents the position of the non-BPS D-instantons.
- The whole set of spectrum of $(\Phi^0, \Phi^1, \ldots, \Phi^9)$ should agree with some space M (i.e. a set of ∞ number of points). $\Rightarrow M$ is interpreted as the world-volume of higher dimensional D-branes made from infinite number of non-BPS D-instantons.

If $\widehat{\mathcal{A}} = \{\Phi^{\mu}\}$ is noncommutative, corresponding space becomes noncommutative.

Geometry of T

<u>Def</u>: A spectral triple is a triple $(\mathcal{H}, \widehat{\mathcal{A}}, T)$, where

- \mathcal{H} : a Hilbert space.
- $\widehat{\mathcal{A}}$: a C^* -algebra acting on \mathcal{H} .
- T: a self-adjoint operator on \mathcal{H} , satisfying

$$(T-\lambda)^{-1} \in \mathrm{K}(\mathcal{H}) \ \ \mathrm{for} \ ^{orall} \lambda
otin \mathrm{R}, \quad [\widehat{a},T] \in \mathrm{B}(\mathcal{H}) \ \ \mathrm{for} \ ^{orall} \widehat{a} \in \widehat{\mathcal{A}}.$$

This agrees with the configuration of the K-matrix theory.

- \mathcal{H} : the Chan-Paton Hilbert space.
- ullet $\widehat{\mathcal{A}}=\{\Phi^{\mu}\}.$
- T: (unbounded) tachyon.

Note: A spectral triple is the basic ingredient for noncommutative geometry. In particular, T carries the additional information, mertic and gauge field etc. on \widehat{A} .

Canonical triples

$$(\mathcal{H},\widehat{\mathcal{A}},T)=(L^2(M,S),C^\infty(M),D)$$

- M: a closed Riemannian spin manifold,
- $L^2(M, S)$: the Hilbert space of square integrable sections of the spinor bundle S on M,
- D: the Dirac operator associated with the Levi-Civita connection on S.

Mertic aspects

In general, the distance between two states is

$$d(\phi_1,\phi_2) = \sup_{a \in \widehat{\mathcal{A}}} \left\{ egin{array}{ll} |\phi_1(a) - \phi_2(a)| \mid & \parallel [oldsymbol{T},a] \parallel \leq 1 \end{array}
ight\},$$

where states ϕ_i (i=1,2) are linear functions $\phi_i: \widehat{\mathcal{A}} \to \mathbb{C}$ such that $\phi_i(a^*a) \geq 0$ for $\forall a \in \widehat{\mathcal{A}}$ and normalized as $\phi_i(1) = 1$. \Rightarrow agrees with the geodesic distance for the canonical triple. \Rightarrow roughly, $ds \approx 1/|T|$.

More explicitly, for the canonical triple, the heat kernel expansion gives

$$ext{Tr}_{\mathcal{H}}\left(e^{-t}rac{oldsymbol{T^2}}{(4\pi t)^{n/2}}\int_{oldsymbol{M}}oldsymbol{d}^noldsymbol{x}\sqrt{oldsymbol{g}}\left(1+rac{t}{12}R+O(t^2)
ight),$$

 \Rightarrow we can measure the volume of M.

Note: the metric here is not the induced metric from the background, but the worldvolume metric.

Dimension

The dimension spectrum is defined by a subset $\Sigma \subset C$ of the singularities of the analytic function

$$\zeta_T(z) = \operatorname{Tr}_{\mathcal{H}}(|T|^{-z}).$$

 \Rightarrow gives the dimension n for the canonical triple.

Diffeomorphism

In general, the automorphism of $\widehat{\mathcal{A}}$ generated by unitary operators $U(\mathcal{H})$ in $B(\mathcal{H})$ can be interpreted as

$$\operatorname{Aut}(\widehat{\mathcal{A}}) = \{ \text{local gauge transf.} \} \times \{ \text{diffeo.} \}.$$

A curved D(2m)-brane:

$$egin{array}{lll} \Phi^{\mu} &=& f^{\mu}(\hat{x}^i) & (i=0,\ldots,2m) \ T &=& rac{1}{2}ig\{\gamma^a e^i_{\ a}(\hat{x}),ig(\hat{p}_i+w^{ab}_i(\hat{x})\gamma_{ab}ig)ig\}\,, \end{array}$$

where $[\hat{x}^i,\hat{x}^j]=0,\,[\hat{x}^i,\hat{p}_j]=i\delta^i_j$ and $\{\gamma^a,\gamma^b\}=2\eta^{ab},$ and

- $f^{\mu}(\hat{x})$: embedding function,
- $e^i_a(\hat{x})$: vielbein,
- $w_i^{ab}(\hat{x})$: spin connection.

The unitary operators $u_d = \exp(i\frac{1}{2}\{\hat{p}_i, \epsilon^i(\hat{x})\})$ corresponds to the diffeomorphism of the world-volume.

For infinitesimal trf. $\hat{y}^i = \hat{x}^i + \epsilon^i(\hat{x})$,

$$egin{aligned} u_d \Phi^{\mu} u_d^{-1} &\sim f^{\mu}(\hat{y}^i), \ u_d T u_d^{-1} &= rac{1}{2} ig\{ \gamma^a {e'}^i_{\ a}(\hat{y}^i), ig(\hat{p'}_i + {w'}^{ab}_i(\hat{y}^i) \gamma_{ab} ig) ig\} \,. \end{aligned}$$

Inserting them into the K-matrix action, we obtain a Polyakov type action

$$S \sim \int dx^{2m+1} \sqrt{g} \left(1 + 2 \log 2 G_{\mu
u} \partial_i f^\mu \partial_j f^
u g^{ij} + \cdots
ight),$$

where $g^{ij}=e^i_{\ a}\eta^{ab}e^j_{\ b}$ is the world-volume metric and $G_{\mu\nu}=\eta_{\mu\nu}$ is the background metric.

 \Rightarrow invariant under the diffeo.

§4 D-branes and K-homology

Embedding of D-branes

We fix a spacetime manifold X and consider a D-brane world-volume M embedded in X. \Rightarrow the inclusion $i: M \to X$ is a proper map.

In algebraic description,

 $\mathcal{A}=C_0(X)$ and $\widehat{\mathcal{A}}=C_0(M)$: the corresponding algebras. A *-homomorphism $i^*:\mathcal{A}\to \widehat{\mathcal{A}}\simeq \mathcal{A}/J_M.$

- \Rightarrow generalized to the noncommutative cases.
 - \mathcal{A} : C^* -algebra of the fixed spacetime manifold, which could be noncommutative.
 - $\phi : \mathcal{A} \to B(\mathcal{H})$: a *-homomorphism $\Rightarrow \widehat{\mathcal{A}} = \operatorname{Image} \phi \cong \mathcal{A} / \ker \phi$ gives the world-volume of the D-brane embedded in \mathcal{A} .

Note: We do not apriori have the notion of spacetime in matrix theory.

Example: commutative D-branes embedded in R^{10} $\Rightarrow \mathcal{A} = C_0(R^{10})$ and consider $\widehat{\mathcal{A}} = \{\Phi^{\mu} = \phi(x^{\mu})\}.$

Analytic K-homology

<u>Def</u>: A odd Fredholm module over \mathcal{A} is a triple (\mathcal{H}, ϕ, F) , where

- \bullet \mathcal{H} is a separable Hilbert space,
- $\phi: \mathcal{A} \to \mathrm{B}(\mathcal{H})$ is a *-homomorphism,
- F is a self adjoint operator in $B(\mathcal{H})$, which satisfies

$$F^2-1\in \mathrm{K}(\mathcal{H}),\quad [F,\phi(a)]\in \mathrm{K}(\mathcal{H}) \ \ \mathrm{for}\ ^{orall}a\in \mathcal{A}.$$

Note: The direct sum $(\mathcal{H}_0 \oplus \mathcal{H}_1, \phi_0 \oplus \phi_1, F_0 \oplus F_1)$ is again a Fredholm module.

A Fredholm module (\mathcal{H}, ϕ, F) describes a configurations of the IIA K-matrix theory, the D-branes embedded in the fixed space-time algebra \mathcal{A} .

- \mathcal{H} : the Chan-Paton Hilbert space.
- ϕ specifies the world-volume $\widehat{\mathcal{A}} = \text{Image } \phi$.
- F: the normalized tachyon T_b .

 \Downarrow

the classification of the D-brane configurations = the classification of the Fredholm modules.

<u>Def</u>: K-homology $K^1(\mathcal{A})$ is defined by

$$K^1(\mathcal{A}) = \{(\mathcal{H}, \phi, F) : \text{odd Fredholm module}\}/\sim.$$

The equivalence relation \sim is generated by

(a) unitary equivalence:

 $(\mathcal{H}_i, \phi_i, F_i)$ (i = 0, 1) are unitary equivalent if there is a unitary operator in $B(\mathcal{H}_0, \mathcal{H}_1)$ intertwining ϕ_i and F_i .

(b) operator homotopy:

They are operator homotopic if $\mathcal{H}_0 = \mathcal{H}_1$, $\phi_0 = \phi_1$ and there is a norm continuous path between F_0 and F_1 .

(c) addition of a degenerate Fredholm module: which satisfy $F^2 - 1 = [F, \phi(a)] = 0$.

Physical interpretations

- (a) the gauge equivalence of Fredholm modules.
- (b) the continuous deformation of the tachyon configuration.
- (c) the addition of non-BPS D-instantons that would be annihilated by the tachyon condensation.

The K-homology $K^1(\mathcal{A})$ classifies the D-brane configurations in the IIA K-matrix theory.

The K-homology which classifies the D-brane configurations in the IIB K-matrix theory is $K^0(A)$.

<u>Def</u>: An <u>even</u> Fredholm module over \mathcal{A} is a triple $(\widehat{\mathcal{H}}, \widehat{\phi}, \widehat{F})$, where

$$\widehat{\mathcal{H}} = \left(egin{array}{c} \mathcal{H}^{(0)} \ \mathcal{H}^{(1)} \end{array}
ight), \;\; \widehat{\phi} = \left(egin{array}{c} \phi_0 & 0 \ 0 & \phi_1 \end{array}
ight), \;\; \widehat{F} = \left(egin{array}{c} 0 & F^* \ F & 0 \end{array}
ight),$$

- $\mathcal{H}^{(i)}$ are separable Hilbert spaces (i = 0, 1),
- $\phi_i: \mathcal{A} \to \mathrm{B}(\mathcal{H}^{(i)})$ are *-homomorphisms (i=0,1),
- ullet $\widehat{F} \in \mathrm{B}(\widehat{\mathcal{H}})$ satisfies

$$\widehat{F}^2 - 1 \in \mathrm{K}(\widehat{\mathcal{H}}), \quad [\widehat{\phi}(a), \widehat{F}] \in \mathrm{K}(\widehat{\mathcal{H}}), \quad ext{for } {}^{\forall} a \in \mathcal{A}.$$

A Fredholm module $(\widehat{\mathcal{H}}, \widehat{\phi}, \widehat{F})$ describes a configurations of the IIB K-matrix theory.

Def: K-homology $K^0(A)$ is defined by

 $K^0(\mathcal{A}) = \{(\widehat{\mathcal{H}}, \widehat{\phi}, \widehat{F}) : \text{even Fredholm module}\}/\sim.$

K-homology vs K-theory

Note: For $\mathcal{A} = C_0(X)$: commutative, we also denote

$$K^i(C_0(X)) = K_i(X) : ext{K-homology}, \ K_i(C_0(X)) = K^i(X) : ext{K-theory}.$$

Example: $\mathcal{A} = C_0(\mathbb{R}^n)$,

$$K_0(\mathrm{R}^n) = \left\{ egin{array}{ll} \mathrm{Z} & (n:\mathrm{even}) \ 0 & (n:\mathrm{odd}), \end{array}
ight. \hspace{0.5cm} K_1(\mathrm{R}^n) = \left\{ egin{array}{ll} 0 & (n:\mathrm{even}) \ \mathrm{Z} & (n:\mathrm{odd}). \end{array}
ight.$$

Flat $\mathrm{D}p$ -brane is classified by $K_1(\mathrm{R}^{p+1})$ $(K_0(\mathrm{R}^{p+1}))$ in the IIA (IIB) K-matrix theory.

In K-theory, flat Dp-brane charges are classified by $K^i(\mathbb{R}^{9-p})$. \mathbb{R}^{9-p} is Poincaré-dual to \mathbb{R}^{p+1} in the space-time \mathbb{R}^{10} .

This comes from

- K-homology of X classifies the world-volume M of the D-brane embedded in the space-time manifold X.
- K-theory of X classifies the D-brane charge defined by RR-fields on the space transverse to M in X.

In general, for a n-dimensional compact manifold X,

$$ext{K-homology} \qquad ext{K-theory} \ K_i(X) \simeq K^{n-i}(X) : ext{K-dual} \ \updownarrow \qquad \qquad \updownarrow \ H_i(X; \mathbf{Z}) \simeq H^{n-i}(X; \mathbf{Z}) : ext{Poincar\'e dual} \ ext{homology} \qquad ext{cohomology}$$

Physical interpretation: In type IIA (i = 1),

- $K_1(X)$ classifies the D-brane constructed by non-BPS D-instanton system.
- $K^{n-1}(X)$ classifies the D-brane constructed by non-BPS D(n-1)-brane system(n: even), or D(n-1)-brane anti D(n-1)-brane system(n: odd).

The spectrum of the D-branes should not depend on how they are constructed, and hence $K_1(X) \simeq K^{n-1}(X)$.

Topological K-homology

When the algebra \mathcal{A} is commutative, we have a topological definition of K-homology.

<u>Def</u>: An even(odd) K-cycle on X is defined to be a triple (M, E, φ) , where

- M is an even(odd) dim. closed Spin^c manifold.
- E is a complex vector bundle on M.
- φ is a continuous map from M to X.

Note: the disjoint union $(M_0, E_0, \varphi_0) \cup (M_1, E_1, \varphi_1)$ is again a K-cycle.

Physical interpretation

K-cycle (M, E, φ) givess the world-volume geometry of the D-brane (massless modes of open strings):

- M: the world-volume of the D-brane.
- E: Chan-Paton gauge bundle E on M (gauge field).
- φ : the embedding of the D-brane to the space-time X (tranverse scalar fields).

<u>Def</u>: The topological K-homology $K_*^{top}(X)$ is defined by

$$K_0^{top}(X) = \{(M, E, arphi) : ext{even K-cycle}\}/\sim.$$
 $K_1^{top}(X) = \{(M, E, arphi) : ext{odd K-cycle}\}/\sim.$

Note: $\{(M,\varphi)\}/\sim \Rightarrow$ ordinary homology.

The equivalence relation \sim is generated by

(a) Bordism:

$$(M_0, E_0, \varphi_0) \sim (M_1, E_1, \varphi_1), \quad ext{if} \quad ^\exists (W, E, \varphi) ext{ s.t.} \ (\partial W, E|_{\partial W}, \varphi|_{\partial W}) \simeq (M_0, E_0, \varphi_0) \cup (-M_1, E_1, \varphi_1). \ ext{Here} \quad -M_1 ext{ denotes } M_1 ext{ with the reversed Spin}^c ext{ str..}$$

(b) Direct sum:

$$(M,E_1\oplus E_2,arphi)\sim (M,E_1,arphi)\cup (M,E_2,arphi).$$

(c) Vector bundle modification:

$$(M, E, \varphi) \sim (\widehat{M}, \widehat{H} \otimes \rho^*(E), \varphi \circ \rho)$$
, where

- $\rho: \widehat{M} \to M$: a sphere bundle on M with fiber $S_p = \rho^{-1}(p)$, even dim. sphere.
- ullet \widehat{H} : a vector bundle on \widehat{M} , such that the restriction $\widehat{H}|_{S_p}$ is the generator of $\widetilde{K}(S_p)={f Z}.$

Physical interpretation

- (a) the deformations of the world-volume of the D-brane.
- (b) the gauge symmetry enhancement for coincident D-branes.
- (c) the descent relation of the D-branes:
 {a spherical D-brane with a non-trivial gauge bundle}
 ~ {a lower dimensional D-brane}.

The topological K-homology $K_1^{top}(X)$ ($K_0^{top}(X)$) classifies the stable D-brane configurations in type IIA (IIB) string theory.

Isomorphism

The topological K-homology is isomorphic to the analytic K-homology:

$$egin{aligned} \mu_i : K_i^{top}(X) & \stackrel{\sim}{ o} & K_i(X) \quad (i=0,1) \ (M,E,arphi) & \mapsto & (\mathcal{H},\phi,D) \end{aligned}$$

Let $(M, E, \varphi) \in K_1^{top}(X)$. Since M is an odd dimensional closed Spin^c manifold, we can define a spin bundle S on M.

- ullet $\mathcal{H}=L^2(M,S\otimes E)$: the space of L^2 -section of the vector bundle $S\otimes E$.
- ullet We can define a Dirac operator D on ${\mathcal H}$ by choosing a connection on the bundle $S\otimes E$ as usual.
- $\phi: C(X) \to B(\mathcal{H})$ is defined by the multiplication of the function $\phi(f(x)) \equiv f(\varphi(x))$ for $f(x) \in C(X)$. (\Leftrightarrow Image $\phi = C(M)$.)

Note: This is a genralization of the canonical triple, including gauge fields.

We can always obtain a configuration in the K-matrix theory corresponding to a conventional world-volume description of the D-brane.

Chern character and Chern-Simons terms

There is a Chern-character map from the K-homology group to the ordinary homology group:

$$egin{aligned} ext{ch.} &: K_0(X)
ightarrow H_{even}(X; ext{Q}), \ ext{ch.} &: K_1(X)
ightarrow H_{odd}(X; ext{Q}). \end{aligned}$$

$$\mathrm{ch.}(M,E,arphi)=arphi_*(\mathrm{ch}(E)\cup\mathrm{Td}(TM)\cap[M]).$$

The coupling of homology to RR-fields are as usual

$$egin{array}{ll} S_{ ext{CS}} &= \int_{ ext{ch.}(oldsymbol{M},oldsymbol{E},oldsymbol{arphi})} C \ &= \int_{oldsymbol{M}} arphi^* C \wedge ext{ch}(oldsymbol{E}) \wedge ext{Td}(oldsymbol{T}oldsymbol{M}), \end{array}$$

where $C \in \Omega(X)$ is the formal sum of RR-fields.

 \implies This agrees with the CS-term for a BPS D-brane.

§5 Conclusion and Discussion

Conclusion

- We proposed the K-matrix theory, based on non-BPS D-instantons in type IIA string theory and D-instanton/anti-D-instanton system in type IIB string theory.
- The configurations with finite action are identified with spectral triples, which are algebraic description of the geometry on the world-volume of higher dimensional D-branes.
- We claimed that the configurations in the K-matrix theory are classified by K-homology.

 More ganerally, D-branes embedded in spacetime are classified by K-homology.

Omitted today

- KK-theory
- Boundary states

Discussion

- Chern-Simons term (Myers' term).
- Consistency of the theory as a quantum theory.
- K-matrix theory in general curved backgrounds. An ad hoc resolution: embedding the manifold to a higher dimensional Euclidean space \mathbb{R}^N $(N \geq 10)$.
- Relation between the closed string background and the space-time algebra we can choose.
- The appearance of the closed strings.
 Unfortunately, K-homology is not powerful enough to classify the fundamental strings and NS5-branes.
- Applications to the formulation of M-theory.
- Relation to the description of D-branes as objects of the derived category of coherent sheaves.